• Aucun résultat trouvé

Likely chaotic transitions of large-scale fluid flows using a stochastic transport model

N/A
N/A
Protected

Academic year: 2021

Partager "Likely chaotic transitions of large-scale fluid flows using a stochastic transport model"

Copied!
58
0
0

Texte intégral

(1)

HAL Id: hal-01377702

https://hal.inria.fr/hal-01377702

Submitted on 9 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Likely chaotic transitions of large-scale fluid flows using a stochastic transport model

Valentin Resseguier, Etienne Mémin, Bertrand Chapron

To cite this version:

Valentin Resseguier, Etienne Mémin, Bertrand Chapron. Likely chaotic transitions of large-scale fluid flows using a stochastic transport model. 9th Chaotic Modeling and Simulation International Conference (CHAOS2016), May 2016, Londres, United Kingdom. �hal-01377702�

(2)

Likely chaotic transitions of large-scale fluid flows

using a stochastic transport model

Valentin Resseguier, Etienne Mémin, Bertrand Chapron

1

(3)

Motivations for deriving

random fluid dynamics models

Rigorously identified sudgrid dynamics effects

Injecting likely small-scale dynamics

Quantification of modeling errors:

especially for Data assimilation: ensemble forecasts

Predicting possible distinct scenarios

2

(4)

Chaotic transitions

Dynamics under location uncertainty

Ensemble of simulations

Contents

3

(5)

Chaotic transitions

4

in SQG dynamics

(6)

Reference flow: deterministic SQG 5122 Initial condition 1 Scenario 1

5

5122 5122

(7)

Reference flow: deterministic SQG 5122 Initial condition 1 Scenario 1

5

5122 5122

(8)

6

Reference flow: deterministic SQG 5122 Initial condition 2 Scenario 2

5122 5122

(9)

6

Reference flow: deterministic SQG 5122 Initial condition 2 Scenario 2

5122 5122

(10)

7

Reference flow:

deterministic SQG

5122 versus 1282 Initial condition 1

?

5122 5122

1282 1282

(11)

7

Reference flow:

deterministic SQG

5122 versus 1282 Initial condition 1

?

5122 5122

1282 1282

(12)

Dynamics under location uncertainty

8

(13)

Random equations

Random initial conditions

Arbitrary Gaussian forcing

Averaging, homogenization

Adding white random velocity

Underdispersive + need large ensemble

Adding energy + wrong phase

Assumptions and energy issues

v = w + B˙

9

(14)

Advection of tracer Θ

D ⇥

Dt = 0

10

(15)

Advection of tracer Θ

10

(16)

Advection of tracer Θ

@t + w? · r + B˙ · r = r ·

1

2 ar

10

(17)

Advection

Advection of tracer Θ

@t + w? · r + B˙ · r = r ·

1

2 ar

10

(18)

Advection

Diffusion

Advection of tracer Θ

@t + w? · r + B˙ · r = r ·

1

2 ar

10

(19)

Advection

Diffusion

Advection of tracer Θ

@t + w? · r + B˙ · r = r ·

1

2 ar

10

Drift

correction

(20)

Advection

Diffusion

Advection of tracer Θ

Multiplicative random

forcing

@t + w? · r + B˙ · r = r ·

1

2 ar

10

Drift

correction

(21)

Advection

Diffusion

Advection of tracer Θ

Multiplicative random

forcing

@t + w? · r + B˙ · r = r ·

1

2 ar

10

Drift

correction

(22)

Advection

Diffusion

Advection of tracer Θ

Multiplicative random

forcing

@t + w? · r + B˙ · r = r ·

1

2 ar

10

Drift

correction

(23)

Advection

Diffusion

Advection of tracer Θ

Multiplicative random

forcing

Balanced energy exchanges

@t + w? · r + B˙ · r = r ·

1

2 ar

10

Drift

correction

(24)

Ensemble of simulations

11

with SQG MU

Code available online

(25)

12

examples of realizations:

Spectrum mean2/variance:

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

1282 1282

(26)

12

examples of realizations:

Spectrum mean2/variance:

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

1282 1282

(27)

Visualization of the ensemble

At a fixed time t,

Principal Component Analysis (EOF)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

(i)(x, t) Eˆ(⇥)(x, t) +

NXEOF

n=1

c(i)n (t) n(x, t)

(28)

Visualization of the ensemble

At a fixed time t,

Principal Component Analysis (EOF)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

(i)(x, t) Eˆ(⇥)(x, t) +

NXEOF

n=1

c(i)n (t) n(x, t)

ith realization

(29)

Visualization of the ensemble

At a fixed time t,

Principal Component Analysis (EOF)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

(i)(x, t) Eˆ(⇥)(x, t) +

NXEOF

n=1

c(i)n (t) n(x, t)

Mean ith realization

(30)

Visualization of the ensemble

At a fixed time t,

Principal Component Analysis (EOF)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

(random) EOF coefficient

(i)(x, t) Eˆ(⇥)(x, t) +

NXEOF

n=1

c(i)n (t) n(x, t)

Mean ith realization

(31)

Random initial

conditions

Under location uncertainty

Visualization of the ensemble (200 realizations)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

(32)

Random initial

conditions

Under location uncertainty

Visualization of the ensemble (200 realizations)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

(33)

Random initial

conditions

Under location

uncertainty

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

pdf of the 1st PCA coefficient along time

20 30 40 50 60 70 80

Time (day) -4

-2 0 2 4

1st PCAcoecient

×10-4

0 2000 4000 6000 8000 10000 pdf of the 1st PCA coefficient along time

35 40 45 50 55 60 65 70 75 80

Time (day) -4

-2 0 2 4

1st PCAcoecient

×10-4

0 2000 4000 6000 8000 10000

Mean of scenario A

0 5 10

x ×105

0 2 4 6 8

y

×105

-1 -0.5 0 0.5

×101-3 Mean of scenario B

0 5 10

x ×105

0 2 4 6 8

y

×105

-1 -0.5 0 0.5

×101-3

Mean of scenario A

0 5 10

x ×105

0 2 4 6 8

y

×105

-1 -0.5 0 0.5

×101 -3 Mean of scenario B

0 5 10

x ×105

0 2 4 6 8

y

×105

-1 -0.5 0 0.5

×101-3

(34)

Conclusion

16

(35)

Conclusion

Random transport applicable to any dynamics

Link (inhomogeneous) diffusion, drift correction and multiplicative noise

Predict likely scenarios with few realizations

Other results:

Better small scales

Estimate positions and amplitudes of errors Extreme events

Additional physical information

17

(36)

Code SQG MU:

link from Fluminance website - V. Resseguier

Thank you for your attention

18

(37)

Drift correction

19

(38)

Drift correction

20

(39)

Drift correction

w? = w 1

2 (r · a)T

20

(40)

SQG under Moderate Uncertainty

SQG MU

Code available online

21

(41)

Reference flow:

deterministic SQG

512 x 512

22

(42)

Reference flow:

deterministic SQG

512 x 512

22

Références

Documents relatifs

A compressible two-fluid model for the finite volume simulation of violent aerated flows. Analytical properties and

In mammals, the initiation of follicular development from the pool of resting follicles is characterized by an increase in the oocyte size concomitant with the surrounding

Im DaF-Unterricht, in der Fachsprache, hat dieses Fach als Ziel die Lerner befähigen werden, nicht nur Informationen zu lernen aber vor allem Fachwortschatz von

We conclude that home movie studies converge with the findings of prospective studies on early signs of ASD and should be considered as interesting tools for study of the first months

Nancy Arthur Robert Baudouin Brian Bigelow Lynn Boyd Marla Buchanan Sharon Cairns Stephanie Capyk Jeff Chang Charles Chen Judy Chew Laura Choate Anna-Lisa Ciccocioppo

Therefore, the analyzed period of 1965–1991 of increas- ing geomagnetic activity should result in negative NmF2 and positive hmF2 trends, as our previous analysis has shown

trée dans l'établissement. Comme si elle n'était pas autorisée à sortir de nuit... Mais en admettant que l'heure de fermeture, par exemple, soit retardée à 24 heures,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des