• Aucun résultat trouvé

Homogenization Results for a Deterministic Multi-domains Periodic Control Problem

N/A
N/A
Protected

Academic year: 2021

Partager "Homogenization Results for a Deterministic Multi-domains Periodic Control Problem"

Copied!
23
0
0

Texte intégral

(1)

HAL Id: hal-01024602

https://hal.inria.fr/hal-01024602

Submitted on 18 Jul 2014

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Homogenization Results for a Deterministic Multi-domains Periodic Control Problem

Nicoletta Tchou, Guy Barles, Ariela Briani, Emmanuel Chasseigne

To cite this version:

Nicoletta Tchou, Guy Barles, Ariela Briani, Emmanuel Chasseigne. Homogenization Results for a

Deterministic Multi-domains Periodic Control Problem. NETCO 2014 - New Trends in Optimal

Control, Jun 2014, Tours, France. �hal-01024602�

(2)

Homogenization Results for a Deterministic Multi-domains Periodic Control Problem

TOURS-HJnet-Netco

Nicoletta Tchou

with G. Barles, A. Briani and E. Chasseigne

Université de Rennes 1

June 23, 2014

(3)

References-1

G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in RN, ESAIM Control Optim. Calc. Var., 2013.

G. Barles, A. Briani, E. Chasseigne, A Bellman approach for regional optimal control problems inRN, accepted in SIAM Journal on Control and Optimization.

G. Barles, A. Briani, E. Chasseigne, N. T., Homogenization Results for a Deterministic Multi-domains Periodic Control Problem, preprint.

(4)

1 Hamilton-Jacobi equations and optimal control problem Setting

Assumptions

The optimal control problems 2 The homogenization result for Uε

The cell problem and the definition of the effective Hamiltonian.

The homogenization result 3 The homogenization result for Uε+

The cell problem and the definition of the effective Hamiltonian.

The homogenization result

4 The 1-D case: an example when H¯+(x,0)6= ¯H(x,0)

(5)

Hamilton-Jacobi equations and optimal control problem

Plan

1 Hamilton-Jacobi equations and optimal control problem Setting

Assumptions

The optimal control problems 2 The homogenization result for Uε

The cell problem and the definition of the effective Hamiltonian.

The homogenization result

3 The homogenization result for Uε+

The cell problem and the definition of the effective Hamiltonian.

The homogenization result

4 The 1-D case: an example when H¯+(x,0)6= ¯H(x,0)

(6)

Hamilton-Jacobi equations and optimal control problem Setting

Geometry

RN = Ω1∪Ω2∪ H

1,Ω2 are open subsets ofRN1∩Ω2=∅

H=∂Ω1=∂Ω2is regular

i areZN-periodic, i.e. x ∈Ωi⇔x+z∈Ωi, ∀z∈ZN.

(7)

Hamilton-Jacobi equations and optimal control problem Setting

Hamilton-Jacobi equations in ε Ω

i λuε(x) +H1(x,x

ε,Duε(x)) =0 inεΩ1, λuε(x) +H2(x,x

ε,Duε(x)) =0 inεΩ2,

(1.1)

εց0 λ >0

Hi(x,y,p) :=supαiAi{−bi(x,y, αi)·p−li(x,y, αi)}

x ∈RN, y∈Ωi,p∈RN.

(8)

Hamilton-Jacobi equations and optimal control problem Setting

Hamilton-Jacobi equations on εH : Ishii conditions

min{λuε(x) +H1(x,x

ε,Duε(x)), λuε(x) +H2(x,x

ε,Duε(x))} ≤0 onεH, and max{λuε(x) +H1(x,x

ε,Duε(x)), λuε(x) +H2(x,x

ε,Duε(x))} ≥0 onεH, (1.2) (1.1)-(1.2) isNOTa well-posed problem

Uε+:=maximal sub-solution Uε:=minimal super-solution

(9)

Hamilton-Jacobi equations and optimal control problem Assumptions

Assumptions

Standard assumptions on costs and dynamics inΩi

Convexity assumption:

αiAi(bi(x,y, αi),li(x,y, αi))is convex Strong controllability assumption:

Bi(x,y) :=

bi(x,y, αi) :αi∈Ai ⊃ {|z| ≤δ}, δ>0

(10)

Hamilton-Jacobi equations and optimal control problem The optimal control problems

Optimal control characterization of extremal Ishii-solutions : Trajectories

xε0(t)∈ B

Xxε0(t),Xxε0(t) ε

a.e. t ∈(0,+∞) ; Xxε0(0) =x0

B(x,y) :=

B1(x,y) if y∈Ω1

B2(x,y) if y∈Ω2

co B1(x,y)∪B2(x,y)

if y∈ H

Dynamics on the interface: y ∈ H,a= (α1, α2, µ)αi∈Ai, µ∈[0,1]

bH(x,y,a) :=µb1(x,y, α1) + (1−µ)b2(x,y, α2)

(11)

Hamilton-Jacobi equations and optimal control problem The optimal control problems

Optimal control characterization of extremal Ishii-solutions : regular and singular trajectories

bH(x,y,a) :=µb1(x,y, α1) + (1−µ)b2(x,y, α2)

REGULAR SINGULAR tangential : bH(x,y,a)·ni(y) =0

REGULAR: tangential andbi(x,y, αi)·ni(y)≥0∀i=1,2 SINGULAR: tangential andbi(x,y, αi)·ni(y)≤0 ∀i=1,2 n(y)unitary normal exterior vector toΩ in y

(12)

Hamilton-Jacobi equations and optimal control problem The optimal control problems

Control characterization of extremal Ishii solutions:

tangential Hamiltonians

Dynamics and cost at the interfacey ∈ H:

bH(x,y,a) :=µb1(x,y, α1) + (1−µ)b2(x,y, α2) lH(x,y,a) :=µl1(x,y, α1) + (1−µ)l2(x,y, α2) Tangential Hamiltonians:

HT(x,y,p) := sup

a∈A0(x,y)

{−<bH(x,y,a),p>−lH(x,y,a)}

HTreg(x,y,p) := sup

aAreg0 (x,y)

{−<bH(x,y,a),p>−lH(x,y,a)}

HT(x,y,p)≥HTreg(x,y,p)

Proposition

The tangential Hamiltonians are as regular as the data

(13)

Hamilton-Jacobi equations and optimal control problem The optimal control problems

Infinite horizon optimal control problems

Cost =J(x0; (Xxε0,a)) :=R+

0 l Xxε0(t),X

ε x0

ε (t),a(t) e−λtdt l(Xxε0(t),Xxε0

ε (t),a(t)) :=l1(Xxε0(t),Xxε0

ε (t), α1(t))1E1(t) +l2(Xxε0(t),Xxε0

ε (t), α2(t))1E2(t) +lH(Xxε0(t),Xxε0

ε (t),a(t))1EH(t) Value functions:

Vε(x0) := inf

(Xx0ε,a)∈Tx0εJ(x0; (Xxε0,a)) Vε+(x0) := inf

(Xx0ε,a)∈Tx0reg,εJ(x0; (Xxε0,a)) V(x )≤V+(x )

(14)

Hamilton-Jacobi equations and optimal control problem The optimal control problems

Known facts: BBC 2013-2014

Theorem

Vε andVε+are viscosity solutions of the Hamilton-Jacobi-Bellman equations (1.1)-(1.2).

Vε is a subsolution ofλv(x) +HT(x,xε,DHv(x))≤0 forx ∈εH.

Theorem Vε=Uε

Vε+=Uε+

global (onRN) (and local) strong comparison principle for Lipschitz continuous subsolutions satisfying

λv(x) +HT(x,xε,DHv(x))≤0 lsc supersolution

Notation

λv(·)+H(·,·,Dv(·)) =0⇔(1.1)-(1.2)and λv(·)+HT(·,·,DHv(·))≤0

(15)

The homogenization result forU ε

Plan

1 Hamilton-Jacobi equations and optimal control problem Setting

Assumptions

The optimal control problems

2 The homogenization result for Uε

The cell problem and the definition of the effective Hamiltonian.

The homogenization result 3 The homogenization result for Uε+

The cell problem and the definition of the effective Hamiltonian.

The homogenization result

4 The 1-D case: an example when H¯+(x,0)6= ¯H(x,0)

(16)

The homogenization result forU ε

The cell problem and the definition of the effective Hamiltonian.

Theorem (The cell problem forUε)

∀x∈RN,∀p∈RN (frozen)∃! C:= ¯H(x,p)such that H(x,y,Dv(y) +p) =C

has a Lipschitz continuous,ZN-periodic viscosity solutionV. Proof.

Classical, uses astability resultfor the existence and thecomparison resultforH for the uniqueness (ρ-problem)...

Proposition

(x,p)is regular (Lipschitz and coercive) and a comparison principle for the effective problem holds true.

(17)

The homogenization result forU ε The homogenization result

Theorem (Main theorem forUε)

(Uε)ε>0converges locally uniformly to U the unique solution of λU(x) + ¯H(x,DU) =0

ProofThe classical methods of Lions-Papanicolaou-Varadhan and Evans-perturbed test function apply (thelocal comparison principlefor H is an essential tool).

(18)

The homogenization result forU+ ε

Plan

1 Hamilton-Jacobi equations and optimal control problem Setting

Assumptions

The optimal control problems

2 The homogenization result for Uε

The cell problem and the definition of the effective Hamiltonian.

The homogenization result

3 The homogenization result for Uε+

The cell problem and the definition of the effective Hamiltonian.

The homogenization result

4 The 1-D case: an example when H¯+(x,0)6= ¯H(x,0)

(19)

The homogenization result forU+ ε

The cell problem and the definition of the effective Hamiltonian.

Theorem (The cell problem forUε+ )

∀x,p∈RN (frozen) ∃! H¯+(x,p)∈Rsuch that ∃V+Lipschitz continuous, periodic function∀τ≥0,y0∈RN

(∗)V+(y0) = inf

(Yy0,a)∈Ty0reg{ Z τ

0

(l(x,Yy0(t),a(t)) +b(x,Yy0(t),a(t))·p + ¯H+(x,p))dt+V+(Yy0(τ))}

Proof.

Dynamic Programming Principlefor the existence and uniqueness follows from the definition(∗)and regularity of V+

Proposition

+(x,p)is regular (Lipschitz and coercive) and a comparison principle for the effective problem holds true.

Proof. Characterisation of the solution of the approximate cell problem

(20)

The homogenization result forU+ ε The homogenization result

Theorem (Main theorem forUε+) (Uε+)ε>0→U+ unique viscosity solution of

λu(x) + ¯H+(x,Du(x)) =0 inRN. Proof.

U+is a supersolution:

EDP proof as in theU case thanks to a local property of maximality.

U+is a subsolution:

a comparison principle concerning supersolutions andUε+does not hold First case: bi(x,y,a) =bi(y,a),li(x,y,a) =li(y,a).

Main tool: the perturbed test functionis almost super-optimal The general case:

Trajectories in the definition of correctors: Z˙ε(t)∈ B

¯ x,Zεε(t) Trajectories in the homogenization problem: X˙ε(t)∈ B

Xε(t),Xεε(t)

Approximating problems with dynamics constant in the slow variable

(21)

The 1-D case: an example whenH+ (x,¯ 0)6= ¯H(x,0)

Plan

1 Hamilton-Jacobi equations and optimal control problem Setting

Assumptions

The optimal control problems

2 The homogenization result for Uε

The cell problem and the definition of the effective Hamiltonian.

The homogenization result

3 The homogenization result for Uε+

The cell problem and the definition of the effective Hamiltonian.

The homogenization result

4 The 1-D case: an example when H¯+(x,0)6= ¯H(x,0)

(22)

The 1-D case: an example whenH+ (x,¯ 0)6= ¯H(x,0)

The 1-D case: an example when H ¯

+

(x , 0 ) 6= ¯ H

(x , 0 )

1= [

kZ

]2k,2k+1[ Ω2= [

kZ

]2k+1,2k+2[

b1(x,y, α1) =α1,b2(x,y, α2) =α2,A1=A2= [−1,+1]

l1(x,y, α1) =|α1−cos(πy)|+1− |cos(πy)|

l2(x,y, α2) =|α2+cos(πy)|+1− |cos(πy)|.

The data are independent of thex variable, thenU+andU are constants and onlyp=0 is relevant inH¯±.

Ergodic charactecterisation implies:

± = lim

t+ − inf

(Y0,a)∈T0

1 t

Z t 0

l Y0(s),a(s) ds

! . The best strategy is "singular"α1=1α2=−1 and cannot be used in theH¯+-case. FinallyH¯=0, H¯+<0

(23)

The 1-D case: an example whenH+ (x,¯ 0)6= ¯H(x,0)

References

Y. Achdou, F. Camilli, A. Cutri and N. T. (NODEA 2013) Y. Achdou, S. Oudet and N. T. (HAL 2014)

C. Imbert, R. Monneau and H. Zidani (ESAIM COCV 2013) C. Imbert, R. Monneau (HAL 2013)

G. Galise, C. Imbert, R. Monneau (HAL 2014) D. Schieborn and F. Camilli (CVPDE 2013) F. Camilli, C. Marchi (JMAA 2013)

Z. Rao, A. Siconolfi and H. Zidani (HAL 2013) N. Forcadel and Z. Rao (HAL 2013)

Références

Documents relatifs

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,