• Aucun résultat trouvé

A Schwarz Waveform Relaxation Method for Advection-Diffusion-Reaction Problems with Discontinuous Coefficients and non-Matching Grids

N/A
N/A
Protected

Academic year: 2022

Partager "A Schwarz Waveform Relaxation Method for Advection-Diffusion-Reaction Problems with Discontinuous Coefficients and non-Matching Grids"

Copied!
9
0
0

Texte intégral

(1)

Proceedings Chapter

Reference

A Schwarz Waveform Relaxation Method for

Advection-Diffusion-Reaction Problems with Discontinuous Coefficients and non-Matching Grids

GANDER, Martin Jakob, HALPERN, L., KERN, M.

GANDER, Martin Jakob, HALPERN, L., KERN, M. A Schwarz Waveform Relaxation Method for Advection-Diffusion-Reaction Problems with Discontinuous Coefficients and non-Matching Grids.

In: 16th International Conference on Domain Decomposition Methods . 2005.

Available at:

http://archive-ouverte.unige.ch/unige:8273

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Æ

!

½

¾

¿

! " #""$ %& %' (

' $##)"*$ + ,#

" $* % " ' )

")*+!"#"&

*+!""#-#

".$+!%"'

'(""'%"+

!

! " # " ! $

! !

% !

! &' Æ

!!

(! !!

) * Æ

+

"

, *

+ !

(3)

% -./0123 !

! 4

&

+ *

0

-.123%-$153- 123! * &

! Æ0 !

6*

!

7 8*8

)9

: 9 -13

%1&9

%&

%;&

Æ6Æ

!

1

9

9

%<&

+!

% &

%1=

% && %;& 6

%1=

% &&

%31-= % &&- ><3+

)9

:

1

)9

91 1

%5&

7%;& %<&

9 -13

9

-13

%1&9

%&

%1&9

%&

%2&

%1&9 %1&

%1&9 %1& -13 %?&

" '! %?&

! '

-@ABB3 +! '

( $

(4)

*

!4 -13

% &

%&9

%& %&

# ! !!

!

# 91;< / ! '

9

-13

%1&9

%&

%

:

&

%1&9% :

&

%1& -13

9 -13

%1&9

%&

% : & %1&9%

: &

%1& -13

%C&

+!

6

! %2& %?& !

%;&

+

4

! ! /

6 91

91 %C&+ # !

! '1! 1(

# ! !

%&9

%&

%&

%&9

%&

%&

%>&

%&

%& !

%:&91 %D&

+! %>& ! %C&

!

%&9%&

%& %&9%&

%& %B&

! %&!

%&9

%;1&

0 !

% !

%&+ '

(5)

' ! %D&

%&9

<

%&9

:

<

%;;&

E %C&

! ! 4

! %2&

:

%1&9 ! 1

! " Æ

! '

-.123 % 0 ?5 - ><3 ! 4 !

/ % %1&&&

% &

%1= &

%1&

% %1&&

%C&E %;;&4%

0 ?2 -.123&

%1= &

% &

% %1&& %

%1&&

%C&

% %1&& %

%1&&

F ! !!

-.123 Æ

!" ! "

#

:

1

:

1

:

1

%C&

$!Æ

9 9

1 -.123

G"

! ' 0 '!

!%D&

(6)

/ *! !

"

'

'

%

& %;5&

%;1& " 6

!

9

#!

9 9

1"$

%

%

&

%;2&

;

%

&

%;?&

$!

9 9

1

"$ %

%<

%

:

%

&

:2:

% &

:2&

&

%<

%

:

%

&

:2:

% &

:2&

&

%;C&

;

%;>&

0

9

'

0

4

!

9 91

%

9&

9 91

%

9&

9

%

& '

%

&

(7)

x j−1 x j x j+1

t n−1 t n t n+1

$+$ #

$#$#'#$+

! !

9%

&%

&

% ! # ;& 0 4

*

# ;

9

0 !

* %C& !

4 '

:

:

9

%;D&

0 4

-1?3

0 !4

%C& $ ,

! ! '

!

:

:

:

9

%;B&

! + '

! ! 7

!

!-1?3

/ * !

!

, %

!4 & -$153

(8)

!"

' ! !

Æ * 0

! 0;/

!5* ! *

# <

'* 59:

¾

5 9;6 9:

¾

59:

¿

$*

·

9/9:

¾

/ 75/9:

¾

/9:

¿

."'("+

0 0.5 1 1.5 2

0 0.2 0.4 0.6 0.8 1

x

u(x, 1e−1)

Solution at time 1e−1, iteration 2

0 0.5 1 1.5 2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

u(x, 5e−2)

Solution at time 5e−2, iteration 4

0 0.5 1 1.5 2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

u(x, 7e−2)

Solution at time 7e−2, iteration 4

0 0.5 1 1.5 2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

u(x, 1e−1)

Solution at time 1e−1, iteration 4

0 0.5 1 1.5 2

0 0.2 0.4 0.6 0.8 1

x

u(x, 5e−2)

Solution at time 5e−2, iteration 2

0 0.5 1 1.5 2

0 0.2 0.4 0.6 0.8 1

x

u(x, 7e−2)

Solution at time 7e−2, iteration 2

<' % ) + ,"%= /

*%=5+'=>::6>::8$

>:9+

0 ?# 5 !

;1

! !

0

0 ?!

%;1& 4 %

(9)

12 12

12 14 14

14

14 14

14

16 16 16

16

16

16

16 16

18 18

18

18 18

18

18 18 18

20 20

20

20 20

20

20 20 20

22 2 2

22

22 22 22

22 22 22

2 4 24

24

24

24 24

24 24 24

26 26

26

26

26

26 26 26

28

28 28 28

28

28

28

30

30

30

30

30 30

pp

pm

5 10 15 20 25 30

5 10 15 20 25 30

' *'$ '

' "

·

+,%'?"#

',6% ""$ % @"@

"'*..&$$+

#

AB1:5C 3B 0+1"+ D"&

%& %' ( ' )

"*+, "/::5#/594/::5+

AB2 ,:5C B$ 2 " 0,+

, = %" +

;E/F=;4G;/::5+ "= ',#

" !3" = , , H

E<=B$ 2F+

A12:6C 0+1" 2+ %&%#

' ( ' ) "*%

Æ#$$+ ,"#

/::6+ ""+

A1:4C 0+ 1" '+ D"

%& %' ( ' % +

59E6F=975497;9 /::4+

A 8/C 0+ + <+ $+

+3!#

' B 9;/+ "$ 9G8/+ , ' *.

+2+

A :5C I + %&%'('

%%+ +2* +1""0+(#

D+D+!0+

! 5:'"

! /::5+

AJIGGC -J*I+

Références

Documents relatifs

The extension to advection-diffusion-reaction equations entails several new ideas: (i) We de- vise a local reconstruction of the advective derivative from cell- and face-based

(That is, domain decomposition is used for the solution procedure, and for the corresponding iteration we try to define the transmission conditions in such a way that

In this note, we propose and analyse a method for handling interfaces between non- matching grids based on an approach suggested by Nitsche (1971) for the approximation of

We provide in this paper the complete asymtotically optimized closed form transmission conditions for optimized Schwarz waveform relaxation algorithms applied to advection

Optimized Schwarz waveform relaxation algorithms with nonconforming time discretization for coupling convection-diffusion problems with discontinuous coefficients.. Widlund and

To do this, we propose to adapt a global in time domain decomposition method proposed by Gander and Halpern in [BGH04] (see also [GHN03], and [Mar04] for a different application) to

It relies on the splitting of the time interval into time windows, in which a few iterations of an optimized Schwarz waveform relax- ation algorithm are performed by a

This algorithm is like a classical overlapping additive Schwarz, but on subdomains, a time dependent problem is solved, like in waveform relaxation.. Thus the name overlapping