• Aucun résultat trouvé

Automatic extraction m Automatic extraction m measurement of effect

N/A
N/A
Protected

Academic year: 2022

Partager "Automatic extraction m Automatic extraction m measurement of effect"

Copied!
24
0
0

Texte intégral

(1)

Automatic extraction m Automatic extraction m measurement of effect

65nm MOSFET tec

Dominique Fleury 1,2 , Antoine Cros 1 Franck Perrier 3 Benjamin Franck Perrier , Benjamin

Extensive Electrical Ch

Email : dominiqu Phone : +33 (0

1

STMicroelectronics, 850 rue

2

2

IMEP, Minatec, 3 Parvis Lo

3

NXP Semiconductors, 860 rue

methodology for accurate  methodology for accurate 

tive channel length on  g hnology and below

1 , Krunoslav Romanjek 3 , David Roy 1 ,  n Dumont 3 Hugues Brut 1

n Dumont , Hugues Brut

haracterization group

e.fleury@st.com 0) 438 923 314

e Jean Monnet, Crolles France ouis Néel, Grenoble, France

e Jean Monnet, Crolles, France

(2)

State‐of‐the‐art Methodology Problematic

Outline

 Problematic of accurate L

 St t f th t

 State‐of‐the‐art

 Methodology for automa

 Methodology for automa

 Test structure design for 

 Results and validation l

 Conclusion

Test structures Results & validation Conclusion

L eff extraction atic extraction atic extraction

automatic extraction

(3)

State‐of‐the‐art Methodology Problematic

Problematic

Outline

 Problematic of accurate L

 St t f th t

 State‐of‐the‐art

 Methodology for automa

 Methodology for automa

 Test structure design for 

 Results and validation l

 Conclusion

Test structures Results & validation Conclusion

L eff extraction atic extraction atic extraction

automatic extraction

(4)

State‐of‐the‐art Methodology Problematic

Problematic

Problematic of accurat

 The mask length (L mask ): gate defin

 The effective channel length (L eff ff ):

ΔL = L mask  − L eff is the channel len

Nowadays, L eff hardly  reaches 50% of L

reaches 50% of L mask

A few nanometer change  can induce bad results 

interpretation !

Test structures Results & validation Conclusion

te L eff extraction

ition from lithography mask

defined by the inversion layer length ngth reduction

L

lithography mask gate definition

spacer Gate

(poly‐Si)

L

mask gate definition

Source SDE L

eff

SDE Drain

gate oxide

L

poly

Channel

(5)

State‐of‐the‐art Methodology Problematic State‐of‐the‐art

Problematic

Outline

 Problematic of accurate L

 St t f th t

 State‐of‐the‐art

 Methodology for automa

 Methodology for automa

 Test structure design for 

 Results and validation l

 Conclusion

Test structures Results & validation Conclusion

L eff extraction atic extraction atic extraction

automatic extraction

(6)

State‐of‐the‐art Methodology Problematic State‐of‐the‐art

State-of-the-art

 Most of I D (V G )‐based metho the mobility with the length o the mobility with the length o

Mistaken approach due to low  f ld b l d d

field mobility degradation  observed on short devices  [1], [2]

 Capacitive method provides L assumption towards the mob assumption towards the mob

[1]K.Romanjek, Solid State Elec., vol. 49, pp. 721‐726, 2005

[2]A.Cros, IEDM’06, San Francisco  USA, dec. 2006, pp. 663‐666 , , pp

Test structures Results & validation Conclusion

ds assume invariance of  of transistors.

of transistors.

L eff extraction without any  bility

bility.

Solution avoiding a 

 mistaken extraction g

(7)

State‐of‐the‐art Methodology Problematic State‐of‐the‐art Methodology

Outline

 Problematic of accurate L

 St t f th t

 State‐of‐the‐art

 Methodology for automa

 Methodology for automa

 Test structure design for 

 Results and validation l

 Conclusion

Test structures Results & validation Conclusion

L eff extraction atic extraction atic extraction

automatic extraction

(8)

State‐of‐the‐art Methodology

Problematic Methodology

Methodology: experim

 Capacitance measurements a

 On fully automatic prober with

 On fully automatic prober with 

 Using high precision LCR‐meter

 Using a connection matrix (Agil

 Using a connection matrix (Agil

 Extractions are performed th

d l d f ( l b )

developed software (Scilab™)

Test structures Results & validation Conclusion

mental setup

are performed:

probecard (Accretech UF3000) probecard (Accretech UF3000)  (HP4984 LCR‐meter)

ent 4073B) ent 4073B)

anks to a home‐

))

− Test of several pad combinations

− Large samplings (>20 dice/wafer)

− Batch extractions

(9)

State‐of‐the‐art Methodology

Problematic Methodology

Methodology: capaciti

L eff is extracted from gate‐to‐

 Proportional to the channel area

 Proportional to the channel area

 max(C

gc

) is set as a reference  point for each curve.

N d b ddi t t

No de‐embedding structure   needed to get rid of 

i i i

parasitic capacitances

Test structures Results & validation Conclusion

ive method

‐channel measurements C gc (V G )

10

3

n ce   (f F) L

mask

=10µm

high (gate) 10

ca p acita n

1 µm

max(C

gc

)

low (drain) low

(source) 10

2

o ‐ chan nel 0.4 µm

0.2 μm ground

measurement setup

10

1 2 0 6 0 0 0 6 1 2

Ga te ‐ to 0.12µm

0.1µm

‐1.2 ‐0.6 0.0 0.6 1.2

Gate bias V

G

(V)

(10)

State‐of‐the‐art Methodology

Problematic Methodology

Methodology: L eff extr

 Two ways of extraction are p L eff ext

Assume ΔL Assume ΔL

constant

L extracted from an axis intersept

Recall : ΔL = L

mask 

− L

eff

axis intersept

mask  eff

Test structures Results & validation Conclusion

ractions

ossible:

raction

Extract Extract  ΔL(L mask

L extracted from a  cross product

cross product

(11)

State‐of‐the‐art Methodology

Problematic Methodology

Methodology: constan

 ΔL is assumed invariant with 

C = W.C (L − L)

C gc  W.C ox (L mask   L)

 ΔL is extracted from the linear

 ΔL is extracted from the linear  regression: max(C gc )=f(L mask )

L eff eff error strongly depends  g y p on ΔL linearity assumption. 

(lithography and gate etch 

( g p y g

processes optimization)

Test structures Results & validation Conclusion

nt ΔL method

L mask  , thus:

Lmask=1µm

200

∆L  82nm

gc)(fF)

10

∆L  82nm

gc)(fF)

10

(fF) 120

160

0.1µm 0

0.07 L k(µm) 0.13 max(C g

0.1µm 0

0.07 L k(µm) 0.13 max(C g

0 4

linear regression

max( C

gc

) (

80

Lmask(µm) Lmask(µm)

0.4µm

0.2µm

0

40

Mask length L

mask

(µm)

0.2 0.4 0.6 0.8 1.0

0

(12)

State‐of‐the‐art Methodology

Problematic Methodology

Methodology: individu

 Extraction of individual ΔL * (f

 ΔL are extracted from a

 ΔL are extracted from a proportionality rule:

 The longest transistor is set as the reference (L  L ) the reference (L effL mask )

Th ΔL i l h

 The constant ΔL is almost the average value of ΔL(L mask )

Test structures Results & validation Conclusion

ual ΔL method

for each transistor)

N M O S 100

m ) L median values

L

mask

= 0.4µm

90

–L

eff

(n m

0.2µ m

80

L   =   L

mask

0.12µm

constant ΔL from previous method ΔL = 82nm

70

Δ L

0 0.1 0.2 0.3 0.4

0.1µm

L

ref

= 10µm

Mask length L

mask

(µm)

(13)

State‐of‐the‐art Methodology

Problematic Methodology

Methodology: individu

 Extraction of individual ΔL * (f

 ΔL are extracted from a

 ΔL are extracted from a proportionality rule:

Allows studying ΔL(L y g ( mask mask )  ) behavior

Needs a long transistor as  g reference

Test structures Results & validation Conclusion

ual ΔL method

for each transistor)

N M O S 100

m ) L median values

L

mask

= 0.4µm

90

–L

eff

(n m

0.2µ m

80

L   =   L

mask

0.12µm

constant ΔL from previous method ΔL = 82nm

70

Δ L

0 0.1 0.2 0.3 0.4

0.1µm

L

ref

= 10µm

Mask length L

mask

(µm)

(14)

State‐of‐the‐art Methodology

Problematic Methodology

Methodology: parasiti

C gc measurements are impacte

 From cabling, probes and connection 

 Inherent to the MOSFET architecture

● Overlap capacitance C

ov 

(V

G

‐dependen

f C (V d

● Inner fringe capacitance C

if 

(V

G

‐depen

● Outer fringe capacitance C

of

C

min

is chosen to have the same value than parasitic capacitances include into max(C ) [3]

include into max(C

gc

) [3].

Test structures Results & validation[3]F.Prégaldiny, Solid State Elec.,Conclusion vol.46, pp. 2191‐2198, 2002

ic capacitance

ed by parasitic capacitance

pads (constant term)

16

Gate Gate

C

(fF) C

nt)

d )

Lmask=65nm 12

14 Lmask=100nm

max(Cgc)

Source Drain Source SDE

Drain

SDE

C Cofof

CCifif C Covov

apacitance (

dent)

Lmask 65nm

Covvariation Cifvar.

8.0 1.0

Cmin

Channel Channel

-channelca

Parasitic capacitance 4.0

3 5 1 5 0 5 2 5

Cgc 6.0

Gate-to-

-3.5 -1.5 0.5 2.5

Gate bias VG(V)

(15)

State‐of‐the‐art Methodology

Problematic Methodology

Methodology: parasiti

C gc measurements are impacte

 From cabling, probes and connection 

 Inherent to the MOSFET architecture

● Overlap capacitance C

ov 

(V

G

‐dependen

f C (V d

● Inner fringe capacitance C

if 

(V

G

‐depen

● Outer fringe capacitance C

of

Use of ΔC = max(C gc ) C min instead of max(C ( gc gc ) )

cancel parasitic capacitances approximation on C min

approximation on C

error less than 3% on L eff

Test structures Results & validation[3]F.Prégaldiny, Solid State Elec.,Conclusion vol.46, pp. 2191‐2198, 2002

ic capacitance

ed by parasitic capacitance

pads (constant term)

16

Gate Gate

C

(fF) C

nt)

d )

Lmask=65nm 12

14 Lmask=100nm

max(Cgc)

Source Drain Source SDE

Drain

SDE

C Cofof

CCifif C Covov

apacitance (

dent)

Lmask 65nm

Covvariation Cifvar.

8.0 1.0

Cmin

Channel Channel

-channelca

Parasitic capacitance 4.0

3 5 1 5 0 5 2 5

Cgc 6.0

Gate-to-

-3.5 -1.5 0.5 2.5

Gate bias VG(V)

(16)

State‐of‐the‐art Methodology

Problematic Methodology

Outline

 Problematic of accurate L

 St t f th t

 State‐of‐the‐art

 Methodology for automa

 Methodology for automa

 Test structure design for 

 Results and validation l

 Conclusion

Test structuresTest structures Results & validation Conclusion

L eff extraction atic extraction atic extraction

automatic extraction

(17)

State‐of‐the‐art Methodology Problematic

Test structures

 Requierements of the measur

 Connection matrix: areas above

 Connection matrix: areas above  noise ratio

Use of array test structures com wired together (area ≈ 100µm²) wired together (area  100µm )

L

mask

active poly-Si

active

Test structuresTest structures Results & validation Conclusion

rement setup

50µm² to provide enough signal‐to‐

50µm  to provide enough signal to

mposed by N identical transistors 

S h l t b

Such large areas can not be  measured on leaky devices  (T 15Å) !

(T ox  15Å) !

(18)

State‐of‐the‐art Methodology Problematic

Test structures: leaky

T   > 15Å t t t t T ox  > 15Å

array test structures

A ≈ 100µm²

matrix connection  between LCR‐meter 

and devices 2‐3min/curve

Test structuresTest structures Results & validation Conclusion

devices

T   < 15Å i l t d t t t t

T ox  < 15Å

isolated test structures

A = LW < 10µm²

direct connection of direct connection of LCR‐meter to devices

20min/curve

20min/curve

(19)

State‐of‐the‐art Methodology Problematic

Outline

 Problematic of accurate L

 St t f th t

 State‐of‐the‐art

 Methodology for automa

 Methodology for automa

 Test structure design for 

 Results and validation l

 Conclusion

Test structuresTest structures Results & validationResults & validation Conclusion

L eff extraction atic extraction atic extraction

automatic extraction

(20)

State‐of‐the‐art Methodology Problematic

Results and validation

 Hot Carrier Injection mechani

Bulk current I b and I b /I d ratio I and I b /I d ratio 

are increased

 HCI strongly depends on L eff  :

 When L eff decreases the lateral  electric field increases (E  1/L e

 Carriers get high kinetic energy  thanks to the high field  hot ca

Test structures Results & validationResults & validation Conclusion

n: HCI lifetime

ism:

Carrier injection NMOS

e

First ionization

e

h

+

First ionization Second ionization

h

+

h

+

L ff must be measured L eff must be measured  with accuracy to identify  the origin of HCI lifetime

eff )

the origin of HCI lifetime  degradation

arriers

(21)

State‐of‐the‐art Methodology Problematic

Results and validation

L eff  measurements to unders

Thick oxide (T ox  18.5Å) Å

 array test structures Statistical measurements

20 dies 20 dies

HCI‐lifetime study predicts 4nm‐

shift on L eff between ‘A’ and ‘B’

SUL T

L eff measurements give 3.5±1 nm

RE

Test structures Results & validationResults & validation Conclusion

n: HCI lifetime

stand HCI lifetime results:

U nits)

Extrapolated:

L

eff

4nm

Measured:

L

eff

3.51nm 100

Arbitr aty U 

70nm 60nm 10

Lif etime (

Process ‘A’

L

mask

= 50nm 1

0 5 10

Process B’ ‘ 0.1

I

bulk

/I

drain

ratio [  10

‐6

]   ionisation rate

(22)

State‐of‐the‐art Methodology Problematic

Outline

 Problematic of accurate L

 St t f th t

 State‐of‐the‐art

 Methodology for automa

 Methodology for automa

 Test structure design for 

 Results and validation l

 Conclusion

Test structures Results & validationResults & validation ConclusionConclusion

L eff extraction atic extraction atic extraction

automatic extraction

(23)

State‐of‐the‐art Methodology Problematic

Conclusion

 High capabilities of our indus

 Outstanding accuracy (± 1nm)

 Outstanding accuracy (± 1nm)

 Unequal benefits toward HCI lif

 Test structure improvement

 Systematic measurements than Systematic measurements than

 Reduction of the measurement

Ex

− 

− 

Test structures Results & validation ConclusionConclusion

trially‐adapted L eff extraction

fetime and mobility studies

nks to new array test structures nks to new array test structures

t time (20min  2min)

xpected method improvements:

Extend L ff meas to in line monitoring

Extend L eff meas. to in line monitoring

In‐depth study of parasitic capacitances

(24)

State‐of‐the‐art Methodology

Problematic Test structures Results & validation Conclusion

Références

Documents relatifs

The latter may have literal embodyments like the first type, but may also be abstract like “red” or “christianity.” For the first type we consider a family of computable

The normalized ratio of the beam sizes at the OTR and at the entrance of the EXT line from simulations are shown for two cases: for the nominal horizontal extracted beam orbit, at

Also it can be said that the extraction of prefixes (for dealing with highly inflected languages as is Czech and, to a lower degree, Portuguese) and propagating their

The coordinator was designed to set up wireless sensor network, waiting for intelligent sensor nodes to join in, receiving optical data, and then transmitting data to the remote

variables determines the truth value of the output, dependent, variable.. As in

In this paper, orbit measurements using the 12 stripline Beam Position Monitors (BPMs) installed in the first part of the EXT are described in presence of intensity variations and

remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large scale 132.. soil

Rules for Single prepositions For this pattern, the cause and effect are linked, in the dependence tree, to the preposition that evokes the causal relation.... Dependencies among