• Aucun résultat trouvé

Adaptive wavelet estimation of a function in an indirect regression model

N/A
N/A
Protected

Academic year: 2021

Partager "Adaptive wavelet estimation of a function in an indirect regression model"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-00497343

https://hal.archives-ouvertes.fr/hal-00497343

Preprint submitted on 4 Jul 2010

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Adaptive wavelet estimation of a function in an indirect regression model

Christophe Chesneau

To cite this version:

Christophe Chesneau. Adaptive wavelet estimation of a function in an indirect regression model. 2010.

�hal-00497343�

(2)

(will be inserted by the editor)

Adaptive wavelet estimation of a function in an indirect regression model

Christophe Chesneau

Received:

Abstract We consider a nonparametric regression model where m noise- perturbed functionsf1, . . . , fmare randomly observed. For a fixedν ∈ {1, . . . , m}, we want to estimatefν from the observations. To reach this goal, we develop an adaptive wavelet estimator based on a hard thresholding rule. Adopting the minimax approach under the mean integrated squared error over Besov balls, we prove that it attains a sharp rate of convergence.

Keywords indirect nonparametric regression ·minimax estimation ·Besov balls·wavelets·hard thresholding.

2000 Mathematics Subject Classification:62G07, 62G20.

1 Motivations

An indirect nonparametric regression model is considered: we observe n in- dependent pairs of random variables (X1, Y1), . . . ,(Xn, Yn) where, for any i∈ {1, . . . , n},

Yi=fVi(Xi) +ξi, (1)

V1, . . . , Vn arenunobserved independent discrete random variables such that, for anyi∈ {1, . . . , n}, the set of possible values ofVi is

Vi(Ω) ={1, . . . , m}, m∈N,

for any d ∈ {1, . . . , m}, fd : [0,1] → R is an unknown function,X1, . . . , Xn

are n i.i.d. random variables having the uniform distribution on [0,1] and ξ1, . . . , ξn areni.i.d. unobserved random variables such that

E(ξ1) = 0, E(ξ12)<∞.

Laboratoire de Math´ematiques Nicolas Oresme, Universit´e de Caen Basse-Normandie, Cam- pus II, Science 3, 14032 Caen, France. E-mail: chesneau@math.unicaen.fr

(3)

(The distribution ofξ1can be unknown). We suppose thatV1, . . . , Vn, X1, . . . , Xn, ξ1, . . . , ξn are independent. For a fixed ν ∈ {1, . . . , m}, we want to estimate fν from (X1, Y1), . . . ,(Xn, Yn). An application of this estimation problem is the following:mnoise-perturbed signalsf1, . . . , fmare randomly observed and onlyfν is of interest.

To estimate fν, various methods can be investigated (Kernel, Spline, . . . ) (see e.g. Prakasa Rao (1983, 1999) and Tsybakov (2004)). In this study, we focus our attention on the wavelet methods. They are attractive for nonpara- metric function estimation because of their spatial adaptivity, computational efficiency and asymptotic optimality properties. They can achieve near opti- mal convergence rates over a wide range of function classes (Besov balls, . . . ) and enjoy excellent mean integrated squared error (MISE) properties when used to estimate spatially inhomogeneous function. Details on the basics on wavelet methods in function estimation can be found in Antoniadis (1997) and H¨ardle et al (1998).

When (1) is considered with V1 =. . . =Vn = 1, it becomes the classical nonparametric regression model. In this case, to estimate f1 =f, numerous wavelet methods have been developed. See e.g. Donoho and Johnstone (1994, 1995, 1998), Donoho et al (1995), Delyon and Juditsky (1996), Antoniadis et al. (1999), Cai and Brown (1999), Zhang and Zheng (1999), Cai (1999, 2002), Pensky and Vidakovic (2001), Chicken (2003), Kerkyacharian and Pi- card (2004), Chesneau (2007) and Pham Ngoc (2009). However, to the best of our knowledge, there is no adaptive wavelet estimator forfν in the general case.

In this paper, we develop an adaptive wavelet estimator for fν using the hard thresholding rule. It has the originality to combine an ”observations thresholding technique” introduced by Delyon and Juditsky (1996) with some technical tools taking into account the distributions of V1, . . . , Vn. We eval- uate its performance via the minimax approach under the MISE over Besov balls Bsp,r(M) (to be defined in Section 3). Under mild assumptions on the distributions of V1, . . . , Vn, we prove that our estimator attains the rate of convergence

vn=

znln(n/zn) n

2s/(2s+1) ,

wherezndepends on the distributions ofV1, . . . , Vn(see (5)). This rate is ”near optimal” in the sense that it is the one attained by the best nonadaptive linear wavelet estimator (the one which minimizes the MISE) up to a logarithmic term.

The paper is organized as follows. Assumptions on the model and some notations are introduced in Section 2. Section 3 briefly describes the wavelet basis on [0,1] and the Besov balls. The estimators are presented in Section 4.

The results are set in Section 5. Section 6 is devoted to the proofs.

(4)

2 Assumptions

Additional assumptions on the model (1) are presented below.

Assumption on (fd)d∈{1,...,m}.We suppose that there exists a known con- stantC>0 such that

sup

d∈{1,...,m}

sup

x∈[0,1]

|fd(x)| ≤C. (2)

Assumptions onV1, . . . , Vn.Recall thatV1, . . . , Vn are unobserved and, for any i∈ {1, . . . , n}, we know

wd(i) =P(Vi=d), d∈ {1, . . . , m}.

We suppose that the matrix Γn= 1

n

n

X

i=1

wk(i)w`(i)

!

(k,`)∈{1,...,m}2

is nonsingular i.e. det(Γn)>0. For the considered ν (the one which refers to the estimation of fν) and anyi∈ {1, . . . , n}, we set

aν(i) = 1 det(Γn)

m

X

k=1

(−1)k+νγν,kn wk(i), (3) where γν,kn denotes the determinant of the minor (ν, k) of the matrix Γn. Then, for any d∈ {1, . . . , m},

1 n

n

X

i=1

aν(i)wd(i) =









1 ifd=ν, 0 otherwise,

(4)

and

(aν(1), . . . , aν(n)) = argmin

(b1,...,bn)∈Rn

1 n

n

X

i=1

b2i. Technical details can be found in Maiboroda (1996).

We set

zn= 1 n

n

X

i=1

a2ν(i) (5)

and we suppose thatzn< n/e.

In nonparametric statistics, the sequence (aν(i))i∈{1,...,n} has ever been used in some mixture density estimation problems. See e.g. Maiboroda (1996), Pokhyl’ko (2005) and Prakasa Rao (2010).

(5)

3 Wavelets and Besov balls

Wavelet basis. Let N ∈ N, φ be a father wavelet of a multiresolution analysis onRandψbe the associated mother wavelet. Assume that

– supp(φ) = supp(ψ) = [1−N, N], – RN

1−Nφ(x)dx= 1,

– for anyv∈ {0, . . . , N−1},RN

1−Nxvψ(x)dx= 0.

For instance, the Daubechies wavelets satisfy these assumptions. Set φj,k(x) = 2j/2φ(2jx−k), ψj,k(x) = 2j/2ψ(2jx−k).

Then there exists an integerτ satisfying 2τ ≥2N such that the collection

B={φτ,k(.), k∈ {0, . . . ,2τ−1}; ψj,k(.); j∈N−{0, . . . , τ−1}, k∈ {0, . . . ,2j−1}}, (with an appropriate treatments at the boundaries) is an orthonormal basis

of L2([0,1]), the set of square-integrable functions on [0,1]. We refer to Cohen (1993).

For any integer`≥τ, any h∈L2([0,1]) can be expanded onBas h(x) =

2`−1

X

k=0

α`,kφ`,k(x) +

X

j=`

2j−1

X

k=0

βj,kψj,k(x),

where αj,k andβj,k are the wavelet coefficients of hdefined by αj,k=

Z 1 0

h(x)φj,k(x)dx, βj,k= Z 1

0

h(x)ψj,k(x)dx. (6) Besov balls. Let M >0, s >0,p≥1 and r≥1. A function hbelongs to Bp,rs (M) if and only if there exists a constantM >0 (depending onM) such that the associated wavelet coefficients (6) satisfy

X

j=τ−1

2j(s+1/2−1/p)

2j−1

X

k=0

j,k|p

1/p

r

1/r

≤M.

(We set βτ−1,k = ατ,k). In this expression, s is a smoothness parameter and pand r are norm parameters. For a particular choice of s, p and r, Bp,rs (M) contain the H¨older and Sobolev balls. See Meyer (1990).

4 Estimators

Wavelet coefficient estimators. The first step to estimate fν consists in expandingfν onBand estimating its unknown wavelet coefficients.

For any integerj≥τ and anyk∈ {0, . . . ,2j−1},

(6)

– we estimateαj,k=R1

0 fν(x)φj,k(x)dxby αbj,k= 1

n

n

X

i=1

aν(i)Yiφj,k(Xi), (7) – we estimateβj,k=R1

0 fν(x)ψj,k(x)dxby βbj,k= 1

n

n

X

i=1

Zi1{|Zi|≤γn}, (8) where, for anyi∈ {1, . . . , n},

Zi =aν(i)Yiψj,k(Xi),

aν(i) is defined by (3), for any random event A, 1A is the indicator function onA, the thresholdγn is defined by

γn

r nzn

ln(n/zn), (9)

zn is defined by (5),θ=p

C2+E(ξ21) andCis the one in (2).

Remark 1. Mention that αbj,k is an unbiased estimator of αj,k, whereas βbj,k is not an unbiased estimator of βj,k. However (1/n)Pn

i=1Zi is an unbiased estimator ofβj,k. The proofs are given in (14) and (19).

Remark 2. The ”observations thresholding technique” used in (8) has been firstly introduced by Delyon and Juditsky (1996) for (1) in the clas- sical case (i.e.V1=. . .=Vn= 1). In our general setting, this allows us to provide a good estimator ofβj,kunder mild assumptions on

– (aν(i))i∈{1,...,n}and a fortiori the distributions ofV1, . . . , Vn(onlyzn<

n/eis required),

– ξ1, . . . , ξn (only finite moments of order 2 are required).

Linear estimator. Assuming thatfν ∈Bsp,r(M) withp≥2, we define the linear estimator fbL by

fbL(x) =

2j0−1

X

k=0

αbj0,kφj0,k(x), (10) where αbj,k is defined by (7) andj0is the integer satisfying

1 2

n zn

1/(2s+1)

<2j0≤ n

zn

1/(2s+1) .

The definition of j0is chosen to minimize the MISE of fbL. Note that it is not adaptive since it depends on s, the smoothness parameter offν.

(7)

Hard thresholding estimator.We define the hard thresholding estimator fbH by

fbH(x) =

2τ−1

X

k=0

αbτ,kφτ,k(x) +

j1

X

j=τ 2j−1

X

k=0

βbj,k1{|bβj,k|≥κλnj,k(x), (11) where αbj,k is defined by (7),βbj,k by (8),j1 is the integer satisfying

n 2zn

<2j1 ≤ n zn

, κ≥8/3 + 2 + 2p

16/9 + 4 andλn is the threshold λn

rznln(n/zn)

n . (12)

Further details on the hard thresholding wavelet estimator for the standard nonparametric regression model can be found in Donoho and Johnstone (1994, 1995, 1998) and Delyon and Juditsky (1996).

Note that the choice of γn in (9) depends on λn in (12): we have λn = θ2znn. The definitions ofγn andλn are based on theoretical considera- tions.

5 Results

Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that fν ∈Bp,rs (M)with s >0,p≥2 andr≥1. LetfbL be (10). Then there exists a constant C >0 such that

E Z 1

0

fbL(x)−fν(x)2

dx

≤Czn

n

2s/(2s+1)

.

The proof of Theorem 1 uses moment inequalities on (7) and (8), and a suitable decomposition of the MISE.

Due to our weak assumptions on V1, . . . , Vn, ξ1, . . . , ξn, the optimal lower bound of (1) seems difficult to determine (see Tsybakov (2004)). However, sincefbL is constructed to be the linear estimator which optimizes the MISE, our benchmark will be the rate of convergencevn = (zn/n)2s/(2s+1).

Remark that, in the case V1 = . . . = Vn = 1 and ξ1 ∼ N(0,1), we have zn= 1 andvn(=n−2s/(2s+1)) is the optimal rate of convergence (see Tsybakov (2004)).

Theorem 2 Consider (1)under the assumptions of Section2. LetfbHbe(11).

Suppose that fν ∈Bp,rs (M) withr≥1,{p≥2 ands >0} or {p∈[1,2) and s >1/p}. Then there exists a constantC >0 such that

E Z 1

0

fbH(x)−fν(x)2 dx

≤C

znln(n/zn) n

2s/(2s+1)

.

(8)

The proof of Theorem 2 is based on several probability results (moment in- equalities, concentration inequality,. . . ) and a suitable decomposition of the MISE.

Theorem 2 proves thatfbH attainsvn = (zn/n)2s/(2s+1)up to the logarith- mic term (ln(n/zn))2s/(2s+1).

Naturally, whenV1=. . .=Vn= 1 andξ1∼ N(0,1),fbH attains the same rate of convergence than the standard hard thresholding estimator adapted to the classical nonparametric regression model (see Donoho and Johnstone (1994, 1995, 1998)). And this one is optimal in the minimax sense up to a logarithmic term.

Conclusions and perspectives.We construct an adaptive wavelet estimator to estimate the functionfν from the sophisticated regression model (1). Under mild assumptions, we prove that it attains a sharp rate of convergence for a wide class of functions.

Possible perspectives are to

– investigate the estimation of f in (1) whenX1 has a more complex distri- bution than the random uniform one. In this case, the warped wavelet basis introduced in the nonparametric regression estimation by Kerkyacharian and Picard (2004) seems to be an adapted powerful tool.

– consider the case where the distributions ofV1, . . . , Vn are unknown.

– potentially improve the estimation offν (and remove the extra logarithmic term). The thresholding rule named BlockJS developed in wavelet estima- tion by Cai (1999, 2002) seems to be a good alternative.

All these aspects need further investigations that we leave for a future work.

6 Proofs

In this section, we consider (1) under the assumptions of Section 2. Moreover, C represents a positive constant which may differ from one term to another.

6.1 Auxiliary results

Proposition 1 For any integerj≥τ and anyk∈ {0, . . . ,2j−1}, let αj,k be the wavelet coefficient (6) offν andαbj,k be (7). Then there exists a constant C >0such that

E

(αbj,k−αj,k)2

≤Czn n.

Proof of Proposition 1. First of all, we prove that αbj,k is an unbiased estimator ofαj,k. For anyi∈ {1, . . . , n}, set

Wi=aν(i)Yiφj,k(Xi).

(9)

SinceXi, Vi andξi are independent, andE(ξi) = 0, we have

E(Wi) =E(aν(i)Yiφj,k(Xi)) =E(aν(i)(fVi(Xi) +ξij,k(Xi))

=aν(i)E(fVi(Xij,k(Xi)) +aν(i)E(ξi)E(φj,k(Xi))

=aν(i)E(fVi(Xij,k(Xi))

=aν(i)

m

X

d=1

wd(i) Z 1

0

fd(x)φj,k(x)dx. (13)

It follows from (13) and (4) that E(αbj,k) = 1

n

n

X

i=1

E(Wi) = 1 n

n

X

i=1

aν(i)

m

X

d=1

wd(i) Z 1

0

fd(x)φj,k(x)dx

!

=

m

X

d=1

Z 1 0

fd(x)φj,k(x)dx 1 n

n

X

i=1

aν(i)wd(i)

!

= Z 1

0

fν(x)φj,k(x)dx=αj,k. (14)

Soαbj,k is an unbiased estimator ofαj,k. Therefore E

(αbj,k−αj,k)2

=V(αbj,k) =V 1 n

n

X

i=1

Wi

!

= 1 n2

n

X

i=1

V(Wi)

≤ 1 n2

n

X

i=1

E Wi2

. (15)

For anyi∈ {1, . . . , n}, we have E Wi2

=E(a2ν(i)Yi2φ2j,k(Xi)) =a2ν(i)E (fVi(Xi) +ξi)2φ2j,k(Xi) . (16) SinceXi,Vi andξiare independent,E

φ2j,k(Xi)

=R1

0 φ2j,k(x)dx= 1 and, by (2), supd∈{1,...,m}supx∈[0,1]|fd(x)| ≤C, we have

E (fVi(Xi) +ξi)2φ2j,k(Xi)

=E fV2

i(Xi2j,k(Xi)

+ 2E(ξi)E(fVi(Xi2j,k(Xi)) +E ξi2

E φ2j,k(Xi)

=E fV2i(Xi2j,k(Xi)

+E ξ12

≤C2E φ2j,k(Xi)

+E ξ21

=C2+E ξ12

2. (17)

Putting (16) and (17) together, we obtain E Wi2

≤θ2a2ν(i). (18) It follows from (15) and (18) that

E

(αbj,k−αj,k)2

≤ 1 n θ21

n

n

X

i=1

a2ν(i)

!

=Czn n.

(10)

Proposition 2 For any integerj≥τ and anyk∈ {0, . . . ,2j−1}, let βj,k be the wavelet coefficient (6) of fν andβbj,k be (8). Then there exists a constant C >0such that

E

βbj,k−βj,k

4

≤C(znln(n/zn))2

n2 .

Proof of Proposition 2.Takingψinstead ofφin (14), we obtain βj,k=

Z 1 0

fν(x)ψj,k(x)dx= 1 n

n

X

i=1

E(Zi)

= 1 n

n

X

i=1

E(Zi1{|Zi|≤γn}) + 1 n

n

X

i=1

E(Zi1{|Zi|>γn}). (19) Therefore, by the elementary inequality (x+y)4≤8(x4+y4), (x, y)∈R2, we have

E

βbj,k−βj,k

4

=E

 1 n

n

X

i=1

Zi1{|Zi|≤γn}−E Zi1{|Zi|≤γn}

−1 n

n

X

i=1

E Zi1{|Zi|>γn}

!4

≤8(A+B), (20)

where

A=E

 1 n

n

X

i=1

Zi1{|Zi|≤γn}−E(Zi1{|Zi|≤γn})

!4

and

B= 1 n

n

X

i=1

E(|Zi|1{|Zi|>γn})

!4

. Let us boundAandB, in turn.

Upper bound forA.Let us present the Rosenthal inequality (see Rosenthal (1970)).

Lemma 1 (Rosenthal’s inequality)Letn∈N,p≥2and(Ui)i∈{1,...,n}be n zero mean independent random variables such that supi∈{1,...,n}E(|Ui|p)<

∞. Then there exists a constant C >0 such that

E

n

X

i=1

Ui

p!

≤Cmax

n

X

i=1

E(|Ui|p),

n

X

i=1

E Ui2

!p/2

.

(11)

Applying the Rosenthal inequality withp= 4 and, for anyi∈ {1, . . . , n}, Ui=Zi1{|Zi|≤γn}−E Zi1{|Zi|≤γn}

, we obtain

A= 1 n4E

n

X

i=1

Ui

!4

≤C 1 n4max

n

X

i=1

E Ui4 ,

n

X

i=1

E Ui2

!2

. Using (18) (with ψ instead of φ), we have, for any a ∈ {2,4} and any i ∈ {1, . . . , n},

E(Uia)≤2aE Zia1{|Zi|≤γn}

≤2aγna−2E Zi2

≤2aγna−2θ2a2ν(i).

Hence, usingzn< n/e, A≤C 1

n4max

γn2

n

X

i=1

a2ν(i),

n

X

i=1

a2ν(i)

!2

=C 1 n4max

n2

ln(n/zn)zn2, n2z2n

=Cz2n

n2. (21)

Upper bound for B. Using again (18) (with ψ instead of φ), for any i ∈ {1, . . . , n}, we obtain

E |Zi|1{|Zi|>γn}

≤E Zi2 γn

≤1 θ

s

ln(n/zn) nzn

θ2a2ν(i) =θ s

ln(n/zn) nzn

a2ν(i).

Therefore

B= 1

n

n

X

i=1

E(|Zi|1{|Zi|>γn})

!4

≤θ4(ln(n/zn))2 n2zn2

1 n

n

X

i=1

a2ν(i)

!4

4(ln(n/zn))2

n2zn2 zn44(znln(n/zn))2

n2 . (22)

Combining (20), (21) and (22) and usingzn< n/e, we have E

βbj,k−βj,k

4

≤C 1

n2zn2+(znln(n/zn))2 n2

≤C(znln(n/zn))2

n2 .

Proposition 3 For any integerj≥τ and anyk∈ {0, . . . ,2j−1}, let βj,k be the wavelet coefficient (6)of fν andβbj,k be (8). Then, for anyκ≥8/3 + 2 + 2p

16/9 + 4,

P

|βbj,k−βj,k| ≥κλn/2

≤2zn n

2 .

(12)

Proof of Proposition 3.By (19) we have

|βbj,k−βj,k|

= 1 n

n

X

i=1

Zi1{|Zi|≤γn}−E Zi1{|Zi|≤γn}

− 1 n

n

X

i=1

E Zi1{|Zi|>γn}

≤ 1 n

n

X

i=1

Zi1{|Zi|≤γn}−E Zi1{|Zi|≤γn}

+ 1 n

n

X

i=1

E |Zi|1{|Zi|>γn} .

Using (18) (withψinstead ofφ), we obtain 1

n

n

X

i=1

E |Zi|1{|Zi|>γn}

≤ 1 γn

1 n

n

X

i=1

E Zi2

!

≤ 1 γn θ21

n

n

X

i=1

a2ν(i)

!

= 1

γnθ2zn= 1 θ

s

ln(n/zn) nzn θ2zn

rznln(n/zn) n =λn. Hence

S =P

|βbj,k−βj,k| ≥κλn/2

≤P 1 n

n

X

i=1

Zi1{|Zi|≤γn}−E Zi1{|Zi|≤γn}

≥(κ/2−1)λn

! .

Now we need the Bernstein inequality presented in the lemma below (see Petrov (1995)).

Lemma 2 (Bernstein’s inequality)Letn∈Nand(Ui)i∈{1,...,n}benzero mean independent random variables such that there exists a constant M >0 satisfyingsupi∈{1,...,n}|Ui| ≤M <∞. Then, for anyλ >0,

P

n

X

i=1

Ui

≥λ

!

≤2 exp

− λ2

2 (Pn

i=1E(Ui2) +λM /3)

.

Let us set, for anyi∈ {1, . . . , n},

Ui=Zi1{|Zi|≤γn}−E Zi1{|Zi|≤γn} . For anyi∈ {1, . . . , n}, we haveE(Ui) = 0,

|Ui| ≤ |Zi|1{|Zi|≤γn}+E |Zi|1{|Zi|≤γn}

≤2γn

and, using again (18) (withψinstead ofφ), E Ui2

=V Zi1{|Zi|≤γn}

≤E Zi21{|Zi|≤γn}

≤E Zi2

≤θ2a2ν(i).

(13)

So n

X

i=1

E Ui2

≤θ2

n

X

i=1

a2ν(i) =θ2nzn. It follows from the Bernstein inequality that

S≤2 exp

− n2(κ/2−1)2λ2n

2 (θ2nzn+ 2n(κ/2−1)λnγn/3)

. Since

λnγn

rznln(n/zn)

n θ

r nzn

ln(n/zn) =θ2zn, λ2n2znln(n/zn)

n ,

we have, for anyκ≥8/3 + 2 + 2p

16/9 + 4, S≤2 exp

−(κ/2−1)2ln(n/zn) 2 (1 + 2(κ/2−1)/3)

= 2 n

zn

2(1+2(κ/2−1)/3)(κ/2−1)2

≤2zn

n 2

.

6.2 Proofs of the main results

Proof of Theorem 1.We expand the functionfν onBas fν(x) =

2j0−1

X

k=0

αj0,kφj0,k(x) +

X

j=j0 2j−1

X

k=0

βj,kψj,k(x).

We have

fbL(x)−fν(x) =

2j0−1

X

k=0

(αbj0,k−αj0,kj0,k(x)−

X

j=j0 2j−1

X

k=0

βj,kψj,k(x).

Hence

E Z 1

0

fbL(x)−fν(x)2 dx

=A+B, where

A=

2j0−1

X

k=0

E

(αbj0,k−αj0,k)2

, B=

X

j=j0 2j−1

X

k=0

β2j,k. Proposition 1 gives

A≤2j0zn

n ≤zn

n

2s/(2s+1)

. Sincep≥2, we have Bp,rs (M)⊆B2,∞s (M). Hence

B≤C2−2j0s≤Czn

n

2s/(2s+1)

.

(14)

So

E Z 1

0

fbL(x)−fν(x)2

dx

≤Czn

n

2s/(2s+1)

. The proof of Theorem 1 is complete.

Proof of Theorem 2.We expand the functionfν onBas

fν(x) =

2τ−1

X

k=0

ατ,kφτ,k(x) +

X

j=τ 2j−1

X

k=0

βj,kψj,k(x).

We have

fbH(x)−fν(x)

=

2τ−1

X

k=0

(αbτ,k−ατ,kτ,k(x) +

j1

X

j=τ 2j−1

X

k=0

βbj,k1{|bβj,k|≥κλn} −βj,k ψj,k(x)

X

j=j1+1 2j−1

X

k=0

βj,kψj,k(x).

Hence

E Z 1

0

fbH(x)−fν(x)2 dx

=R+S+T, (23)

where R=

2τ−1

X

k=0

E

(αbτ,k−ατ,k)2

, S=

j1

X

j=τ 2j−1

X

k=0

E

βbj,k1{|bβj,k|≥κλn} −βj,k2 and

T =

X

j=j1+1 2j−1

X

k=0

βj,k2 . Let us boundR, T andS, in turn.

By Proposition 1 and the inequalities:zn< n/e,znln(n/zn)< nand 2s/(2s+

1)<1, we have R≤Czn

n ≤Cznln(n/zn)

n ≤C

znln(n/zn) n

2s/(2s+1)

. (24)

(15)

For r ≥ 1 and p ≥ 2, we have Bp,rs (M) ⊆ B2,∞s (M). Using zn < n/e, znln(n/zn)< nand 2s/(2s+ 1)<2s, we obtain

T ≤C

X

j=j1+1

2−2js≤C2−2j1s≤C n

zn

−2s

≤C

znln(n/zn) n

2s

≤C

znln(n/zn) n

2s/(2s+1)

.

Forr≥1 andp∈[1,2), we have Bp,rs (M)⊆Bs+1/2−1/p2,∞ (M). Since s >1/p, we haves+ 1/2−1/p > s/(2s+ 1). So, byzn< n/eandznln(n/zn)< n, we have

T ≤C

X

j=j1+1

2−2j(s+1/2−1/p)≤C2−2j1(s+1/2−1/p)

≤C n

zn

−2(s+1/2−1/p)

≤C

znln(n/zn) n

2(s+1/2−1/p)

≤C

znln(n/zn) n

2s/(2s+1)

.

Hence, forr≥1,{p≥2 ands >0}or {p∈[1,2) and s >1/p}, we have T ≤C

znln(n/zn) n

2s/(2s+1)

. (25)

The termS can be decomposed as

S=S1+S2+S3+S4, (26)

where S1=

j1

X

j=τ 2j−1

X

k=0

E

βbj,k−βj,k2

1{|bβj,k|≥κλn}1{|βj,k|<κλn/2}

,

S2=

j1

X

j=τ 2j−1

X

k=0

E

βbj,k−βj,k2

1{|bβj,k|≥κλn}1{|βj,k|≥κλn/2}

,

S3=

j1

X

j=τ 2j−1

X

k=0

E

βj,k2 1{|bβj,k|<κλn}1{|βj,k|≥2κλn}

and

S4=

j1

X

j=τ 2j−1

X

k=0

E

β2j,k1{|bβj,k|<κλn}1{|βj,k|<2κλn} . Upper bounds forS1 and S3.We have

n|bβj,k|< κλn, |βj,k| ≥2κλno

⊆n

|βbj,k−βj,k|> κλn/2o ,

(16)

n|βbj,k| ≥κλn, |βj,k|< κλn/2o

⊆n

|bβj,k−βj,k|> κλn/2o and

n|βbj,k|< κλn, |βj,k| ≥2κλn

o⊆n

j,k| ≤2|βbj,k−βj,k|o . So

max(S1, S3)≤C

j1

X

j=τ 2j−1

X

k=0

E

βbj,k−βj,k

2

1{|bβj,k−βj,k|>κλn/2}

.

It follows from the Cauchy-Schwarz inequality and Propositions 2 and 3 that E

βbj,k−βj,k

2

1{|bβj,k−βj,k|>κλn/2}

E

βbj,k−βj,k

41/2 P

|βbj,k−βj,k|> κλn/21/2

≤Cz2nln(n/zn) n2 .

Hence, usingzn< n/e,znln(n/zn)< nand 2s/(2s+ 1)<1, we have max(S1, S3)≤Czn2ln(n/zn)

n2

j1

X

j=τ

2j≤Cz2nln(n/zn) n2 2j1

≤Cznln(n/zn)

n ≤C

znln(n/zn) n

2s/(2s+1)

. (27)

Upper bound forS2.Using Proposition 2 and the Cauchy-Schwarz inequality, we obtain

E

βbj,k−βj,k

2

E

βbj,k−βj,k

41/2

≤Cznln(n/zn)

n .

Hence

S2≤Cznln(n/zn) n

j1

X

j=τ 2j−1

X

k=0

1{|βj,k|>κλn/2}.

Letj2 be the integer defined by 1

2

n znln(n/zn)

1/(2s+1)

<2j2

n znln(n/zn)

1/(2s+1)

. (28)

We have

S2≤S2,1+S2,2,

(17)

where

S2,1=Cznln(n/zn) n

j2

X

j=τ 2j−1

X

k=0

1{|βj,k|>κλn/2}

and

S2,2=Cznln(n/zn) n

j1

X

j=j2+1 2j−1

X

k=0

1{|βj,k|>κλn/2}. We have

S2,1≤Cznln(n/zn) n

j2

X

j=τ

2j≤Cznln(n/zn)

n 2j2≤C

znln(n/zn) n

2s/(2s+1)

.

Forr≥1 andp≥2, sinceBp,rs (M)⊆Bs2,∞(M),

S2,2≤Cznln(n/zn) nλ2n

j1

X

j=j2+1 2j−1

X

k=0

βj,k2 ≤C

X

j=j2+1 2j−1

X

k=0

βj,k2 ≤C2−2j2s

≤C

znln(n/zn) n

2s/(2s+1)

.

For r ≥ 1, p ∈ [1,2) and s > 1/p, since Bp,rs (M) ⊆ B2,∞s+1/2−1/p(M) and (2s+ 1)(2−p)/2 + (s+ 1/2−1/p)p= 2s, we have

S2,2 ≤Cznln(n/zn) nλpn

j1

X

j=j2+1 2j−1

X

k=0

j,k|p

≤C

znln(n/zn) n

(2−p)/2

X

j=j2+1

2−j(s+1/2−1/p)p

≤C

znln(n/zn) n

(2−p)/2

2−j2(s+1/2−1/p)p≤C

znln(n/zn) n

2s/(2s+1)

. So, forr≥1,{p≥2 ands >0} or{p∈[1,2) ands >1/p},

S2≤C

znln(n/zn) n

2s/(2s+1)

. (29)

Upper bound forS4.We have S4

j1

X

j=τ 2j−1

X

k=0

βj,k2 1{|βj,k|<2κλn}.

Letj2 be the integer (28). We have

S4≤S4,1+S4,2,

(18)

where S4,1=

j2

X

j=τ 2j−1

X

k=0

βj,k2 1{|βj,k|<2κλn}, S4,2=

j1

X

j=j2+1 2j−1

X

k=0

βj,k2 1{|βj,k|<2κλn}.

We have S4,1≤Cλ2n

j2

X

j=τ

2j ≤Cznln(n/zn)

n 2j2 ≤C

znln(n/zn) n

2s/(2s+1) . Forr≥1 andp≥2, sinceBp,rs (M)⊆Bs2,∞(M), we have

S4,2

X

j=j2+1 2j−1

X

k=0

βj,k2 ≤C

X

j=j2+1

2−2js≤C2−2j2s≤C

znln(n/zn) n

2s/(2s+1)

.

For r ≥ 1, p ∈ [1,2) and s > 1/p, since Bp,rs (M) ⊆ B2,∞s+1/2−1/p(M) and (2−p)(2s+ 1)/2 + (s+ 1/2−1/p)p= 2s, we have

S4,2 ≤Cλ2−pn

j1

X

j=j2+1 2j−1

X

k=0

j,k|p

≤C

znln(n/zn) n

(2−p)/2 X

j=j2+1

2−j(s+1/2−1/p)p

≤C

znln(n/zn) n

(2−p)/2

2−j2(s+1/2−1/p)p≤C

znln(n/zn) n

2s/(2s+1)

. So, forr≥1,{p≥2 ands >0} or{p∈[1,2) ands >1/p},

S4≤C

znln(n/zn) n

2s/(2s+1)

. (30)

It follows from (26), (27), (29) and (30) that S≤C

znln(n/zn) n

2s/(2s+1)

. (31)

Combining (23), (24), (25) and (31), we have, forr≥1,{p≥2 ands >0}

or{p∈[1,2) ands >1/p}, E

Z 1 0

fbH(x)−fν(x)2 dx

≤C

znln(n/zn) n

2s/(2s+1)

. The proof of Theorem 2 is complete.

Acknowledgment.This work is supported by ANR grant NatImages, ANR- 08-EMER-009.

(19)

References

Antoniadis, A. (1997). Wavelets in statistics: a review (with discussion), Journal of the Italian Statistical Society, Series B,6, 97-144.

Antoniadis, A., Gregoire, G. and Vial, P. (1997). Random design wavelet curve smoothing.

Statist. Probab. Lett.,35, 225-232.

Cai, T. (1999). Adaptive wavelet estimation: a block thresholding and oracle inequality approach,The Annals of Statistics,27, 898-924.

Cai, T. (2002). On block thresholding in wavelet regression: adaptivity, block size and thresh- old level,Statistica Sinica,12, 1241-1273.

Cai, T. and Brown, L. D. (1999). Wavelet estimation for samples with random uniform design,Statistics and Probability Letters,42, 313-321.

Chesneau, C. (2007). Wavelet block thresholding for samples with random design: a minimax approach under theLprisk,Electronic Journal of Statistics,1, 331-346.

Chicken, E. (2003). Block thresholding and wavelet estimation for nonequispaced samples, Journal of Statistical Planning and Inference,116, 113-129.

Cohen, A., Daubechies, I., Jawerth, B. and Vial, P. (1993). Wavelets on the interval and fast wavelet transforms,Applied and Computational Harmonic Analysis, 24,1, 54–81.

Delyon, B. and Juditsky, A. (1996). On minimax wavelet estimators,Applied Computational Harmonic Analysis,3, 215–228.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage, Biometrika,81, 425-455.

Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage,Journal of the American Statistical Association,90, 432, 1200-1224.

Donoho, D. L. and Johnstone, I. M. (1998). Minimax estimation via wavelet shrinkage,The Annals of Statistics,26, 879-921.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrink- age: asymptopia (with discussion),Journal of the Royal Statistical SocietySerie B,57, 301-369.

ardle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998).Wavelet, Approxima- tion and Statistical Applications, Lectures Notes in Statistics, New York 129,Springer Verlag.

Kerkyacharian, G. and Picard, D. (2004). Regression in random design and warped wavelets, Bernoulli,10(6), 1053-1105.

Maiboroda, R. E. (1996). Estimators of components of a mixture with varying concentra- tions,Ukrain. Mat. Zh.,48, 4, 562-566.

Meyer, Y. (1990).Ondelettes et Op´erateurs, Hermann, Paris.

Pensky, M. and Vidakovic, B. (2001). On non-equally spaced wavelet regression,Ann. Inst.

Statist. Math.,53, 681–690.

Petrov, V. V. (1995). Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Oxford: Clarendon Press.

Pham Ngoc, T. M. (2009). Regression in random design and Bayesian warped wavelets estimators,Electronic Journal of Statistics,3, 1084-1112.

Pokhyl’ko, D. (2005). Wavelet estimators of a density constructed from observations of a mixture,Theor. Prob. and Math. Statist., 70, 135-145.

Prakasa Rao, B. L. S. (1983). Nonparametric functional estimation, Academic Press, Or- lando.

Prakasa Rao, B. L. S. (1999). Nonparametric functional estimation: an overview,Asymp- totics, Nonparametrics and Time Series, Ed. Subir Ghosh, 461-509, Marcel Dekker Inc.

New York.

Prakasa Rao, B. L. S. (2010). Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions,Indian Journal of Pure and Applied Mathematics, 41,1, 275-291.

Rosenthal, H. P. (1970). On the subspaces ofLp(p2) spanned by sequences of independent random variables,Israel Journal of Mathematics,8, pp. 273-303.

Tsybakov, A. B. (2004).Introduction a l’estimation non-paramtrique, Springer.

(20)

Zhang, S. and Zheng, Z. (1999). Nonlinear wavelet estimation of regression function with random design,Science in China Series A: Mathematics,42, 8, 825-833.

Références

Documents relatifs

On adaptive wavelet estimation of the regression function and its derivatives in an errors-in-variables model... in an

Block thresholding and sharp adaptive estimation in severely ill-posed inverse problems.. Wavelet based estimation of the derivatives of a density for m-dependent

The approach consists in appropriately writing the problem in the wavelet domain and then selecting both the block size and threshold parameter at each resolution level by

Keywords and phrases: Nonparametric regression, Derivatives function estimation, Wavelets, Besov balls, Hard

To the best of our knowledge, f b ν h is the first adaptive wavelet estimator proposed for the density estimation from mixtures under multiplicative censoring.... The variability of

(4) This assumption controls the decay of the Fourier coefficients of g, and thus the smoothness of g. It is a standard hypothesis usually adopted in the field of

For the case where d = 0 and the blurring function is ordinary-smooth or super-smooth, [22, 23, Theorems 1 and 2] provide the upper and lower bounds of the MISE over Besov balls for

Wavelet block thresholding for samples with random design: a minimax approach under the L p risk, Electronic Journal of Statistics 1, 331-346..