• Aucun résultat trouvé

The acircuitic directed star arboricity of subcubic graphs is at most four

N/A
N/A
Protected

Academic year: 2021

Partager "The acircuitic directed star arboricity of subcubic graphs is at most four"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-00307095

https://hal.archives-ouvertes.fr/hal-00307095

Submitted on 28 Jul 2008

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

The acircuitic directed star arboricity of subcubic

graphs is at most four

Alexandre Pinlou, Eric Sopena

To cite this version:

(2)

of sub ubi graphs is at most four

Alexandre Pinlou, 

Eri Sopena

LaBRI, UniversiteBordeaux I,

351, ours de laLiberation

33405 Talen e Cedex, Fran e

E-mail: fAlexandre.Pinlou,Eri .Sopenaglabri.fr

O tober8, 2004

Abstra t

Adire ted starforestisaforest allofwhose omponentsarestars with ar s emanating from the enter to the leaves. The a ir uiti dire tedstararbori ityofanorientedgraphG(thatisadigraphwith nooppositear s)istheminimumnumberofedge-disjointdire tedstar forests whoseunion oversalledges of Gand su h that theunion of anytwosu hforests isa ir uiti . Weshowthateverysub ubi graph hasa ir uiti dire tedstararbori ityatmostfour.

1 Introdu tion

We onsider nitesimpleorientedgraphs,thatisdigraphswithnoopposite

ar s. ForanorientedgraphG,wedenotebyV(G) itssetofverti esandby A(G)its setof ar s.

In[1 ℄,AlgorandAlonintrodu edthenotionofthedire tedstararbori ity

of a digraph G, de ned as the minimum number of edge-disjoint dire ted star forests needed to over A(G). (A dire ted star forest is a forest all of whose omponentsaredire tedstars, thatisstarswithar semanatingfrom

(3)

Guiduliprovedthateveryorientedgraphwithindegreeandoutdegree both

lessthanDhas dire tedstar arbori ityat most D+20logD+84 olors. In thispaper, we prove thefollowing

Theorem 1 Every graph with maximum degree at most 3 has a ir uiti

dire ted star arbori ity at most4.

The notion of a ir uiti dire ted star arbori ity arises from the study of ar - oloring of oriented graphs. In [4℄, Cour elle introdu ed the notion of vertex- oloring of oriented graphs as follows: a k-vertex- oloring of an

oriented graph Gis a mappingf from V(G) to a set of k olors su h that (i) f(u)6=f(v) whenever

!

uv isan ar inG, and (ii) f(u)6=f(x)whenever !

uv and !

wx aretwo ar s inG withf(v)=f(w). Vertex- oloringof oriented

graphs have been studied by several authors in the last past years (see e.g. [2 ,6 ℄ or[9℄foran overview).

Re all that an a y li oloring of an undire ted graph U is a proper oloringof U su hthatevery y leinU uses atleastthree olors. Raspaud andSopenaprovedin[8℄thateveryorientationofanundire tedgraphthat

admitsan a y li k- oloring admitsan oriented(k2 k 1

)- oloring.

One ande near - oloringsoforientedgraphsinanaturalwaybysaying that, as in the undire ted ase, an ar - oloring of an oriented graph G is a vertex- oloring of the line digraph of G. (Re all that the line digraph

L(G)of G is given by V(L(G))=A(G) and ( ! uv; ! vw) 2A(L(G)) whenever ! uv 2 A(G) and !

vw 2 A(G).) It is not diÆ ult to see that every oriented graph havinga k-vertex- oloring admits a k-ar - oloring (froma

k-vertex- oloringf,weobtaina k-ar - oloring gbysetting g( !

uv)=f(u)).

By adapting theproof of the above-mentionned result of Raspaud and Sopena,itis notdiÆ ultto prove thateveryorientedgraphwitha ir uiti

dire tedstar arbori ityat most k admits a(k2 k 1

)-ar - oloring.

Thispaperisorganisedasfollows: weintrodu ethemainde nitionsand notationinthenext se tion and prove ourmainresultin Se tion3.

2 De nitions and notation

Intherestof thepaper,orientedgraphswillbesimply alledgraphs. Fora

vertexv,wedenote byd (v) theindegree of v, by d +

(v) itsoutdegree and byd(v) its degree,thatisd(v)=d

+

(4)

if(G)=Æ(G)=3 and sub ubi if(G)3.

Wedenoteby !

uvthear fromutovorsimplyuvwheneveritsorientation is notrelevant (therefore uv =

! uv or uv = ! vu). If a= ! uv is an ar , thenu isthetail andv is theheadof a.

For a graph G and a vertex v of V(G), we denote by Gnv the graph obtained from G by removing v together with the set of its in ident ar s; similarly,foran ar aof A(G),GnadenotesthegraphobtainedfromGby

removinga. Thesetwonotionsareextendedtosetsinastandardway: fora setofverti esV

0 ,GnV

0

denotesthegraphobtainedfromGbysu essively removingall verti esof V

0

and theirin ident ar s,and fora set of ar s A 0

,

GnA 0

denotesthegraph obtainedfrom Gbyremovingallar s of A 0

. Thenotionsofarbori itydis ussedinthepreviousse tionmaybede ned in terms of ar - olorings or partitions of the set of ar s. More pre isely, a

k-dire ted-star- oloring (orsimplyk-dst- oloring)ofagraphGisapartition of A(G)into k dire ted star forests fF

1 ;F 2 ;:::;F k g. Equivalently,a k-dst- oloring of G is a k- oloring f of A(G) su h that (i)

! uv; ! vw 2 A(G) ) f( ! uv) 6= f( ! vw) , and (ii) ! uv; ! tv 2 A(G) ) f( ! uv) 6= f( !

tv). The dire ted star arbori ity of G, denoted bydst(G), isthen thesmallestk forwhi h G

admitsa k-dst- oloring.

AgraphGisa ir uiti ifitdoesnot ontainany ir uit. A k-a ir uiti -dire ted-star- oloring (orsimplyk-adst- oloring)ofagraphGisapartition

of A(G)into k dire ted star forests fF 1

;F 2

;:::;F k

g su h that for all i;j 2 [1;k℄; F

i [F

j

is a ir uiti . Equivalently,a k-adst- oloring of G is a k-dst- oloringofGsu hthatno ir uitinGisbi hromati . Thea ir uiti dire ted

stararbori ity ofG,denotedbyadst(G),isthesmallestkforwhi hGadmits ak-adst- oloring.

Note that fromthe above de nitionswe get that every edge- oloring of

an undire tedgraphH is adst- oloring of any orientationof H. Similarly, every a y li edge- oloringof H isanadst- oloringofanyorientationofH. The followingnotationwillbeextensivelyusedintherest of thepaper.

Considera graph G and let A 0 =fa 1 ;a 2 ;:::;a n g be a subsetof A(G). We denotebyC G (a 1 ;a 2 ;:::;a n ),orsimplyC G (A 0

),thesetof ir uitsofGthat ontainall thear s a

1 ;a 2 ;:::;a n .

Drawing onventions. In all the gures, we shall use the following on-vention: avertexwhoseneighborsaretotallyspe i edwillbebla k,whereas avertexwhoseneighborsarepartiallyspe i edwillbewhite. Moreover,an

(5)

Suppose that Theorem 1 is false and onsider a minimal ounter-example G. Weprovea seriesoflemmas. Inea h ofthem,weredu e Gto a smaller graphG

0

(thatisjA(G)j>jA(G 0

)j)whi hadmitsa4-adst- oloring f 0

whi h

is also a partial adst- oloring of G (that is an adst- oloring only de ned on some subset A

0

of A(G)). We extend su h a partial adst- oloring f 0

to an adst- oloring f of G. In this ase, it shouldbe understoodthat we set

f(a) = f 0

(a) for every ar a 2 A(G 0

). We then explain how to set f(a) for every un olored a 2 A(G). The existen e of f proves that G does not ontain some spe i on gurations. This set of on gurations will nally

leadto a ontradi tion.

Consider a ir uit C and let u;v 2 V(C). We denote by P C

(u;v) the dire tedpath fromu to v inC.

The followingobservation willbe extensivelyusedinthesequel:

Observation 2 Let C be a ir uit, f an adst- oloring of C, and C 0

the

ir uitobtained fromC byrepla ingP C

(u;v)by adire tedpathP C 0 (u;v). If f 0 is a dst- oloring of C 0 su h that f 0

(a)=f(a) for every a2= P C 0 (u;v) and ff(a); a2 P C (u;v)g  ff 0 (a 0 ); a 0 2 P C 0 (u;v)g then f 0 is an adst- oloring of C 0 .

Thisdire tly follows fromthe fa tthatjf 0

(C 0

)jjf(C)j3.

We rst show that a minimal ounter-example to Theorem 1 is ne es-sarilya ubi graph.

Lemma3 IfGisaminimal ounter-exampletoTheorem1,thenÆ(G)3.

Proof. Letv2V(G) withd(v)2. We onsidertwo ases:

Case 1 : d G

(v)=1.

Considerthedanglingar uv inGandlet f 0 beany4-adst- oloring of thegraph G 0 =Gnfvg. We extend f 0 to a4-adst- oloring f of Gby setting f(uv) = a for some olor a distin t from the olors of the at mosttwo ar sin ident to uv.

Case 2 : d G

(v)=2.

Considerthetwoar suvandwvinGandletf 0

beany4-adst- oloring

ofthegraphG 0

obtainedfromGby ontra tinguvinasinglevertexx. We extend f

0

to a 4-adst- oloring f of G by setting f(wv) =f 0

(wx) and f(uv) = a for any a distin t from the olors of the three ar s

(6)

Lemma4 If G is a minimal ounter-example to Theorem 1, then G does not ontain any sour e vertex.

Proof. Letv2V(G) bea sour evertex, u 1

,u 2

and u 3

bethethree neigh-borsofvandf

0

beany4-adst- oloringofthegraphG 0

=Gnv. ByLemma3, weknowthatd

+

(v)=3. Ea hofthear s ! vu 1 , ! vu 2 and ! vu 3

hasatleasttwo

available olors. Sin e they an get the same olor, we an extend f 0

to a 4-adst- oloring f of G,a ontradi tion.

We now prove that a minimal ounter-example to Theorem 1 ontains notriangle.

Lemma5 If G is a minimal ounter-example to Theorem 1, then G is

triangle-free.

Proof. If G ontainsthree pairwiseadja ent triangles,then Gis an orien-tationofthe ompletegraphK

4

. ByLemma4weonlyhaveto onsiderthe

twoorientations ofK 4

depi tedonFigures1(a)and1(b)thatbothadmita 4-adst- oloring.

If G ontainstwo adja ent triangles,then G ontainsthe on guration

of Figure 1( ). Consider thegraph G 0 =Gnfw;xg and let f 0 bea 4-adst- oloringofG 0 su hthatf 0 (uv)6=f 0

(yz)(this an bedonesin ewehavetwo possible hoi es for oloring ea h of uv and uz). Suppose without loss of

generalitythat f 0

(uv) =1 and f 0

(yz) =2. In this ase, we an produ ean a y li 4-edge- oloringasdepi tedonFigure1( ). Indeed,this oloringis a properedge- oloringandno pathlinkinguandz isbi hromati . Hen e,for

all possibleorientations of thear s of the on guration, this oloringgives a4-adst- oloring f ofG.

Suppose nally that G ontains the on guration of Figure 1(d), and

let f 0

be any 4-adst- oloring of the graph G 0

obtained from G by on-tra ting the triangle v

1 v

2 v

3

in a single vertex v. Therefore, every ir uit C2C G ( ! u i v i ; ! v j u j ) orrespondsto a ir uitC 0 2C G 0( ! u i v; ! vu j ).

We now extend thepartial adst- oloring f 0

to a 4-adst- oloring f of G asfollows. We distinguishtwo ases:

Case 1 : f 0 (vu 1 )6=f 0 (vu 2 )6=f 0 (vu 3 )6=f 0 (vu 1 ). Withoutlossofgenerality,supposethatf

(7)

2 1 4 3 1 (a) 3 1 1 2 3 (b) 3 2 3 1 4 2 1 w y v z u x ( ) u 2 v 1 u 1 v 2 v 3 u 3 (d)

(8)

Case 2 : 9 i;j 2f1;2;3g, i6=j,f (v i u i )=f (v j u j )=a. In this ase we ne essarily have

! v i u i ; ! v j u j 2 A(G). Let k 2 f1;2;3g, k6=i;j. We thenset f(v i v k ),f(v j v k ) and f(v i v j )asfollows: 1. f(v i v k

)=bforanyb62fa;f 0 (u k v k )g, 2. f(v j v k

)= forany 62fa;b;f 0 (u k v k )g, 3. f(v i v j

)=d foranyd62fa;b; g.

This an bedonesin ewehave fouravailable olors.

Inboth ases,thanks toObservation 2,we obtaina4-adst- oloring f ofG, a ontradi tion.

Let G be a graph and C a ir uit in G. An ar having exa tly one of its endpointsin C is said to be in ident to C. Moreover, two su h in ident ar sare neighboring iftheirendpointsinC arelinkedbyan ar of C.

The four next lemmas will allow us to prove that a minimal ounter-exampleGto Theorem1 isne essarily a ir uiti .

Lemma6 If G is a minimal ounter-example to Theorem 1, then G does

not ontain a ir uit all of whose verti es have indegree one and outdegree two.

Proof. Supposethat there existsa ir uit C =f ! v 0 v 1 , ! v 1 v 2 , ::: , ! v k 2 v k 1 , ! v k 1 v 0 gin G su h that d + (v i ) =1 and d (v i

) =2 for i2[0;k 1℄and let

f 0

beany4-adst- oloring of thegraph G 0 =GnC. Letf ! v i u i ji2[0;k 1℄g be theset ofar s in identto C.

We extendthepartial oloringf 0

to a 4-adst- oloring f of Gasfollows.

Duetotheorientationof G,C is theonly ir uitofGthatdoesnotbelong to G

0

. Therefore, we onlyneedto olor thear s of C insu ha waythat C isnotbi hromati . Wedistinguishtwo ases dependingon the olorsofthe

ar sin ident to C.

1. Allar s in ident to C are olored with the same olor. In this ase, we olorthear s ofC usingthe threeother remaining olors.

2. Two neighboring ar s in ident to C have distin t olors. Suppose without loss of generality that f

0 ( ! v 0 u 0 ) = 0 and f 0 ( ! v 1 u 1 ) 6= 0 . In

this ase, we set

(9)

v 1 v 0 v 2 u 0 1 u2

(a)ThegraphG

u 0 1 u2 v (b)ThegraphG 0

Figure2: The on gurationof Case1of Lemma 7and its redu tion.

(b) 8i2[1;k 2℄; f( ! v i v i+1 )= i forany i 62f i 1 ;f( ! v i+1 u i+1 )g, ( ) f( ! v k 1 v 0 )= k 1 forany k 1 62f 0 ; 1 ; k 2 g.

The ir uitC is learlynotbi hromati sin e 0 6= 1 6= k 1 6= 0 .

Inboth ases,we obtaina 4-adst- oloring f of G, a ontradi tion.

Lemma7 If G is a minimal ounter-example to Theorem 1, then G does

not ontain a ir uit all of whose verti es have indegree two and outdegree one.

Proof. Supposethat there existsa ir uit C =f ! v 0 v 1 , ! v 1 v 2 , ::: , ! v k 2 v k 1 , ! v k 1 v 0

ginG(see Figures2(a)or3(a))su hthatd + (v i )=2and d (v i )=1 fori2[0;k 1℄. Let f ! u i v i

ji2[0;k 1℄g bethe set of ar s in ident to C. ByLemma5,thetailsoftwo neighboringar sin identto C arene essarily

distin t.

We onsidertwo ases dependingon whether theverti esu 0

and u 2

are distin tornot. We rst showthatinboth asesthere existsaredu tionG

0

ofG(seeFigures2(b)and3(b))whi hadmitsa4-adst- oloringf 0 su hthat f 0 ( ! u 0 v 0 )6=f 0 ( ! u 1 v 1 )6=f 0 ( ! u 2 v 2 )6=f 0 ( ! u 0 v 0 ). Case 1 : u 0 6=u 2

(see Figure 2(a)).

Letf 0

beany4-adst- oloring of thegraphG 0

(10)

v 1 v 0 v 2 u 1

(a)ThegraphG

v 1 v 0 v 2 u 1 (b)ThegraphG 0

Figure3: The on gurationof Case2of Lemma 7and its redu tion.

identifying v 0 , v 1 and v 2

in a single vertex v (see Figure 2(b)). We

learlyhave f( ! u 0 v)6=f( ! u 1 v)6=f( ! u 2 v)6=f( ! u 0 v). Case 2 : u 0 =u 2

=u(see Figure 3(a)). NotethatbyLemma4 we have u

1 6=u. Letf 0 beany4-adst- oloring ofthegraphG 0

=GnC(seeFigure3(b)). Sin ewehaveatleastthree available olors for the ar s

! uv 0 and ! uv 2 , we an hoose f 0 in su h a waythatf 0 ( ! uv 0 )6=f 0 ( ! u 1 v 1 )6=f 0 ( ! uv 2 )6=f 0 ( ! uv 0 ).

Assume now that f( ! u 0 v 0 ) = 1 , f( ! u 1 v 1 ) 6= 1 and f( ! u 2 v 2 ) 6= 1 . As in theprevious lemma,C is theonly ir uitof G thatdoes notbelong to G

0 . Therefore, we onlyneed to olor thear s of C insu ha way that C is not

bi hromati . We thenset f asfollows:

(11)

ounter-example to Theorem 1, there exist two neighboring ar s in ident

withChavingoppositedire tions(withrespe ttoC). Thenexttwolemmas willshowthat thissituationisalso notpossible.

Lemma8 If G is a minimal ounter-example to Theorem 1, then G does

not ontain the on guration depi ted on Figure 4(a).

Proof. SupposethatthegraphG ontainsthe on gurationofFigure4(a), withthear su

0 1 u,u 0 2 u,y 0 1 y,y 0 2 y,v 0 1 v,v 0 2 v,z 0 1 zandz 0 2

zbeingpairwisedistin t, and let f

0

be any4-adst- oloring of the graph G 0

obtained from Gnfw;xg

by adding the ar s ! uy and

!

vz (see Figure 4(b)). Supposethat f 0 ( ! uy) = a andf 0 ( ! vz)=b.

We extend the partial4-adst- oloring f 0 to a 4-adst- oloring f of G as follows. Let E = C G ( ! uw; ! wx; ! xy)[C G ( ! vw; ! wx ; ! xz) and F = C G ( ! uw; ! wx ; ! xz)[ C G ( ! vw; ! wx ; ! xy). We rst set f( ! xy) =a and f( !

xz)=b. Clearly,all ir uits in G not belonging to E[F also belong to G

0

, and thus are already not bi hromati . Moreover, by Observation 2, the ir uits in E will not be

bi hromati . Therefore,we onlyhave to payattentionto the ir uitsinF. We onsidertwo ases dependingonthe olorsaand b:

Case 1 : a6=b. We setf( ! uw)=a, f( ! vw)=band f( !

wx)= forany 2=fa;bg. Sin e

jff( ! uw);f( ! wx);f( ! xz)gj=jfa; ;bgj=3andjff( ! vw);f( ! wx );f( ! xy)gj= jfb; ;agj=3,no ir uitinF is bi hromati .

Case 2 : a=b.

We onsiderthree sub ases.

1. f ! uu 0 1 ; ! uu 0 2 ; ! vv 0 1 ; ! vv 0 2 g T A(G)6=;.

We assume without loss of generality that ! vv 0 1 2 A(G). In this ase, we rst set f( !

uw) = forany 2= fa;f(uu 0 1 );f(uu 0 2 )g and f( !

vw) =d for any d 2= fa; ;f(vv 0 2

)g. Now, we an olorthe ar !

wxwiththefourth olore2=fa; ;dg. Therefore,jff( ! uw),f( ! wx ), f( ! xz)gj =jf ;e;agj=3, jff( ! vw), f( ! wx), f( ! xy)gj=jfd;e;agj = 3,and sono ir uitinF isbi hromati .

(12)

y x w u z v 0 1 v z 0 1 u 0 1 u 0 2 y 0 1 y 2 v 0 2 z 0 2 a b

(a)ThegraphG

y u z v 0 1 v z 0 1 u 0 1 u 0 2 y 0 1 y 0 2 v 0 2 z 0 2 a b (b)Theredu tionG 0

(13)

Notethatsin ea2= ff(u 0 1 u);f(u 0 2 u);f(v 0 1 v);f(v 0 2 v)g,we ne essar-ilyhave ff( ! u 0 1 u);f( ! u 0 2 u)g\ff( ! v 0 1 v);f( ! v 0 2 v)g 6= ;. Therefore, we

an assume withoutlossof generality thatf( ! u 0 1 u)=f( ! v 0 1 v)= , f( ! u 0 2 u)=dand f( ! v 0 2

v)=e,witha; ;d;ebeingpairwisedistin t. Inthis ase,wesetf(

!

uw)=eandf( !

vw)=d. Now,we an olor thear

!

wxwith the olor . Therefore, jff( ! uw), f( ! wx), f( ! xz)gj =jfe; ;agj =3, jff( ! vw), f( ! wx), f( !

xy)gj = jfd; ;agj = 3, and sono ir uitin F isbi hromati . 3. ! u 0 1 u; ! u 0 2 u; ! v 0 1 v; ! v 0 2 v2A(G) andff( ! u 0 1 u);f( ! u 0 2 u)g=ff( ! v 0 1 v);f( ! v 0 2 v)g.

We assume withoutloss of generality that f( ! u 0 1 u) =f( ! v 0 1 v) = andf( ! u 0 2 u)=f( ! v 0 2 v)=d,a6= 6=d6=a. Wethensetf( ! vw)=a andf( !

uw)=ewith e2=fa; ;dg.

Sin e ! uw and

!

xz are olored with distin t olors, no ir uit in C G ( ! uw; ! wx ; ! xz)is bi hromati .

We still have to set the olor of the ar ! wx. We onsider three sub ases. (a) f ! y 0 1 y; ! y 0 2 yg T A(G)6=;

We assume without loss of generality that ! y 0 1 y 2A(G). So, if f(yy 0 2 ) = (resp. f(yy 0 2 ) = d), we set f( ! wx) = d (resp. f( ! wx) = ), otherwise (f(yy 0 2

) = e), we use either or d.

Therefore, jff( ! wx );f( ! xy);f( ! yy 0 2

)gj =3, and thus no ir uit

inC G ( ! vw; ! wx ; ! xy) isbi hromati . (b) ! yy 0 1 ; ! yy 0 2 2A(G)and ff( ! v 0 1 v);f( ! v 0 2 v)g6=ff( ! yy 0 1 );f( ! yy 0 2 )g.

Weassume withoutlossof generalitythat f( ! yy 0 2 )=e. Now, if f( ! yy 0 1 ) = (resp. f( ! yy 0 1 ) = d) we set f( ! wx ) = d (resp. f( !

wx) = ). This implies that for any i 2 f1;2g, jff( ! wx ), f( ! xy),f( ! yy 0 i

)gj=3,andthusno ir uitinC G ( ! vw; ! wx ; ! xy) is bi hromati . ( ) ! yy 0 1 ; ! yy 0 2 2A(G)and ff( ! v 0 1 v);f( ! v 0 2 v)g=ff( ! yy 0 1 );f( ! yy 0 2 )g.

We an suppose without loss of generality that f( ! yy 0 1 ) = and f( ! yy 0 2 ) = d. We then set f( ! wx) = . If there is no

ar emanating from y 0 1

and olored with a, no ir uit in C G ( ! vw; ! wx ; !

xy) is bi hromati . If there exists an ar ema-natingfrom y

0 1

and oloredwitha, thenthere existsat least

(14)

thear yy 0 1

insu hawaythatweforbidbi hromati ir uits

inC G ( ! vw; ! wx ; ! xy).

Inall ases, we obtaina 4-adst- oloring f of G, a ontradi tion.

In the on guration of the previous Lemma, the ar s uu 0 i and vv 0 j on one hand, yy 0 i and zz 0 j

on theother hand, are ne essarily distin tsin e, by Lemma 5, a minimal ounter-example to Theorem 1 ontains no triangle. Thenextlemmadealswiththe asewheretwoar suu

0 i (orvv 0 i )and yy 0 j (or zz 0 j

) arethesame. Without lossofgenerality,we willsupposethatthear s v 0 1 v andz 0 1

z arethe same.

Lemma9 If G is a minimal ounter-example to Theorem 1, then G does

not ontain the on guration depi ted on Figure 5(a).

Proof. SupposethatthegraphG ontainsthe on gurationofFigure 5(a) (in this on guration, two ar s linking a bla k and a white vertex may be the same provided it does not produ e a triangle). We onsidertwo ases

dependingon theorientationof thear vz.

Case 1 : !

vz2A(G).

Considerthegraph G 0 1

(see Figure 5(b))obtained fromGnfw;xg by

addingthear s ! uv and

!

zy (see Figure 5(b)) andlet f 0 1 be any 4-adst- oloringof G 0 1 . Assume that f 0 1 ( ! uv) = a, f 0 1 ( ! vz) = b and f 0 1 ( ! zy) = (seeFigure5(b)). Weextendthepartial4-adst- oloringf

0 toa 4-adst- oloringf ofG asfollows. We rst set f( ! uw) = a, f( ! wx) = f( ! vz) = b and f( ! xy) = (see Figure 5(a)). By Observation 2, no ir uit in G is thus bi hromati . We then olor thear s

! vw and ! xz so that f( ! vw) 2= fa;b;f(v 0 v)g and f( ! xz)2= fb;f(zz 0 )g. Case 2 : ! zv2A(G).

Consider the graph G 0 2

obtained from Gnfw;xg by adding the ar s ! uz and ! vy and let f 0 2 be any 4-adst- oloring of G 0 2 . Assume that f 0 2 ( ! uz) =a, f 0 2 ( ! zv) = b and f 0 2 ( !

vy) = (see Figure 5( )). We extend thepartial4-adst- oloring f

0

to a 4-adst- oloring f of Gasfollows.

As in the previous ase, we set f( ! uw) = a, f( ! wx) = f( ! vz) = b and f( !

xy) = (see Figure 5(a)). By Observation 2, we only have to pay attentionto the ir uitsinC

G ( ! vw; ! wx ; !

(15)

y x w u z b a v 0 v z 0 u 0 1 u 0 2 y 0 1 y 2 b

(a)ThegraghG

u a y y 0 2 y 0 1 u 0 2 u 0 1 z 0 z v 0 v b (b)Theredu tionG 0 1 z b z 0 v 0 u y v u 0 1 u 0 2 y 0 2 y 0 1 a ( )Theredu tionG 0 2

(16)

2

1

4

3

1

2

v

u

w

x

Figure 6: Theorientation ! K

4

su h thatadst( ! K 4 )=4 and !

xz insu h away that f( ! vw) 2= fa;b;f(v 0 v)g and f( ! xz)=a(this anbedonesin ef 0 (zz 0 )6=a). Sin e a6=b6=f( ! vw)6=a,no ir uitin C G ( ! vw; ! wx ; ! xz) isbi hromati .

Inboth ases we obtaina4-adst- oloring f ofG, a ontradi tion.

Usingthepreviouslemmas, we an nowprove ourmainresult.

ProofofTheorem1. ByLemmas6,7,8and9,aminimal ounter-example Gto Theorem1doesnot ontainany ir uit. Therefore, any4-dst- oloring of G is a 4-adst- oloring of G. Moreover, it follows from the de nitions

thatanyk-edge- oloringoftheunderlyingundire tedgraphofGisa k-dst- oloring of G. Therefore, by Vizing's theorem [11 ℄, the graph G admits a

4-edge- oloringand thusa 4-adst- oloring, a ontradi tion.

The bound given in Theorem 1 is optimal. To see that, onsider the

orientation ! K

4

of the omplete graphK 4

given on Figure 6. If we want to olor this graph with three olors, the only way to olor the ar s

! uv, ! xv, ! xu, ! wx and !

vwis learlytheonedepi tedon Figure6. Butinthis ase, we

needone more olorforthear !

wuand thus, adst( ! K

4 )=4.

4 Dis ussion

In [3 ℄ Burnstein proved that every graph with maximum degree 4 admits

an a y li 5-vertex- oloring. Sin e the linegraph of a sub ubi graph has maximum degree at most 4, we get that every sub ubi graph admits an a y li 5-edge- oloring and thus a 5-adst- oloring. Our result shows that

this bound an be de reased to 4 when onsidering oriented graphs and a ir uiti ar - olorings.

We also provided an oriented ubi graph with a ir uiti dire ted star

(17)

Fromourresult,wegetthateveryorientedgraphwithmaximumdegree

threeadmitsa42 4 1

=32-ar - oloring. However, everysu hgraphadmits an11-vertex- oloring [10 ℄ andthusan 11-ar - oloring.

In a ompanion paper [7℄ we show that every K 4

-minor free oriented

graphGhasa ir uiti dire ted stararbori ityatmostminf(G); (G)+ 2g,where (G)standsforthemaximumindegreeofG. This lassofgraphs ontains in parti ular outerplanar graphs. It would thus be interesting to

determinethea ir uiti dire ted star arbori ityof planargraphs.

Referen es

[1℄ I. Algorand N.Alon. Thestararbori ityofgraphs. Dis reteMath., 75:11{22, 1989.

[2℄ O. V. Borodin, A. V. Kosto hka, J. Ne  set



ril, A. Raspaud, and E. Sopena. On the maximum average degree and the oriented

hro-mati numberof a graph. Dis reteMath., 206:77{89, 1999.

[3℄ M.I. Burnstein. Every 4-valent graph has an a y li 5- oloring.

Soobs . Akad. Nauk Gruzin. SSR 93, pages21{24, 1979.

[4℄ B.Cour elle. Themonadi se ondorder-logi ofgraphsVI:on

sev-eral representationsof graphsby relationnalstu tures. Dis reteAppl. Math., 54:117{149, 1994.

[5℄ B. Guiduli. Onin iden e oloringand star arbori ityof graphs. Dis- reteMath., 163:275{278, 1997.

[6℄ A. V. Kosto hka, E. Sopena, and X. Zhu. A y li and oriented hromati numbersof graphs. J. Graph Theory,24:331{340, 1997.

[7℄ A. Pinlou and E. Sopena. The a ir uiti dire ted star arbori ity of K

4

minor-free graphs. 2004. Manus ript.

[8℄ A. Raspaud and E. Sopena. Good and semi-strong olorings of ori-ented planar graphs. Information Pro essing Letters, 51(4):171{174,

August 1994.

(18)

fren h). PhDthesis,LaBRI, Universite deBordeaux I, 1997.

Références

Documents relatifs

For an alphabet of size at least 3, the average time complexity, for the uniform distribution over the sets X of Set n,m , of the construction of the accessible and

Therefore if the atomic jet traces inner streamlines in the same MHD disk wind solution with λ = 1.6, specific angular momentum less than 10 au km s −1 for streamlines with

Peut-on parler encore de la souveraineté de l’État ? Où sa définition évolue avec le temps, du moment qui doit se soumettre aux règles du droit international et un État qui

Cette réalité de l’émigration sénoufo élargie aux Malinké et aux Baoulé et bien d’autres peuples de la savane ivoirienne est partagée par les migrations en provenance des pays

No emission components can be observed on HeI lines and some lines of neutral elements such as [CrI] are present so we can conclude that a cool dust shell is present (Table 1, Figs

Il faut souligner que c’est dans ce canton que se concentre la majorité (33%) des Équatoriennes et Équatoriens résidant (avec ou sans papiers) en Suisse 1. D’un point de vue

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Inspired by Tsirelson proof of the non Brownian character of Walsh Brownian motion filtration on three or more rays, we prove some results on a particular coupling of solutions to