• Aucun résultat trouvé

2 Le mod` ele du ver

N/A
N/A
Protected

Academic year: 2021

Partager "2 Le mod` ele du ver"

Copied!
3
0
0

Texte intégral

(1)

Master CFP – Parcours de Physique Quantique : de l’atome au solide 2 avril 2012 Int´egrales de chemin

TD n˚4 : ´ Elasticit´ e des polym` eres

Nous ´etudions le comportement d’un polym`ere soumis `a une force. Le polym`ere est attach´e sur une surface `a une de ses extr´emit´es. On tire sur l’autre extr´emit´e avec une force f. Nous~ consid´erons deux mod`eles.

1 La chaˆıne gaussienne

On mod´elise le polym`ere comme N segments de longueurs b attach´es bout `a bout, dont les orientations relatives sont ind´ependantes.

1/ Limite continue.– Montrer que la mesure associ´ee `a une configuration ~r(τ) du polym`ere soumis `a un potentiel U(~r) est

D~r(τ)e12R0t(d~r)2−βR0tdτ U(~r(τ)) (1) o`u β = 1/kBT. Exprimer ten fonction deN,b et de la dimension d. Remarquons que le terme

1 2

Rt

0dτ(d~r)2 est d’origine puremententropique.

b/ Calculer la fonction de partition Z pour un potentiel correspondant `a une traction du po- lym`ere par son extr´emit´e.

c/ En d´eduire l’´elongation moyenne h~ri et les fluctuations

~r2

c (en fonction deN etb).

2/Dans cette question on s’int´eresse `a une situation o`u le polym`ere est proche de son extension maximale.

a/ Pourquoi le mod`ele continu n’est-il pas suffisant ?

b/ On revient au mod`ele discret des segments d’orientations ind´ependantes. Montrer que la fonction de partition est donn´ee par :

Z = [2πI0(βf b)]N en d= 2 (2)

=

4πsh(βf b) βf b

N

en d= 3 (3)

Retrouver les r´esultats du 1 pour l’´elongation calcul´ee dans la limitef →0 (loi de Hooke).

c/ Analyser h~ri dans la limite de l’´elongation maximale.

2 Le mod` ele du ver

Un autre mod`ele a ´et´e propos´e pour d´ecrire les propri´et´es

´

elastiques des polym`eres. Dans le mod`ele du ver le poids d’une configuration fait intervenir un terme de courbure :

D~t(s)e2ξR0Lds(dds~t)2−βR0Lds U(~r(s)) (4) o`us∈[0, L] est l’abscisse curviligne et~t(s) = d~r(s)ds est le vec- teur unitaire tangent (rappelons que le rayon de courbureR est donn´e par 1/R=||dsd~t||). Notons que~r(s) =Rs

0 ds0~t(s0).

000000 111111

t(s)

r(s) s L f

0

1

(2)

Remarque : Il est possible d’arriver `a la mesure (4) `a partir d’un mod`ele discret incluant une ´energie d’interaction entre monom`eres successifs. Notons ~u1,· · · , ~uN les vecteurs unitaires d´ecrivant les orientations des N monom`eres. ´Ecrivons l’´energie du polym`ere Epolymere[{~un}] =

−f~·P

n~un+cP

n(~un+1−~un)2. Le second terme induit une rigidit´e, localement. Dans la limite continue la mesure d~u1· · ·d~uNe−β Epolymere[{~un}]tend vers la mesure (4). Cette remarque sugg`ere que ξ∝1/T.

En l’absence de terme d’interaction (c= 0) on aboutit en revanche `a la mesure (1).

1/On cherche `a identifier le sens physique du param`etre ξ, dont on pr´ecisera la dimension. On consid`ere le cas U(~r) = 0. Quel est l’op´erateur H0 apparaissant dans la probabilit´e exprim´ee comme PL(~t|~t0) =h~t|e−LH0|~t0i? Calculer cette probabilit´e dans la limiteL→ ∞.

2/ La fonction de partition est donn´ee par

Z = Z

||~t||=||~t0||=1

d~td~t0

Z ~t(L)=~t

~t(0)=~t0

D~t(s)eξ2R0Lds(d~dst)2−βR0Lds U(~r(s)) (5)

o`u l’int´egrale de chemin porte sur les chemins sur la sph`ere (||~t(s)|| = 1). Exprimer U(~r) et d´eduire l’´elongation moyenneh~r(L)i en fonction de Z.

3/ f = 0.– Calculer la fonction de partitionZ0 en l’absence de la force.

4/ ´Etude de la limitef → 0 : analyse perturbative.– Dans cette limite on traite le terme d’´energie potentielle −βRL

0 ds U(~r(s)) perturbativement. Pour calculer les corrections `a Z0 on utilise la relation

e−L(H0+V) =e−LH0− Z L

0

dse−(L−s)H0V e−s(H0+V) (6)

a/ Calculer les correctionsδZ(1)etδZ(2)d’ordre 1 et 2 dans la forcef(suppos´ee dirig´ee selon~uz).

b/ D´eduire l’´elongation moyenne, not´ee`def=h~ri ·~uz. c/ Calculer ´egalement les fluctuations

~ r2

c dans la limite f → 0. En particulier on analysera le comportement du r´esultat pourL→0 et L→ ∞.

5/ ´Etude de la limite f → ∞.– Dans la limite f → ∞, le polym`ere est tr`es ´etir´e et

~t(s) reste proche de l’orientation de f~ = f ~uz. Montrer qu’on peut se ramener `a un probl`eme d’oscillateur harmonique bidimensionnel. Calculer la fonction de partition dans cette limite et d´eduire l’´elongation.

6/ V´erifier que l’expression

βf ξ = 1

4(1−`/L)2 −1 4+ `

L (7)

interpole bien entre les r´esultats des questions 4 et 5. C’est avec cette expression que sont analys´ees les donn´ees exp´erimentales sur la figure.

7/ Comparaison entre les deux mod`eles.– Comparer les r´esultats donn´es par les deux mod`eles dans la limite de l’´elongation maximale.

2

(3)

::.: : :,:.:. :: t :' l':.i| . :ll

Fig. 1, Squares are experimental force versus extension data for 97 kb A-DNA diners from f gure 3 ot (2), solrd line ls a fit of the entropic force required to extend a worn -lrke polyme.. The f,t pa- rameters are the DNA length ir : 32.80 + 0.10 pm) and the per- sistence length [4 : 53.4 + 2.3

^r.). Shown for comparison (dashed curve) is the freely joint- ed chain modei (2) wilh L : 32.7 pm and a segment length b : I0O nm chosen to fit the smail-x data.

rate method for determination of L and A for DNA in solution, in part because the inter- pretive theory is simple. For example, exclud- ed volume effects are minimal for unstretched DNA with L < 100 kb, and are further re- duced by extension. The systematic underes- timation of F for x > 31 pm may signal the breakdor.vn of the conventional bending elas- ticiry, because beyond that point the conela- tion length (kTalp)'rtz becomes less than the double helix period. Further mechanical stud- ies of DNAs that are supercoiled, single-strand- ed, intriruically bent, or in contact with pro- teins shouid prove even more interesting.

C. Bustarnante Institute of Molecular Biologl and

Department of Chemistrl , Uniuersity of Oregon, Eugene, OR 97403, USA

a n

5 r o

.9tn tr UI

1 0

0 L1 0 r 1 e 1 0 3 1 d

Force (fN)

J. F. Marko E. D. Sigsia Inborarorl of Aromic atd Solid Srare Physlcs,

Cornell Universitl , Irhaca, NY 14853-2501, USA S. Smith lnstitute of MolecuLtr Biologl, and Department of Chemistry,

Uniuersitl of C)regon Eugene, OR 97403, USA R E F E R E N C E S

W . H. Tayor and P. J. Hagerman, J . M o l . B i o l . 2 ' 1 2 , 363 (1 990),

S. B. Smith, L. Finz, C, Bustamante, Sclence 2S8, 1 122 (1992).

M. Fixman and J. Kovac, J. Chem. Phys. 58, 1564 ( 1 e 7 3 ) .

1 6 l\,4arch 1994; accepted 6 June 1994

"l

L.eone et al. suggest that the growth in the maps reflected implicit leaming and that the retum to baseline reflected son-re kind of trarsfer from implicit to explicit leaming.

This cor-rclusion is post hoc and is inconsis- , tent with other research on implicit leaming.

".. Implicit and explicit leaming can occur

reaction time was \bout 200 ms five blocks before explicit iear4ing supposedly occurred and was under 10S, ms two blocks before.

Such fast reaction 0t*es sugg"tt that sub- jects knerv in advaitce what stirnulus to expect, lvhich suggest\ explicit learning had occurred. Reaction tfres faster than 100 ms have previously been rlgarded as anticipa- tions, and such respons'Xs are strongly cor- related rvith, aithotrgh lerhaps nor com- pletely diagnostic of, e*plicit knowledge (3). The subjects in the study by Pascual- Leone et al. had apparenrlyacquired explic- it knowledge well before th\y rvere so clas- sified, perhaps because theiprocedure in- d u c e d a n e x p l i c i r l e a m i n g s \ r a r e g y . T h u s , the greatest growth in the mafis \.vas strong- ly relatec{ to explicit learnin$' Moreover, implicir learnrng has been sho{'n to begin e a r l y in p r a c t i c e . i n t l r e f i r s t l 6 r r i a l s (J . 6). Ar that stage of the experimdnt of Pas- cual'Leone er al., there w:rs little, if any, chajige in the maps. Both the growfh in the mabs and the return to baseline weip rnost likely caused by explicit learning. P\rhaps t h e g r o u r h i . c a u s e d b y i n c r e m e n t s i n e x - -plicit knou'ledge and rhe rerurn to basd(rne l by overlearning or automatization. \

I Michael A. Sradllr

' Departnlent o/ Pslchologl,

Unluersirl of Missouri, C o l u m b i a , M O 6 5 2 1 1 , U S A REFERENCES AND NOTES 1

2 3

in\pendently (2, 3), whereas Pascual-Leone :t al]\eem to resard the f<rnrrer m to regard the former as a precursoras a nre.rrrsor

'1

2 3 4 5 6 7

A. Pascual-Leone, J. Grafman, M. Haiet, Science 2 6 3 , 1 2 8 7 ( 1 9 9 4 ) .

l v l . A . Stader, M e m . Cog.21, 8129 (1993).

D . B. Wl lingham, M . J . N i s s e n , P . B u l l e m e r , J . F x p . P s y LlviC 1 5 , i0 4 7 ( l 9 8 9 ) .

A . Cohen, R . l. lv r y , S . W . K e e l e , r b i d . 1 6 , 1 7 ( 1 9 9 0 ) ; M . A . Stadler, i b l d . 1 5 , 1 0 6 1 (1 9 8 9 ) .

J. H. Howard, S. A. N,4utter, D. V. Howard, /bld. 18, 1 0 2 9 ( 1 9 9 2 ) .

I\,4. J. Nissen and P. Bullemer, Cog. Psy. 19, 1 (1982).

Thanks to N. Cowan, S, Hackley, and D. Wfight for helpful dlscussion and constructive comments on an e a r l i e r m a n u s c r i p t .

5 April 1 994; accepted B July 1 994

Explicit and lmplicit Learn]frg and Mapspf Cortical Motor Output

Alruro Pascual-Leone et al.. (1) r\.ort that cortical motor output maps change slbtemat- ically as subjects practice a reaction time\.qa*

when a sequence of stimuli is pattemed,4qt not when the sequence is random. J.nrplicib leaming, measured by comparingl'fmprove- ment in reaction time in patterryd conditions with that in random conditigns, was correlar- ed with growrh in the mry*l Pascual-Leone er

cl. asset"ed explicir lear6ing everl' I20 rrials of tl-re \tter. In their experiment ( I ), subjects b1 a.king subjecrr,ldrry ro describe rhe pat- wele to recall the partem after every tem; by their derft{irion, cxplicir leaming had block of 12\ials, a procedure that is likely to occurred .,npd'hen the :uhjecr could describe have induc explicit leaming srraregy.

the pattgrf{ wirh complcte accuracy. The Assuming that iil,phcir leaming is automaric, nrapr,,(fumed to baseline condition' abour both forms of probably occurred si- the tfine explicit leaming occurred. Pascual- multaneously under ^ ^ * l r . r ^ . ^ ^ l f - ^

! u l l q t L L U l t ) . t t b u )

9 SEPTEMBER 1994

l:t;aat::'::,

ping ofeffecror) ro responses i: changed (4) and r.rher\"ubjecl> are frrst expo.ed to the r e p e a t i n g f u t t e r n o n l y b y w a r c h i n g ir r , r ' i r h - o u t m a k i n g \ r e s l o n s e (5 ) . l ( / i r h o u r a :pe- c i f i c r a t i o n a l \ fo r r e l a r i n g im p l i c i r le a r n i n g t o t h e c o r t i c a \ m o r o r o u r p u r m a F s . ir i s n o t c l e a r th a t t h e g \ o r v r h in t h e r n a p . is r e l a t e d ro implicit learn\ng.

1 0 5 ing caused the grbwth in rhe maps. Mean

;:.:,.a: . .::l ::a, :,..' ::; :a.:r.:, : : .. :V.:r:,., the changes observed in the maps could re- flect a number of stages in implicit leaming or explicit leaming, or both, and not necessarily a shift from one to rhe orher.

\ B u r t h e m a p : m a y n o r r e f l e c r im p l i c i r l e a \ r i n g a t a l l . P a s c u a l - L e o n c e r a l . a p p a r - - ' entl\ assumed rhar implicir iearning in thi:

reactQn time task is a motor process, Ldrt that a$umption is suspecr. Implicit learning is evid&-rt in this task even afrer the rfiap-

1600 SCIENCE . \/OL. 265

Figure 1 – Donn´ees exp´erimentales (C. Bustamante, J. F. Marko & E. D. Siggia, Entro- pic elasticity of λ-phage DNA, Science 265, 1599 (9 September 2005)). Comparaison avec les pr´edictions des deux mod`eles.

Annexe :

• On rappelle quelques propri´et´es des fonctions de Bessel modifi´ees de premi`ere esp`ece :

I0(z) = Z

0

dt

2π ezcost (8)

I00(z) =I1(z) (9)

Iν(z) =

X

k=0

1 k! Γ(ν+k+ 1)

z 2

ν+2k

(10)

Iν(z) =

z→∞

ez

√2πz

X

k=0

(−1)k (2z)k

Γ(ν+k+ 1/2)

k! Γ(ν−k+ 1/2)+O(e−z) (11)

• Harmoniques sph´eriques :

Y00(θ, ϕ) = 1

4π (12)

Y10(θ, ϕ) = r 3

4π cosθ (13)

Y1±1(θ, ϕ) =∓ r 3

8π sinθe±iϕ (14)

• Propagateur de l’oscillateur harmonique H= 2mp2 +122x2 :

hx|e−tH|x0i=

r mω

2πshωt exp− mω 2 shωt

chωt(x2+x20)−2xx0

(15)

3

Références

Documents relatifs

In this Chapter we study the decay rate of the energies of higher order for solution to the Cauchy problem for structural damped σ-evolution models... We introduce

In the case of implicit feedback, the intention is to seek a correlation between the information that can be inferred from the data and the relevance judgments provided by users,

L'effet de l'OMS 2013 s'est manifeste a partir de 48 g.m.a./ha; cependant, a cette dose d'application, cette formulation ne saurait con- venir a une application a effet remanent

• Utilisez un langage centré sur la personne, par exemple dites « personne qui consomme des drogues » au lieu de « consommateur. personne de s’exprimer plus facilement, de

2 Most of the documents studied in this paper were made available to the public as soon as 1970, when Robert Stowell published the Thoreau Gazetteer, edited by William

The pro- posed comprehensive framework distinguishes three broad categories of fac- tors underlying the IDR for household adoption of energy-efficient technologies (EETs):

The technique of relaxed power series expansion provides an ecient way to solve so called recursive equations of the form F = (F ), where the unknown F is a vector of power series,

Identifi- cation of immediate response genes dominantly expressed in juvenile resistant and susceptible Biomphalaria glabrata snails upon exposure to Schistosoma mansoni.