• Aucun résultat trouvé

Units of

N/A
N/A
Protected

Academic year: 2022

Partager "Units of"

Copied!
88
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

Units of Integral Semigroup Rings

by

@Duzhong Wang

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics and Statistics Memorial University of Newfoundland

May 1995

St. John's Newfoundland Canada

(6)

Abstract

In this thcsis, Wl: study thc unit grouJIU(ZS)ofl.Il('iIlLt'E';ral~l'111i~mupriuE'; ZS uf a finitc scmigroupS.ThroughouL, wcU$~1l1n<~LhatZSha~,11\idt'lIt.ity, lUU!.ll11I,'~~

mentionedotht~rwise,it isa..~SI1l1lf:dl.hatQSisi\St'lI1i~i11lph'Ar\.illiunl·ill~.

1nthe IiI'S!.part, we study large suhgroupsofUtZS).Fir~t,twutypl'~,Ifunit,s arc introduced: thc Bass cyclic units allilUlehicyclit: unit.s.'1'11t!Sl~ il1't~<Ipl'wprinl,,' gcncralizations of thl: analogous group ring(:a.~e.III Uti!l1l<liu Uwurl'lIl, iti.~.'llmlVll tlmt, as in the case of integral group rings, hoth the lIass t:yrlil: 1l11il,s alltl I,iryrlk units generate a suhgrollp of tinite index illU(ZS),for a larw'dn~sofinl,t1.!;1";.1 scmigroup rings.Bco:anscthc proof ultima1.ely relit,s011UU~n,ll'bra1.l'd "UIIArIll'IWC' theorems, onehas1.0 cxdudc somcselT1igrollJl~1which have SOIllt-' SlU't:ilkWl~l[dc~l'hul"ll simple componcnts of degree I or2{)vcrQ.

[n chapter 3, we deal wi1.hsomel!xarnplcs. WI! c:ullsidc'r I.ht!t:h~~sof~~lIliAroIJJlS 5thai are monoid. extensions of c1mTlcntary IteesS{,migrCl1lJl_~.Anidgorit.lllili.~l-\iVt'll to computegcnerator~fortill!ful1l1llit groupU(Z,r,').Tlit~ lll~orit.hlllistlU~llapplit:d to ,l specific example.

Pinal1y, wecla.~sifythcscrnip;roups snch tllatlIu~lIuitl-\tlIl1pU(Z,r,')is l'il1"'r lillil.' or hasa freesubgroupoffinite index. The fort1u,r "x1.ends Ilil-\man'srt~~ull1.0tilt' ca.~eofsemigroup ringB.

(7)

Acknowledgements

1.1;11 deeply illJdlLI:d to Or. Eric ./c:lpcrs, my slllleevisor, who has always been WlIf:I:r1Il:d ahouL myworking on the I'll.I)programme, especially this thesis. He ha..~11I'(:1IV(:ryW:lIl:TUlIHwith his limelindidca.~.I would say that, without his great ('llnmwgf:lI11ml,.~lIJlf:rvisjoll,assistant!: and financial support, this work could not lmv,: 11I:f:1I c:mllplclfXl wil,hill these tllTec years.

I would likf: I.(J ackllowlc:dgc my illdebtcdncss to Dr. E. G. Goodairc, the past Ilc:part11lfmL Heild, Chair of Illy comprehensivc examination committee and an in- 1.1:tnaleXlLlllirwrof my final oral examination. lie lIas been concerned abollt many ,L'(!Jl'ds of my:;tudy and lilylifeduring thethrllC yearstudyin thisdepartment.He V;ill!'i< IllCa lot ofclll:onragcnlcnt, advicc, assistanceandfinancial support.

I;UIIJ;ratdlllLoDr. Bl'uceWalson, the present Department I1ead, Dr. P. P.

N;~myftnaswa1lliftlld Dr. Peter Booth, othcr members of my supervisory committee.

r';sllf!dally, Dr. P. P. Narayaflallw;uni gave me greal help during preparation of my Ph.D. mtHprc1ll'lIsh'C examinations. He is always freely accessible for discussions and for providillp; assistanw.

I1V01IIIIlikeLolhank Dr. Mike Parmenter for his instructions in the algebra Sl!millal',hi~11:;lrcfulreadill~of the thesis and his valuable commcnts as an intcrnal (~xalllillcrof Illy final oral examination.

Thanks an! also due to Dr. Guilhcrme Leal, the external examiner of my final oTi,l t!XI\1llilllltioll, for his influence, helpful suggestions and comments. I would like t~")t'xprI'SI'IH1.Y ilPllrt..'(".iatioll to Dr. Michael Clasc, my previous colleague, for his help dllrilll-l his tl,1J(ly at~'lel1lorialUniversity.

iii

(8)

Jwould like to thank Ule Depart.ment. of~lilt.lw1l1"tif~,lIlll Stal,ist.irs in }!;"lwr'll. ill particular for providingmewit,llthef"filit.il's1.lmlllU~l..II'dillillarric'mlly i\l,lIlospllt'l"l' in which to work.

Jam grateful to the School of Gtiltluale S1.ll<lic':lllll<lt.11l' Ikl'lIl'tllwll1. of 1\1;l1.llO'- mat.ics and Slat.ilit.ics for support.ing me willI a MClllnrill1 Oni\'t'rsil.y Fdlowsllip <lllil a '('caching Assistantship,

Finally,Iwouldlike 10express my sincere ,IpprcciatiulltoIllywifc' I,illl-\,HIdIlly son Xin for their understanding, support.,CllCOllrilp;C~lHl~Ilt.,andwdl"ollll' dist,l'lIt'1,illllS from mathematics.

(9)

Contents

Abstrllct

Acknowledgement iii

1 Semigroups and Integral Semigroup Rings I.J 1If1..~k s!~llligrollrIldlnitions.

l.~ SlrueLlire of fillites(~lI1igro\l"s J.:1 S(~lIljgrolll'rings and MlIIlll Algebras

IA Onh:rs ;l![(1 l'cducc(luorms . 13

2 Large subgroups of unit groups of Integral Semigroup Rings 17

'l,l InlrOlludioll.. 17

'l.2 c.:ol1sl.rllding Unils

2.:1 SC'llIigroliP Itiugs of Completely o-Simplc Scmigroups 2.'1 The l\'lain Theorem .

3 FUll Unit Groups: A Class of Examples

a.'

CCl1cml Method

a.2

1\Spedric Example.

19 22 35

43 44 49

(10)

4 Scmigroups with U{ZS) finite or having n rree subgroup or finit.e index

4.1 F'ini1cUni~Group IJ(ZS).

4.2 U(ZS) having a rree suhgroup or finile itillex

References 72

(11)

Introduction

TIll: unit I;rUllpU(fl)of n ring

n

i~nra~cillll.tirrgoujed at the cross roads or SI'YI~ralwallll:umti<:al !.Opil:S, such as grOUJl 111eory, rcprcselltation theory, number Uu~uryalill ringllil~(JfY.SUllle of the imporlallt and best known examples for which this Wllllplms bl!!.'n investigaledaff~till!ring of algebraic integers OJ>; of a number lid!! II' or lillill:lh~rt:eandth(~integral group ring ZG of a finite group G. The lilli!, p;ruul'U(OI\")isdl:.~crib[..d !lyI,hf~ dils~jcalI)irichlclunit theorem,His a {Iired prolhll:t ofl.Iwlinill~gillllp of roo!.s of nnity ofOr:(the trivi.\l lllLils) and a free

;dJl:!iau group uf milk "I

+

/'1 - I, whereTIand"1ilfe such thatdimQh"="I

+

2r1

and /1'II;L~1'1 n:al luul 2"1 cUlllplex ell1hccldings, Itis still an open prohlem to Il{:sl:rilll: rrl!!.: geneml.ors of this frel: abelian group, even for qclotomic fields, In the 'ill-I,I:rniSI:,however, Llu: cyclotomic unils gCllcmle a sulogruup or fillite iudex,

111fil,~l:(,'is;~finite ahdian grouI', IIigman showed an analogue of the Dirichlet lll1it I.II\'urelll:U(Z(t')=±(,'xF,whereF'is a frcc auelian group of rank

HIGI +

I

+

1/1 -2c),Whl~fl~lI'jil' the number of cyclicsllbgroup~of G or order 2 and e i1l t,11{' 1I111l11){:r of cydk l'llugrollpM or G. Again, in general,r~eegenerators forF arl' unknowll, hilt one nUl outain a large subgroup ofU(ZG). Ba~sand Milnor nl1lstrud(,d Iinitdy IlHllly generators for a subgroup of finile index inU(ZG),These IInil,s 11lVmll{~1 t.Ilt~ f1il,~Scyclic uuils and arc c10Hely related to the cyclotomic units, Inl'a,~l'(,' is !Iullabdiall much less is knowil on the structure of the unit group U(Z(,'j,n.e(,{:ll~!Y,,1{'SlWr!\ and Leal Imve constructed, in terms of some lion-central i{h'l1I!lul,CllLM, a lillite /let of gcnerators of a subgroup of finite index orU(ZG)for all p;rull[J!t silti/lfying soml' reHtrictions on the Wedderburn simple components of drgrt't' I or 2 [)I't'rQof the rational group algchra QG, The restrictions arc such

(12)

that the celebrated congrIlCtlc('lheof\!lllS hold for lIlt' llHlXil1l;11 unit'rs ill 1Ill'S!' Sillll'll' componcnts. For many groups, sucha.~llilpnl('ut Aru!ll's of ullel onkr, ii, 111l'11 tUniS out l,hal the Bass t:yelic Illlils logether withnil:hicrdi(' lIuils~e'Jll'r,lll'11~llllj.!;mull of finitc indcx illU(ZG).Thl' bkydif unit.s lire! a\11.111' uuits uf thl' type' 1+ (I _.!/l"!/

and I

+

.i}h{1 - .1)),whcre 1/,IIE (,' ;HlIIiJ

=

L:~I!';'/ItIll: o.-dl'r uf.lI.TIll'IW l"l'slll1s are a continuation of the work starkd hy Bilkr ;mel Sdlgal. We' n'fl'l' Ull' 1"\',111.,1' to a reccnt survey on lhe topic hy Sdlgnl(:Ii];lIole: thai., ill 1,lll' (al,kr, oul.\'!.Ill'Illlil,s of the type 1

+

(I - 9)},[; arc called I>icyclk units. I':nl'lil'r SllrVI'Ys on111l'1,(lpic nm also he found in {IS], {27] and[:lfi].

The ring of illgcbraic integers in a 1l11l1l1ll'r lidd of lilli1.l'eh~rl'l'allrl 1,111' ill!,t'l.l.r,1!

group ring of a finile group both arc Z-onle!rs in

,l

s'!H1isill1l'h' Artini,1t1 .-iul-\. III this thesis, we stu<ly the 1Iuit group of till'inl.(~ral SI~111;V;fll1ll'ritll-\ Z8 Ilffllilli!,p sl'mi- groupS.UlIlcssothcrwi.~cstated, we aSSllllW that Z8 is a Z-o...l.:r in 11 SI'lliisillll,I,·

Artinian ring, that is, we ,lSSlllnC tllill Z8lHL~an identity andQ.'"isse'l1Iisilllpll~

Artini,\O. Munn showcd thatthe)laUer is eqllivalc:lI1. witllSlI.will~.\ prilldpa! Sl"

ries with complclely O-simple fadors sudl thl1t lhl!rcspi~d.ives,llIflwirh IlIHtril:l'S al'"

invcrtiblc over tile group algehms of maximal~lIhKrollps.

In Chapter I, we inLrofluce the hasil: eldilliliolls alld llo1,\tioIiS. Wf~abo n' call somc cs!!Cntial resulh rrom the thmry of(Sl~llli-)I-\roups, (S1~ltli-)gl'UlIl'dllgs HIIII orders.

In chapler 2, we study subgroups of fillilf:indf~xorlht~unil groupU(Z,)').First, two typcs of lIniLN arc introduced: thl: BaRS t:ydic llllits and tIl'! 'Jif:ydif: Iwits. T!u::w are appropriategellcralizatioll~of thdr analogues illtlw Jl;rclUp rillJl;I:'L~I~.'1'",1diut:

thesc unils, it is suflicicnl to nole tlwt, f!ssc!lItially, ill1lha1. islu~:tl(!dis alillib~':yo:lir:

(13)

SlIbl-\rlHlfl illS.In th" main thC!(lfIml, it is then shown that, as ill the groupcase, 1111.1<:1'~CIlllt~n:stri<:tiolls, Imth III(:Ila.~sc:ydic units alld thc bicyclic units gcnerate a.~\lJ,.l;roul'oflillit,~ ill,I,~xinU(ZS).I\guill, hecause of the celehrated congruence 1.I11:01"~lIIS, tlll~ n~tridiUlINilH::such that certain Wedderhurn simple components of Q.'"ofclf'l-\rf~~I or:J.()vc~rQliavc~toheexdudcd.Tilemain outline of thc proof is liS follows. First olle slu)\vs that the: gro11p generated by the proposed units contains i\suhl1,l'l1tl1'of lillit,e iUllc:xillthe centrc ofU(Z5).Insome sensc, it will be slJOwn t,lH~ltil('Bass t:y<:1ic: ullils "exhaustn thr. C'!1ltre. Second one shows that, for every silllpl,' WI:IUc,r1lllfll ':011111011I:ntMn(lJ)ofQS,2:::;11,Ditdivision ring, the group W'lle'l"tc!,l I,ytlJl~ B;~sseydil:units ane! the hicydic units contains a subgroup of Hllitc' iudl'x illlhl: IIpc!dallinear grou\!Sf.(n,O),where0isitmaximal orderinD.

'1'"!Jrov,: 1,11C' forrrwr part is"hard,~tn;we will make lise orthe fact that the result is knowll for il11c'gral group r1l1gs. Till: proof of the second part is, in SOUle sense, easier tllallillthe' group rillg I:asc, ht:callse therc arc more idcmlJotcnlll ill scmigroups lhan ill I-\rtlllpS,;\lIdI,hustht~rcare many more bicydic units. lIencc, making use of thc 11ll'\.hocls dl'vdolll:cl hy .Jc:spers andLeal, this proofwillfollow rather immediately.

In(:llapL,'r:l,WI::illVl!stigale some examples. We consider theclassof semigroups thal art' monoid t·x!.t:lIsiulls of elementary Rccs scmigroups. These are in some !lense till' "c'asic:st" Sl'llligroups lIot previously dealtwitllconcerning units. An algorithm isp;i\'l'1I I,llf'llillpnte I';c:uemlors for the unit groupU(ZS)of such scmigroups. The

"lgorithl1l is lltt'11 applied 10 a special example.

hitltt' last dmpt,l'rWt~classify the semigroups such that the unit groupU(ZS)is t'illwr fiuitt,orh;lSa frtoe subgroup of finite index. In particular, we extend Higman's n'Sull10 1,11"f'11~,:

or

scmigroul' rings.

(14)

Chapter 1

Semigroups and Integral Semigroup Rings

OUf studyofthe unit groupoflh(~ililegrals~lItigrollptilll(ofaIillil.l~ '~.'lI1if!:I'''1I1' isillthe first placeLJa.~cdon the structure theory o([illiteSt~ttljl(rnllpsHtltlUI1llll~

characterization of scmisimplc Artilliull rational senligroupril1gsurrjllilt~Sl~mi,!;rllllpS.

1\second important, though elementary,fadis that to study large suhv;rouJlsur Z -order.!!,one may oftenreplace one Z -urile'-by;~n()th(~r.

In this firstchaptet,we therefore colled lIwhiL~j(:lJdirdliolls,IlIJlal,i(lIl.~,aud1I1l~

structure theory for finite scmigrollps. Thedmract(~ri'l.alioTlofscmisilllllh~A,'l.illi'lll integral scmigroup riugs is recalled. Ami finallyWI!illdHdl~SlJHWImc:kgl'lltUtfJ011 unit groups orZ -urdcr.~.

We trytokeep the same notations ilndtl~rtrlill()logil~s<\.'1 ill[>11, [:Lal,wei[:Lill.

1.1 Basic sernigroup definitions

A scmi,groupSill a non-empty scl willi allassodativl~ (J1)(~mti,,". w,~willdl~lI"k this C';>cration multiplicatively. If,moreover, S /I<\.'l an identity I lIum it is ealllsl11

(15)

morwid,lilt! U(8)=-{.~ES

I

.~r=-r.~=-1for somerE 5} is called the group of i"vI!r~ihll~df!lJl(!lIls ofS.A monoidSwith S

=

U(5)is called agroup.

If.',' iH,L M!rnigronp without an identity, we can adjoin one simply by adding a nllW dementJand eX\clldilig the multiplication by defining Is=-81=-sfor all .~E SU {I}. WI!uellote this new semigroup by51.If5has an identity already, tlwu WIJ Ilgrl.'C that.')1

= s.

An demcntz of semigroup S is a zero of S if it is a left and right zero, that is z.~=- z =-.~zfor allsES. If S has a lero clement, itwill usuallybedenoted by0 or0."1'AFlulls(!rnigroupi.~one ill which the product of any two clements is the zero (,II:l1IIJllt 0 (M) a null s(lTlligroup Illilst have a zero). In a very similar way to adjoining 1midentity,WI:callII.lway~adjoin a zero clement0,and we write SO

=-

SU{OJfor t.llis new sernigroup. Adjoining zeroes often simplifies arguments.

A.<ub.~cmi.lJrOllllof a semigroupSis a non-empty subset which is closed under Illllnil,lkalioll. AsubfJl'OUl!Gof S is a subsemigroup which is a group. Note that t.11l: idl:ut.ity ofGlleed not be the identity of S (indeed S need not even have an idl:lItity).Wewill denote the union of all subgroups ofSbyan(S).

Fur a semigronp 5, the subsclZ(S)={x

I

:r:s=sx forall s E S} is called lilt: ct:lItre of S.Itis a commutative subsemigroup ofS,that is, any two elements I:tlIUlllute with each other.

All dtJl!lcntf~of~mnigrollpS which satisfies e=-c2is called anidempotent.

W(!writtlJo:(S)for the set of idempoLent clements of a semigroup S. The setE(S) t:i\ll Ill! I'iul.ially ordered byfl:5

f

if and only ifef

= f

e:=:e.Ife EE(5) ,then

C,','I:

=

{I!IH~ l.~ES}is a submonoid ofS. Note that eSc

=

{s ES

I

es

=

se

=-

s}, Ull'11l~1,of elcl1ll'nh of S for which e is an identity element. Let11.

=

U(eSe),

(16)

the group of units of thc monoid eSc. ThcnIJri~a~llbgroullof S allli it ill till' hugcst subgroup for which e is the identity clemcnt Sud, llulJF;TOUllli anl t'lllll,llllt, maximal subgroup! of S. Since c is the uniquc idempotentc1t~IWlltof/Jr , Ull'1'I' isa one-to-one correspondencc between idemllOlclltll anti maximal slIt'gronpll. Noll' that distinct maximal subgroupsarcdisjoinl.

ForalIoll-cmptysubsel A of aIlCmigroull5,wr.write

<"}

forlIwl(Uhllll1lli~nlllp generatedbyA.IfAis finite,sayA:={al,1l2" .. ,n,,}, WI: oncliwritll(f1I,fI~,...,II,,}

instead of(A).AscmigroupSiscyclicifS==(.~)formlme.~ES.AndPIllI~lltII of asemigrollpSis a periodic clementif(IJ)is finite. A fillite I:ydic llt:lI1iArtJllli alwaYll containsallidempotent.

AhomomorphiJm.of semigroups is a function /:S -.'I'fromit!If:migroul' S ttl asemigrollpTsuch thatI(Jll)

=

1(,)/(t)for all .•,t

e

S.

Anon-cmptYlllbsctJofSiSllaid tobealeft (rigld)idcalofS ifilL'Idl)!l(,,"Cllllllll:r left (right)multiplicationbyclcmcnuof S. A lIoll-empty llUb!;c:tIof Sis llaitllu 1M:

a.nidealof Sifit i. both I left and right ideal of S.IfShall a l'.crodCfIlI~lIt0,UU'II {OJis alwaysan ideal of S. The ideal generatedbya isS'aS·:= SIiSUSflUnSU{lt}.

IfIilanidealof5,theft.cc9fador scll1igroupti/li~thcllt:t(.'1'\ I)U{O)ItIlhjl:d to the multiplicationIto· definedbytheformula

1.2 Structure of finite semigroups

The basic building blocksQfthe slrudure theory of finitescl1ligrollJl~ilrl:tl!l: Silllllll:

ando-simple scmigroups.

(17)

Lel Shf~itsmnigroup. Wr- say that S isit.,impll! .,emigroup if it has no ideals flLllfir titanSitsdf.Thiscldillition is not very interesting ifShasazero clement 0, for ill thatC<~~(l{OJisafWa)'lllUIideal ofS. Sowe saythatasemigroupSwitha i'.1~mis il0 -.~imJllf! .~cmi.lJroupif(i)52

#

{OJand(ii){OJisthe only proper ideal nfS.

AsCllligroupSis acamp/defyO-iiimple .'Icmigroupif it is o-simpleandit con- t,lills aljl"illlilillc idcrIllJOlcnl, that is, a minimal non-zero idempotent with respect lu th(!(!arlif~r<Icfillt'd partial ordering.

Proposition1.2.1

14, {..

emma2.26,p.67} I,d Sbe a scmigroup with a zcro 0 such /lull{OJi.~lltr.Ollly prvpcr ideal oj 5. Then either S is O-simple or S is the null

Notl! that if 8 does nol have a 1£roa~dSissimple, then SO is O-simple. 'fhis 1II1~illl!lthat ;myrl'~llitsaboulO·~il1lplcscmigroups can be easily applied to sim- 1,lt~ Sl~ll1igrollrs. For this reason, we will usually restrict our attention to o-simple s<mligwups.

LetSheIIscrnigroup withazero.Astrictly decreasing series

i.~Itpl"incipal.w:rie}lif eachS,is an idealofSand therearc nojdeals ofSstrictly llt'tlVcell Hi amI ""ifl,~halis ,each 5;/5;+1 is eithcr the null semigroup of ordcr 2 or i~ll-simJllescll1igrol1p.

N()t(~llmt our ,Icfinition of principal series diffcrs slightly from that of14].Our Sl'ril~ends with the l,cro ideal rather tllan the empty set. Of course, this restricts

(18)

our definition to semigroups with l.erOCllo, so we will 111 ways ndjllill a 1,l'rtl IoduTI' considcring principal series.

Proposition1.2.2Finitetlcrnigrollpsflllllfl!J.~IUllIc ''''iud/wl"':,.;,.1<.

Note that the analoguc foril(~migroupsofthf~.)ol'llau lIulfler-Sdlwi.,l' 'l'hl,{lI'<'lII as- serts that the principal factors of allY lwo principal~(~ries,HI!isotllmphit: (ill sunil' order).

To describe the structure of completely O-l!impl,....Sl~l11igl'Oll)lS,WI't11~'.11.0iliLru- cluce more notations.

l..clGbe a group,711<llldfl1pmiLivc integers, ilmlldjJbe11 U2xIII11I1I1.rix willi entries from ()J. [o'or.qECU,iE {1,2, ..,nd,alllijE {I ,2, ... ,nd,writ., (ylij for the711 x 712matrix with (i,j)-enLTy y andallotherf~lJlrics 1~ltlillhI0=Or,....I.d

MO(G;nhfl1;P)be the set whose clemcnts are all .iUch(U)ij,wilh all(0);.;itl{\lItilil~d\

and define a multiplication011thisseLby

An

=

A0 /'0H,

whereA, BEMO(G;nl,n1; /')antI'0 'dCllolesorclillltry IIlUllip!icaliotlflrIllalril:f~.

So,(Y);j(hlJ"=(YPjkh)il. where Pi)i~the (i,j)·(mlry orthlllTJalrix "

=

(II;)).'I'11l~fil~t MO{G;nl,n2; P)cndowed with this operation isaS(lllliI;TOUP,f:all{~1aUf:r:.~ 1/ltl'l'i~' semigroup.Itszero clement will also he denoted~iHlJllyIlyO.'1'lit~matrixI'is .:allt:tl thesandwidlmatrix. Also,Pis called regular if itha.~atICl\.~ltJlWlIUII-ZCru tmlry in everyrowand column.1\Recl! matrix scrnigroup of the form MlJ(/1};lIt,11~;I'), where{I}is lhe trivial group, is called allc.lcmcnlary/ll~'~.,1fUltrix.u,mi!JHIIl11.

Clearly these semigroups have only trivial suhgrollps.

(19)

Theorem 1.2.1

U,

Theorem.'/.5,p.9HA finite !icm(qroupi.~completelyO·simple if /Im/rmluifiti.~iso1/lorphictllilli/IIlcr~~malri:.~emig,oupMO((;i n I, "1; P), whcre J'j.~IJ,y,.tj1l11lf·.'<amlwith matrixand Gj.~afinitegrollp.

'1'11(:followingi~uow easily verifierl (sec for example [23,p.?])

Lemma 1.2.1If S::::;MIl(G;1lI,f11iP)is a complcltly O-simple scmigroupwilli .~RllIlllJicliIIllitriXP

=

(Pij), /lien

(ii)fol'lillyi,j,ifpji

oF

Ou,then

i.'lll'lj,~omorpllism,where

s~N::::;l(g)'jES

I

9E(fI}i

(iii)I.he maximal.~lIbgro1Ipsof S11ftall G;j::::;SUi \{OJ,wilhPji=FO.

1.3 Semigroup rings and Munn Algebras

Definition 1.3.1 l,e! R bean associative ring with Qn identity and let S be/I (~cmi-J.rJroH'J.Thcll II/CscillScon.~islin90/allformal sums of the form

o=L:a•.•

. "

tri/II (mly jillilely mauy nonzerocoefficientsa. E R, iscalled the (semi-)group ring of the(.<:cmi-)group SOtlerthe ringRwhen it is cqUippCl/withlhc followingaJdih'on,

(20)

10

mullip/ication lindscalorlIIuWpliroliQIl (oldyIImltdwllr"JcfiJlill§"(,.,"",i.)!J1YIMp

and

o{J

~ (z= 0,,') (L)I)

=

L ".b,.,'

=

L ,,'

'ES IES dES >E ....

r"·'(L'~)

•es

=[1,,,,).•

oE.~

whcrtQ=l:>ESd"s.{1= LIE.!I1It1 E/lS, andrEIl,

'·~If·,.,··b,

al1dA(z)={(~,t)ESxSI.~l=z}.

il AI')'i'0 iIAI,)~0

In part.iculu, QS ilndZSarclhc rational and illlc:gral (ll4:111i-)llflJllllrillli-~,wlwtl!

Q and Z denole the rational fieldanc.llhering uf integersrcsp(~divdy.

Similar to~hecentre of allCTfligrollp;we tlenole byZ(Il)liM: fl:lltrcIIIrillJ;H;

that is,:rEZ(R)ifand cmlyif zr

=

rz

roT

all rell.

Ld5bea semigroup willi 7.ero ,. Bytheoonl...-.dc<1 scmigroullJJ~dlfaS overIl,denoted by~.we mean t.heflcLor.~hraIiS/IW.'l1lU~.nos lllilybe idcnlifit:dwi~hthescloffinilcSlIms:~:>

..•

wilh n. E Il,5E 8\{OJ,lillhjrdto 1111:

componcntwisc addition andlnuitiplil'.llliongivl:n11Y tlu: rlllll 1

I

~I if ,,1

f

0

50 = 0 if~1=0

defined onthebasis S \{O}.If S ha.'! no zerock'fIlcnt,thenw(:llill/(~IH=fl.S'.

From the definition il follows dircd.ly lha.t, forinyIiClIligroupH,we ha.ve U(I."<O~

RSO/RO'=:!:RS.Wewilloften usc thefollowing extcnsion or thisfar-t..

(21)

11 PrOllosition 1.3.1/23, l.emma 7,p,S8} Let I/Ie an ideal of ascmigroupS. Then II,,(H/') '" IIH{llI.

Proposition 1.3.21f1.~,Corollary9,p.:/8] Assume thai S has a zcrC? clement. 'J'hen liS=flO(lJI1S(1 - 0)~ROm nos~

Rm

RoS.

Thi~and the fact lhat, for any S,nSJ::!!;R 6l!lrJSo~Il ffi RS ,willallow us to switch fromOlICof the algebras(-lS,RoS to the other whenever convenient. Also, iti~ d(~a.rthat

ns

i~ ~cmisimplcifand onlyif!kJSis scmisirnple.

Now, we IIcHr.ribciln important. class of (contracted) scmigroup algebras, called MWHI algchrils, arising from complcldy O-simple semigroups. The construction of aJl,hllfla.lgdlra is ralher similar to that of a Rccsmatrixsernigroup. AgainIIIand n2 Mr positiwintcgcrs, but instead ofa groupG, we nowconsider a K -algebra A, whem /\'illa commutative ring, LetPbe an"lxnlmatrix with entries inA.The MUlIllnl!JdJl'fl

n

=M(A;"Il"';P)i~the set orall nl xn,-rnatrices with entries in A, AllIIilion andscalar multiplicalion by c1emcntsof K ate defined component-wise.

Matrices Illultiply by insertion of the sandwich matrix Pjthatis, if X and Y arc two eh~1l1cl1lsofIt, then the product of X and Y is

XY=XoPcY,

whl!Tl~'0'againdCllott'lltheoroinary matrix multiplication. In case!II

=

n1andP istlw idcntity matrixI,t.hen //

=

M(A;nl,n1jl)is the classical matrix ringover A We <hmolclhi~ring byMn,(A).So matrixrings Meexamples of contracted sl~1t1igroupalgehras.

Notl!lhatif S

=

.M°(G; m,mi P) is acompletely D-simplc setnigroup, then we

(22)

12

willoften considerSilla uat.urnl lI'a)'a~aSUbNl:ll1ip;rOIlII

ur

t.1u:MlIllllallll'lIra M( RO; m,m;P), for anycommutaLivering/I. III particulnT,\lnderLhi~iden1.ilim- tion, the zero0Sis idcnLiHcd with th(.>~.croclcmcllL 0 EM(UC:;'/11 ,111; /'».

The Lemma bclow((tl, p.162-163]) is very iflll)()rtalil for uurillW~LiV;lltillll.~ill chapter 2. The nolationAt~i..oNindicnl.cs thalt1wi\lgehra~M i\ll<l Nan' isu- morphic under the isomorphismiso.

Lemma 1.3.1 l.el m flnd I be lWfJrlflturtll1Unnbr.r.~. I,d'J'::: Mtl((ljlll, Ii I')tH·1/

finite completely O-simplcsr.migroHp.TheilQ'l'i.~ ~r.lIli.'lillll)lcAI'l.iuirm iflUull/lIly ifTn=I and Pis invertible inAJ.. (QC).A.~f1f,'tIIl.IClflU:IlCC,ifQ'I'is.~t'mi.~irllljlt:

Artinian, then

(i) Qo'l'~"M(QGj m,mjP),wilel'c1/is tilen1l1H1'fl1mll/lpiny;

(ii) Ihe mapping fp :.M(QGjlll,m; /') -. M",(QU) : A-+ A0f'i,'1II /'ill.'/

isomorphism;in parJieular,p~lis theidc.tdilyofM(Q(,'j tn,111;/')j (iii)ifp-leM(ZG;m,m;P), lhen

fP(M(ZG;m,mjP))=M,~(Z(J),

Orlen in this~hcsis,we skip the matrixrnultiJl1icR~ion ~Ylllh()1'0'.'I'l.is willuol, create confusionasitwill beclearfrom thecontext wliicll llroc!neth:L~tu Ill!tlLk(~Il, Generally, we have that (see for example [1, Corollary .5,:11,11,17'11 or [:la,TIII~Jrc:r1l 21, p. 173])

Theorem 1.3.1Lel

(23)

13

!H: It ll11tU:iTml.~r.rir..~(}JIIfinite ticmigroupSO=S U{O}. nCIlQ8is semisimpfe A"lir!irl1/ifllrlll OIllyif8./8;+1 9:"~'MO(G;;mj,m;ip;),G;IIgroup,i

=

0,I, ... ,n,

Q,~~ ~ob ~Qo(S;fS;+d

E!1QOs9!;@l),

~M(QG;jmj,mi;

fn$QOs

~(lp.

'!oj

~

Mm,(QGi )ffiQOs.

wlwrr: endl

'Ii, /I'.

i.~(lc}iucdtiSin Lemma 1.3.1, andl/Jisthenaturalisomorphism.

Note tlmtifZS has an identity 1 and QS is scmisirnple Arlinian, then the identity 1it! "knuwn": it is determined by lhe inverses of the matricesPfs. In general, Ildc:rminilig when ZS hasallidentity for any arbitrary semigroup S is difficult.

1.4 Orders and reduced norms

Inthi~ ~'Ctiol1,we rccall some elementary fads about orders, norms and reduced

LdtIhe a finite dilllt'lSional Q-algcbra with identityI. A subring0ofA, 1 E0, is Haid lo he a (Z) - Qrder in Aifit is a finitely generated Z -module such

UlitLQO

=

A. Fnrther,1111order0 in A is said to be maximal if it is not properly ftJlltainl'tlinitLigger order. Every order inItis conlained inIImaximal order (see fllrexalllple, [37, Lemma {M), 11.18]).

Ckilrly, the ring0,... of algebraic integersof allalgebraic number fieldf(is an lJrd(lr ill 1\" ami!h~inlegralgraUl'rillgZGof afinitegroup Gisall orderin QG.

Similarly,ZSiH allorder inQS ir S is a finite semigroup such thatZS has a.n idtlntily.

(24)

It iseasily verificrlthatthe intersediollO.nO'Jor1.\\~1 ordt'r~01i\lltlOJ ill "

isagain a.n order in A, Also if0is~n(maxilllal) ortl('r inAlhl:llM~(O)is1111

(maximal)ort!erinMK(A)(secror c:Xilllll'le,1:11,1.(~l1lllHI(·1.2),11.li/alld [:t!I, (Ho7) Theorem,p.llO]).

Lemma1.4,} (97,Lemma U.5), p.IS} '.let IIbf.a.~r.llli.~im'J!rjillilt'./ilm·II.";lJIwl Q-a/gcbrawilliWeddnbllrndccomposiliorl

A =tiJc;A=(!)t!j

inio simple algebras A,·whCl'e Cj arctlle/Jrimilillf: cCIlII'II/iliclII/llJ!w/.<;. A;i.~'1full matril ring M",,(D;)IJllertheIliliisiOfI riugIJ,·.

(i)LetIIheIImalimalordcrin 11.'I'henA:::mAi ,A;=c:;A. MlJn:m1r.!',Aii,~11 maximal order ofAi.

(ii)Any maximalorderinA;containsOJ, wlmr. OJi.~Ihf:dug IJfi,dl:!lfT.~ fJfllll~

algebmicnumber fieldhj,theernln:ofVj.

The followingpropo~itiol1shows tha1lhc uniLgrollll~ur()nlt:l'l1l\rt~illS(lm(~ Sl~'I!ll' closelyrelated.BecausethisfacL iseruciiLltoourinv(~lillllt.ioll, w(~ill(:I1I1I<:1~pruur.

Lemma 1,4.2{S7,(.emma0.6), p.19}SU1Jpo.~e/lml01~ O~1m: LlIIn ,m!f:""iillA.

Then

(a) the inde:z: of their !mit9rouP.~[U(02): U(Odlis firlitr.;

(6)ifuE 01iffinvertible in O2,thenu-lE 01,

Proof.(a) SinceO2andO. arc two Z -or,i"r.l,1.I1r.yhavetlit~!!lUfIClnUlkfUIZ- modules.Thus the index ofadditivegroups[O~: 0,)

=

1<00. C(JII!If:qllC~lIlly,

(25)

15 IO~£;01 , SIII'plJS(: w(:!lave:r,YEU(Ol) such that.. z

+

102=y

+

[01 , Then x-ly -I EiO] t;;;01,It. follOW9lhatX-1y E01,Similarly,y-IXE Ot. It follows

(Il) WI: ohSl!rVf: that. the index ofadditivegroups

I.d Ii" 1>,: a field, alHlllafinite dimensional K-algcbra. E:ach a E A determines a1\'-linr;uI'lr'lllsformalion 0/,IlllA,byleftmultiplication.Dcfillcchar.pol'h'Q= dtftl·.,IOi.I'O~f.,wherec!wr.pal.j((r/,indicates tlle characteristic polynomial ofal,_

'I'lnal, itiN kllOWllt1mL [7, p.366]

chtlr.poI'I>:n=dcl(XI- (a,'i))

WI! (:all'/A/I':"lilt:trllcc map,alldNA/nOthe normmap.Thetraceand normhal'C tl'l~followingJlropcrLi~:

'I'(mt"I/)~,''1'(0)

+ .•

'1'(11) ,NI.II)~Nla)N(p), N('a)

=

,~N(a),

(26)

[Ii

Now assume II is acentralsilll[Jlc [\" -fl1!JI'brfl,t.h'\l,i~,Ais<I~illlplt'1\ - algebrawiLhccutrcK. suchthat(tI: {,") is fiuilt'. [lorIIE ..I, tldilll'ihtn·,!tll"f"fl cbllractcr;~tic pO)Yllomialll~in [2fJ, p.112-1I:l]

red.cllar.poI.,"1I'1l

=

char.'lol./I(1~flj,

wherehistheisolilorphi~t1lB ®h"II~ M~(h'),(A;K)

=

n2,andI~ i~It:o;p\il.Lillp;

fJr.1tiextcnsionfield ofI{.Hlrthcr,if

red"c!lllr.jloI.A/KIl

=

X"_1I'(a)X~-1

+ .. +

(-I)"/lI'(fl),l/E:1.

'!'hen we calltr(aj thercduC(~dtrnce of(I,lind ur(a)1Il(l''I'IllJrf~fl1/01'111

ur a.

For a(maximal)order0,wewillwrit(~(,'/.(1II,O)fnrIh~IIlli!. P;rulll)ofM",(cJ) alltlSL(m,O)forthe subgroupillOI.(m,O)t.hall111lsisls1)[alldl'llll~lll.s IHlVjlt~

reduced normOlle.

(27)

Chapter 2

Large subgroups of unit groups of Integral Semigroup Rings

2.1 Introduction

'l'lw ultimate: aim in~tlldyil1gtheunit groupU(ZS) of the integral scmigroup ring ZSofi~finite scmigroupSis of course to obtain a full algebraic description of this group,illparticular, to obtain a presentation for this group. But, as explained in the iulrocludiull oflllisthesis,thal is, in general, all extremelyhard problem. Even for f'Ulll11lll1a1.ivc grolllls, this is 1l1l501vcd. So, as a compromise, we look for generators uf a sllbp;roup of /illite index. [II the case of integral group rings ZG, many nice rt'sulls hnve: b(.'(machievedinlhc lastdecade(sec forexample13),[3Ij, [32\, and so on). The main r('sult of this development has recently been improved by Jcspcrs lIud Lml (/IIJ) llud ([12)), for many groups G. To be more precise, generators for a

~llh~roIlPof [inite index ofU(ZG)are given for all finite groupsGwhich are such th;lll:VI~r)'nOIl-abdiall llomolllorphic image is not fixed point free, and furlhermore, L111' mtiollal~rOU\lillgeura QG has no simple components of the following types

(il II 2 x 2-matrix ring over the rationals;

17

(28)

(ii)a 2 x 2'l1Iatrix ring o\'Cr a quadratic imaginary c'xll'nsiolillftill'ro\tionalll;

(iii) a 2 )( 2·mll1rix ring over a nOllcollllllutative tlivi!!;lllL all;dlTll.

Recall that a groupGis saidtobefixed poi litfTl:t:(",:cfor exampll:1:111)

ir

it Imll a complex irreducible representation p such that for t:ver)' lIo11itltllltity I1It'lI11'II111"f G,p(y) hasall eigenvalues different from one. 'I'llt:litl grollI'll WIlre: I'Imrac:tt'rist:d ill afundamental paper(39Jandarc wellknown.A1.~()st.,]IH,p.7:I] aud [1fi,1',!Jli1I11l1 201J.

The reason \veexcludethesetypes ofsilllfl1c rings ill that Lhl: wligruIJIlI:I'lIU11gru1111 theorems for2 )(2·matrix rings over maximal orders in tin:T1::1l't:diVt~tl;visiml ril1gll fail.

To prove the above mentioned rC!lulb, ;1 ist~lItialthat

ze;

is a Z-tlTtlllr intilt:

scm;simple Artinian ring QG. A natural qUc.,tlon therefore ill tilillvl~liRllU:iftltl:

rc5ulLs on group ringll can be exlendedLaallIer Zo(JTlllltli ill lICmi!lilllJll.: Artiniall rings. In thill chapter, we consider this (IuestionrOTtilC intA:gral scllligroul' rillJ; Z.'"

(with identily) of a finite scmigroupSsuch thal QS is a !lClI1is;mplc Artilliall rillg (Theorem 1.3.1), lhat is,SOhas a principal series

where, fori::=0,1,.,.,11, each principal factor 8;/8;+1~MlJ((:,;mi,lII,j/'i) is:1 completely O-simple Hees malrix scmigrou[J wilh f(.'guhlr sandwich matrix /1,(JlI~rc:, G; ill a group, and Tni is a Jlositive inleger), anllmorl!llvl:r, till! matrix1',is il1vl:rtihk:

in the classical malrix ringM...,(QG'/). In1I1l~firlll parl of till.' dJ1ll'l.i:r,WI:will therefore mainly deal with the scmigrouJl ring ofacolnJllddy O-Yilllplcso::mignmp. III

(29)

19

theS(!i:OlIljpart, we then cOlISidcr the general case. However, for the same reasons as ill till!gwup riJig case,weneed to exclude the cxislcnccof certain simple components nrQ,','.

Wl~Iwgifl this dlalJlcrhyintroducing two types of generators; the Bass-cyclic llilils alldhii:ydicnnils. Tiley aN!the obviousgeneralizations ofthegroup ring llotiOlIS. The hardestpart ofthisc1laptcr is to provethat the Basscyclic unils

"(:xllillls1" the central units. The second type of units is needed to generate sub-

~rolJl.sof lillit(! index in certain special linear groups. Since completely a-simple s.~mjgroupsofLell contain manyidcmpoicnls, tile latlerwillbe "easy"bymaking liSt:ufllwmdliods developed by ,Jespcrs and Leal in [11].

2.2 Constructing Units

Throughollt the chaplcr,Sill a finite scmigrollp such thatitsintegral semigrollp riug ZShR.'!an identity. Its llnit group is denoted by U(ZS).

To illtroduoo thcfil1lttype of units, we need some notations. Recall thaten(S) ,[cllol(!lItheullion ofallsubgroups ofS.ForaES,note that(a)is a cyclic grollp if/1EnU(.s').Inthe llitter case,wewritea=

Ej;:l

aj,wheren isthe orderof a, i.e. the order of(a).Note thatn-Iaisan idcmpotcnt in QS.

Definition 2,2.1l.cIZ,c; bca 8cmigroup ring with identity1.A Basscyclic unit IJfZSj.~011clcl1lwlof litefortll

; - 1 . l_i4>{n)

u=(l+LaJ)llfn)+-n-a,

j=1

whereIIEnU(8),IIis the orner of (a),tfi is tlle Euler function; 1<i<n,and (i,u)

=

I.

(30)

By BslOtdenole Ihe /Jd o[ allfJQSJcyclicItIli/~o[ZS. Htrlllf:r,if .".1Imllu :rro demenl, then the nalKral image of Us in Ihccoldrorl~dIIcllligmupa~qr6nlQIlH ill denoted6"~.

Letusfirstshow that suchall elcrnentItisimk"t.'d aunitofZH.Thill 1:1I11c'iL~ily bedone using thegroup ringTamils allcllhl:Wt,.'(lderlmTll tll:l:Ollllxlllitiuu(IfZ((rr)).

However, wewillgiveanelemenlaryproofbydescrihingI:xpl~:illy lhl~ ;l1vt~rllc:nf a Bass cyclic unil. Since (i,ll)=1, lheTe exist lWO 11llt:gerll, lIilyI.:andI,1llll'Il 1I1i1L ik

+

In

=

1.Further, we call MsumethdI<k<u. IlIdCl::d, wrikI.:== "U'

+

k' forsome integersII'andIIwilh 0

:s

1.:'<It,thenk'

'f:.

0lIilll;l:ik

+

/11

= /,

awl ik'

+

n(f

+

in')

=

IwithI$ k'<n. AsI<i<IIitfollowllI~a.~ilythat I<Il.

hence showing theclaim.It is obvious lhat thenI<O.I,d v

=

(1

+

ai

+ .. +

ai(I:-llj.c..)

+

I -

,~"'l"l

Q.

Thenvv=X +Y+W+1'.where

(1+(0:+0:2 +. '+a,,-I+ al)+a"(a+1(1+ .. +tt") + .,+0:(-I-I)oI(a+a1 + '.+a"W·("1 (I-La)·(");

~d

Y

=

(J+(t+0:2+ "tai-I)"'lIl}(J-:.cIl))il ((1

+

a

+

a2: ••

+

lli-l

)it)"'l"I(J _koi{"l)

(31)

21

Simil"r1y,

Finally,

T

=

(I

_,~~("l

)0.(I -

:~"))ii

=(1 _ i1ll1n1)(1 _

k"'{n))~.

So,

lind

ltv= (1_Lil)li(n)

+

(I -

(ki)~("I)~.

Cl)llllCquclllly

IIV(l-~)

=(l-lli-

~+I(:2)lli(nl

=(1-

~)'II{I1)

=1-

~

ami

IIV~ (~ -l¥

JIb(n)

+

(1 -

(ki)"'(I1))~

(~-

fa),;(n)

+

(1 _

(ki)lli(n))~

~((l

-fll)'''('')

+

1 _

(ki)~n})

~((ik)~"l +

1 _ (ik}lI(t1l)

"

Therefore, uv=1. SinceItandvcommute, we have shown u is a unit.

Important in the construction

or

the Bass cyclic units is that a E R ,where R is

itringwith identity I, and thatagenerales a finite subgroup (possibly with identity

(32)

22 different from I). Hellee, inthi~way01\(~call definei\lilt!;!; eydit: unil in allYl'ill~f(

wilh identity1.Itis convenient for furthercOll1plllatiol1~toil1lrodu(;{~lIwfollmvill~

notation. Let x ERbe'ln c1emenl for which1I1l~NublWlUigrullp(:1")p;1~lLl'rat.t'dhy.r:

is a finile group. Lelnbe the order of(x), (i, 11)

=

I, amI 1<j<It.Writ,{~

i - I . I_i"lll)

un(x,i)

=

(1

+ I:>,)!/Iln) +-,-,-x,

i",1

where

x = 2: J

=1xiE

n.

So, in particular,itBali~cyclic ul1it illZSnllllwillmtlll~tlhy tlzs(a,i).Il is clear thal if

f

i~a ring isomorphism from" toIl'then

f

(111/(;1:, i))

=

Ull'(f(x),i).

WeIIOWintroduce the second type of units.

Definition 2,2.2 A bicyclic unit ofZS' is an clr.l7lwl ofillef/m/ill=l+(l-tl).~[I, orII

=

1

+

as(l-a),where sE S,and aEGJl(S).

Note that these clements are indeed unitsa.~they,ut~oft1wfurm 1

+

II willi

02

=

0,We decided to call both units of the laUer typl: llicydil: 1IliitN. [II tlw1:;INI~

of groupring~,onlythe clements of the former typeWI~Wcalled NO ill

[aliI

,U!el [:17];

however, this will nol creale allY confusion.

For the remainder uf tllis chapter, we alwaysassuml~thal QHi~ sl~llIisjmpll' Artinian, and it is now devoted to showing that tilelJas~cyclic\lllil~and thl! hkydil:

units generate a subgroup or finite index, for manys<:1lligroup~S,

2.3 Semigroup Rings of Completely O-Simple Semi- groups

Throughout this section,l'(IlmotCJI a finilc completelyO-!;illlpll~ N1!lI1i~rflllJloftilt:

typcT

=

MO(G;m, m;P),where Gi~a group with idcntityI:RIIII till: sandwich

(33)

23

matrixfJis rl!Rular. Further, wea.~sumcthat m>1, and thatP is invertible in Mm(QO).

Sino) I' is rq;lIlar, for anyi=1,2, ... ,m, we fix aj; E {1,2, .. ,m} such llml 11;,;

#- ().,..

As hdon), IdOkl='1~~

\ {ad.

ThenaR(T)=Upl.#rGk/, and U'/=lh,(r.'ij,)~h,{G/l(T))=UPJ,#n!I.(G;j)=UPJ.#aGijP (here we refer the rI~ad()rto 1,{)IIlIlla. l.:l.l for the Jcfinition ofh,).

hi tll11IirslIlartorthis sectionweillvcstigatc what a Basscyclic unitlookslike in11matrix format. Toti~so, we first need the following Lemmas. Furt.her, for nEZr,',A

=

«(Iij) EM",(ZGj,we denolebyuA=(o:uij).

Lemma 2.3.1I.d I lu: the irlcnlity of Mm(ZG),fhati.~

I.d A

=

(uqc)E M",(ZCjbe a 7nldriz lIJith aU entries zeroczccplpossibly those in Ilw illl mw. '1'1/(m, for /lny positive integer n, A"=

air

lA, and

(1+AI'

=

1+ 13 UlJwn:

.-,

13=L(H";;)'A.

h=O

Proof. Wl~!IWVCthelir~tpart by induction on ni t_he case n=1 being clear.

i\S~\lI111~tI" ""II~-IA. ThenAft+1

=

A"A

=

a~-l A~. But, /11

=

ai;JI.Hence, A"+!=

rz:r

1/1iiA==(I~A.We aloo prove the second part

by

induction. It is clear for /I

=

I.Now ilSllumc tlHll, for n larger than or equal to 1,

(34)

(I

+

A)"=1

+,.:\,

whcrt~,~=r::~(,.+II,,)", Then

(I

+

A,IO.+/

C+.f+,fa"

lIence the result rollow9. 0

(1+")"(1+") (/+,A)(/+,')

c+lI(c+n;;)

.-,

I:

+

{;(C

+

fl,;)"+1

c+ f;(c+

r1'i)·

[10.+1)-1

~(C+«ii)"',

Corollary 2.3,1 GivenPM

oF

Dr., Ihr.1l G'i, /'i"II!/ubgmul' QfM ... (Zr:) willi itlr.IiJily (pj,l)ij,P;the orders Of(9),j,

e

Gii" A=(9);i,I'

e

Gii,"fmll,fJIli,'

e r;

1m:lIu;,~fllllf:.

Furthermore, for tiny positive in/cycr n

(/+A)"

=

/+/J, when:

0-0

n

=

f;(c+

YPi,i)"A.

(35)

25

Proof. '1'11<\1Oii."i~fl.subgroup with identity(pl.!);j;!'of the multipticat;ve SI~lIIi~rullrlM,,,(ZG)and tha.t(,q);j,and(9);j, Phave thesameorder followfrom l.elllllHl1.:~.1.By J.dmHna 2.:1.1, for any natural numbern,;1"=(gpi;i),,-lA. Since

(IJ;;!

);j,l'is tlw identity of groupC,i,P,itis easily verified thatAn

=

(ph!)'i,? if

;lIId (lillyiff.f)]lj,;)"=c, the identity of G.

TlwHtll:ondrmrtfollows at once from Lemma 2.3.1. 0

III the follmving Lemma we describe the matrix representation, under the map- Iliug

It"

ofthe Basscyclic unitsdefinedviatheclements ofthegroupGii,' Lemma 2.3.2 l,cl(!l)ii,E O'j, be ofQofcrI, and Ie! d be1minteger with 1<d<l, f1l1lf(ff,l)=J.'I'!Jf:/1

=UM.,(ZGj((g);j,P,II)= /

+

B

Proof. Ld II=(rI),j,"

=

(aii) alldletA'=(a~c)be the matrixL~::N.By 1.c'rllllliL 2.:1.1,A':=Et:~(!lPi,;)"'A,alld thusa;<:=L:t:~(9Pi,;)hai<'anda:<

=

0 for

t{'"

i. So, againby 1.clllllla2.3.1,(I+A')oI(l):=1+8,whereB:=L:t~~-I(e+a:;)"'A':=

(lJ~r).Thus

~l')-l lJir

f.;

(1:+11;;)....::

(36)

andbq•

=

0 forq

i=

i.'fhcrdorc

Now, by Corollary 2.3.\,A Ims order l, andl\lll~

,-,

(Pj,!)'i,P+ {;Ah

I-~

(11j,));j,P+{;(f/Pi,;)h A

1-'1

(Pj,!);j,Jj+~(!'lJj,;}h(!J)ii,JI

,-,

(1Jj,));j,l'+f;(!J1lj,;)hCfJ/lj,i)(llj,I);i,I'

,-,

2:)9Pi,,)h(,Ij,));j,P

h=lI

Henceby the previolls and Corollary 2.:1.1 again

(37)

27

Remark:IkmJIthat

when: I< (/ <I,(q,t):;I> anddq

+

kl=1. Hence we obtain that

TlM..(ZGj({(g),dP,lErl UMm(ZG)((y),j,P)'"

,q)

uM...(ZG)(((,q)ijY

P,q)

I+C

wlwrc C=(v -C)(,Ii.!),;,p,and v=uZG«gPj,i)"',q)=V-I,with u as in the Lemma 2.:1.2.

We now give a series

or

three lemmas to show that the projection on a simple f:()IIlPOIiClllorthc group generated by the Bass cyclic units and bicydic units contains It~lIil:()~sd ordiagonal malrices.

Lemma 2.3.3 I,d G be a finite group and let n be a positive integer. There exists

(Ipo.~ilillc"umberrsuch that for aflY uEU(ZG) and any positive integerII :

IIr}If:"" 1ItlllIl0dwole I!lf'. images oj u and0under tile natural map fromZG10 Z"G. IV,: dwole the.~l1lflllcsl .~ucli'lUmberrby b(G,n).

(38)

Proof.LetIIEU(ZG) alld letIJbe a positive inlegt'r,Sillft~IU(Z,,(U))I=d<C\J wcobtain thatli=1.Thus

..~d_1 d-l .I_I

~,1; =~,i(I

+li +..

+ij(u,,-I}d)=~Iliml=11.

Taking r=nd, the resultfol1ow~,0

Lemma 2.3.4 LeiI~I'={I

+

yPIIf'(I - UP)I.~"rlE'I',y'l=y}. 'I'ht'll /ht, H'YJl'I)

{I

+

uPo(l- uP) In Eh·(,/(Zu'I'))}, where TJ(ZoT)

=

M(ZG; m, m; P),

Proof. Note that(U P)1=gPo Hence, for allY k,l EZ;,~,,~IE'1',

= 1+ gP(b+U)P(/- 1/f').

Hence thc result follows, Cl

Throughout wedenotehy 8,'j, I:5

i,i

:5m,till:dils~il:illIllillrix 1I11illiof Mm(ZG).

Lemma 2.3.5Lei(g)ij; E Gij,bealldement(4on],:I'I,tJtullet11b(:(tiliult:.ljl:I·with 1<d<

t,

(d,I) =1.Lel V=/,.(uz"·dC")ij,,f/)),1l = llzr;(!l1'i,;,rl),Illllil==(I';'))1],.

Then, for any positive inleger r.

v

r hilS(IIlecmnpositiml V'

=

IY1",Illilh

IY

=

1+(u' - /;)/.,';;,

(39)

29 (Lwi

F=1+lP(lI-r-C)Bi;(J -lP).

Fnrtli':I'IIlOlr., ifrir~amulliplc.ofb(O,m(P)), where m(P) is a positivI: integer such lIwL111(1,)/'-1E Mm(ZG)(illiCitan elementf1IW4YSexists),then PE<PT>,where I~I'i.VIIIidc/if/cli in{,cmmfj2.:1..{.

Proof. By Lemma. 2.:1.2,V=I

+

8, where

N(JlI~that hi;

=

(Il-f~).SohyLemma 2.:U,

V'

=

(I

+

Bj'

= 1+ E('+

(u -,))'8

h:dl

.-1 .-1

=1+

Lu

hl1

=

1+

Lu"(u

-c)LP=I

+

(liT - e)LP.

1'''0 A,.O

Let I)' andPl1(~definedill!in the statement of the theorem. Note thatifr is amulti~

p](!()fb{n,m(P)) then each integral cocfficicntof(u-r-c)==(1l- 1_e)(u-1

t-

1

+...+

u-I+r:)i.~atIlultiplcofm(P) by Lemma 2.3.3. Hcneap

=

(u- r-e)E;ip -1is a matrix wilhclltricsinZG,antllhus(u-r-c)Eu=(JPwith/3E'Ij(ZnT)=M(ZG;m,m;P).

Therefore,Ii'E(/~r)by Lemma2.3..1.

Filially, we check that DrFis really a decomposition or

v

r as claimed. Since F 1+lP(u-' - ,)E,,(J - IP)

1+ 'PE;;(u-' -'HE;;-IP) 1+E;;(u-r -c)(E;; - tP) 1+(u-r -c)(E;; - lP).

(40)

We obtain indeed tllal

D' F 1+(I{ -e)E;;

+

(11-' -c)(E;; -11')

+

(II' -(')/~,i(U-'-1'}(/~'j;-If')

,+

{(u' - c)

+

(u-' -,~)

+

(II' -c)(I/-' -(:)]1':"

-!(tl-' -c)

+

(1/ -c)(u-' -,.')IIP l+{u'_c)1I1

=

y'

This fini8hes the proor.

Lemma2.3.6 With notalion.,a., illI-cnHl/fl!!.3.5,lr:lr 6cfill/Ill/i'll,'"f/~(.',tII(/'», where m(P)i.,sllchthaim(PW-1E M...(ZC1). T1IeII tile!pull/'glow',lI"',1

",II

j,.(/f.}) and<

Pr

>conLaiulIthelI11bsd

IJ(P)

= {t

u;;E;;

I

Itj;ElJn,i

=

1,2, . .,m},

whe1't Be is tile set ofBaSilcyclic uni[s ofZGtill/lifo';' tfle.~clfl/lhl~1III/lIndilllflrJI'.~

in'LoT of the Bass cyclic llniL! of ZT.

Proof.Letrbeas in lite st.atemcnL oftheJ.cUlIllil. andletYE 1t·(lfo;).114~'alISl~

ofLemma 2.3.5, Dr

=

V'p-lE<ft.(8!J.),/J.r>.IIll1lcc,ll.'1E~:I tJ~iH;i(withI~al'b llUEBa)is a product of m suchDr's,tileremit follows. 0

In the remainder of thi!lll(,'Ctiol1, \Ve"how tlmt tlw Kroll!'R(~III!mlI81hyII.}allll theimagCll inZoTofhicyclicunilsofZ'I'iHa sllhlVOIlI) orfillill~ itldl~xin1111~IIl1il group ofthe ring Zo'J'

+

Zf,wlwrcfis 1I1eidmllilyofQu'/'.

Firsl weneed10 introduce some more no1lltiOiIH. Sinf:f! QGi"Sl:lIli"illl/,lf!,wri\.f~

,

QG=Ef)Q(J<;.

jill

(41)

31 wlll~rl~ C~adl':, is a primiti\1l ....~1I1ralidelllpotent ofQG,j

=

1,2, ."tt.Let QGcJ::::

M ..,(I)j)./J,i~itdivi!lioll ring,j=1,2, ..,f.Then

. .

M.CQ(;)

= ffi

M ••,CD;)

= ffi

M.(QC)!;,

, .. I i ..l

wliNI'Ij= "JI", is II pril1l;liVil central idcmpo1.cnl of M",(QGj,M,n(QG)/i

=

Aof"",,(f)J)'j

=

[,2", ',1, Furthermore, let

wJlI~n:A,is IImaximal Z-nrdl:rillM ... (QG)!i contaillingMm(ZG1Ji. LclOJhe

HollllI' IlIilXiJl1il1Z-unll:rillOjoi

=

1,2, .,,1. ThenM", ..,(Oj)is a sccond maximal melilfillM...(QG)!i.We willwriteCU,,} forGI.(mnj,Oj),itsgroupof units, and 81'1forSJ.(lIIllj.O,).Wewillsc\"crallimcs abuse notat;ollS by identifying ill the l1;.Lllral waySI.}witha lIubgroup ofU(EDjM....,(Oj)).

Proposition 2.3.1'I'/u:eel/IreZ(U(ZG))ojU(ZG);$finilel" gcncmlu.

Proof.I.,,·t K,h(~the centreofDjwhich is an algebraic number field whose ring uf inte'ger!! we c!c:lIoh!hyOJ.Thcll OJ i!! an order inh'j,and

n

jOJ isall order ill

n

j1\'),FincL lJy (IH, I'rollosilion 1.10, 1J.11], theccnireZ(ZG)is ...n order inZ(QG).

Si"...,"(QUI

=

n;"IQC,;)

=

n; "(M.,(O;)) '" n; K;. [U(Z(ZC)) ,U(m;O;)n 7,(ZO))]<00 a!H1[U(njOJ):U((fLOJ)nZ(ZG))J<00 from Lemma 1.1.2. By 1,lw Diridlll't,'s ullit theorem(S(.'(l for example [18, Proposition 2.11,p,5]), U(njOJ) i!! lilliklygc~m~rate:cl,and thu5U((njOj)

n

Z(ZG»is a finitely generated Abelian gmlll'.It fullow!! thatU(Z(ZG))

=

Z(U(ZG))is finilely generated. 0

(42)

Lemma 2.3.7Lei.!benflllbgl'OlIlJojU(M,"(Z(,')) wbidlrlJl/ln;1/1<II ,_116,1/"/111/1n~",.11' whercJi ;,~a subgl'Oup(Jj/initeindex iu51,).j

=

1,2," ·It. 'I'IIf'1I 'hi'!IIYII/II (fp(lJ-j), J,PdcOllIRin,1a.~lIbgro!JfJof Jillile ill/lex ill Ihe /:ellln: "f U (M",{Zf:»,

Proof. Letrbe a lIlultiple ofb(G,m{P)) ,aud let1/1dCl1nLI~ tll(~llilLlIrHlulHl'fmln U(ZC)to A"1(ZG)[2}. Further, clcJlntc hy1fiI,he]Jl'ojl~diol1of QU ontoQ(,'I') :::- M"J(Di ),j=1,2, ...,t, Itiswell knownthat thc group getll·nll.ell by111(/1,;)is uf filliteindcxilll\dZG) 12).

Clearly

Z=Z(U(Mm(ZG))) =U(Z(M,"(ZG)))=

{t.,.", I,

E "lUlU,'))}.

Writ.ez:=

E::,

zEj ,

=

zJ",E1:,Sincc(U(ZCn : U(Zr.n

n

M",(Ojlll= I<00

fromLemma1.'1.2,;;:1 EU(ZGn

II

M",(O))), for all ;: EX(U(Zff)). Su1.I1l~I'l' exists a positivc integcrk (kis inclcllclillent ofz,forCXillllp!l!,dllJllSilll;Ull~ illdl~xlIf

is1II(;:lk b;l)

=

1. This mealls that a suitablc mat.rix

lI'j(zrlkb;')I",have reduccU lIorm OIW, SO,hythciL';SUlllptiollS,tlll~r/~ I~xbls;~WltlJtal numberv(independent. 0/1 z) sudl thfttlI'j(Z'lhb;ruJ/...E.Ii ,j

=

J,:l, .. , I.N/lll~

that since!(I(ZG)is abelian, we lllayaS~Ull1I~that b:v is aIlrlldudlIfn!-thImw/~rs

(43)

33

lIfllass cydic units. BccauSt": of Lemma 2.3.<lbz

rv=~"lmE(fp(B~),PT)'Hence

iT/he,_cv

= t

'lTj(z"hb;rv)lm E

IT

Jj

~

.J

1"" j=1

Th(~wfl)rt!ZTlhE

U}'(JJl+l,

P'I·,.J).Theil the result follows sincerlkvis a constant amI Y, is finitely wmcratcd. 0

Lemma 2.3.8finderl/lcall.~llmplions0/ !,emma2.3.7 IJI'(IJ'f),i',.,J)

i8 II/Jillilr.iurlr.xillU(,tf",(ZG)).

M.(ZG)~

I:

M.(ZG)!J~

I:

Aj

=

A.

'I'11(~nhy 1,(:lnllla 1.'1.2,lU(A):U(Mn,(ZG))]<00.Itis easy to check Z(U(A))nU(M.(ZG))

=

Z(U(Mm(ZG))).

IZ

(U(A)) , Z(U(Mm(ZG)))1<00.

Lemma 2.:1.7 yields that(1r,(IJ~).I~r,J)contains a subgroupVsuch that [X(U(M",(ZG))): V]<<Xl.So[Z(U(A)) : V]<00.Furthcrmorc,sinccZ(U(A))=

n

X(U(AJ )),wI:obtaiu[Z(U(Aj )):VnZ(U(Aj))J<00. NowV2

n

VnZ(U(AJ )),

S(IitfolloWJl that(h.(ll~),Pr,J)contains a subgroupJ( ""

IT

Kitwhere each1<;==

(44)

Clcarly,1\'jJjis of~nitcindexinG/'jandt11\l~(fl.(/J!f),1~1',.l)WtltaitlMit~llil­

group or finite index in the11lli~group uf theordl~r

n

M~",~(OJ)' Iknfl' it alsu contains a subgroupor~niteimlexinU(A).Sillce{/J.(1J:f.),PI', ./)~U(Mm(Zn))C;

U(A)the resultrol1ow~.lJ

Next, we construct a finite~dofgcneratorl:l for ngroup.lwah~heprolll'rLil'l'li1~

inLemma2.3.7.

Lemma 2.3.9[,et~beU TIOJlZC1'Oiflcmpolclltill'I'(n;cfllllllfl/. I<m).'I'/U:II

tI'li

is afloll-centralidempotentofM.,,(QG}/i=M.. (QGf;j), forj =1,2, ..,I.

Proof. For the sake ofsimplici'yand coJlvenience,W{llIlay,t.'IS\llI11!I.hal 1=(1')11

(seeror cxample [4,Corollary:1.12,page 106]). NowZ(Mm(Q(lI~i))=

n:::,

d~'ii

I

cEZ{QGCj)}. Itrollows that (e)llfJ!i

=

d~1I L.k,ll)kICj/~kl

=

L.::llll1rj/~lI= ccjEll

+

2:::1PIlCjEu

'#

0, and (e)Il/JIi

'I.

Z(M,.(QGj)llirtcem>I. IImlf:fl tIll' resultfollows. 0

Lemma 2.3.10 Assume thai m>2 fwd let t be aTI/JIlterrJiflclllptJlmdill'1'. I,d J/f'~Mm (ZG) be tile group gcncrated by Ihe clcmwlJ;;

J

+

lfl.~/'(f-ll') aad

f

+

(I -tP).'ljJljJ,

j=],2, ...,1,

(45)

35 Proof.By Lcrnrn1l2.3.9,IP/;is 11 nou·ccntral idempotent ofMm(QG)/i.Therefore LImre.~uJlillprovl?d as inPropo~jlion3.2 inIll].0

Note thalthcasHumptiollTn>2 ensures that the assumptions of Proposition 3.2 in IIIJnte~alisfi()djillparticular,ollecan make use orthc congruence theorems.

Proposition 2.3.2 Assume thatm>2.11lcn the group generatedbyB~and Utts(f-t),f+(f- t)sl/s,! E T, and

t'=

t :lOT}

i.~of jhlitcitltlc~illthe rmil grouI) of the ring ZoT

+

Zj, where

f

is the identity of Qu'/'.

Proof. FromLemma2.:1.8 and IA:lmma 2.3.10, it follows that the group generated hyh'(f1}.)andthclInihlttPsP(J-tP)and1+{/-tP)sPLP,t=/2=f:.Or,sET, illitlluhgrollp of finite index in the unit group

or

MIII(ZG), and hence in E.ETZsP+

Z/,,,.So thefCllUnfolloWIl from "emma 1.3.1. 0

2.4 The Main Theorem

We are now in RI)()Sition to provcour main result.Recall thalSis a finitescmigroup Much that Q8i~a Hcrnisirnple ring and such that ZS contains an identity1.

Ocfom the proof of the main theorem, we need the following fact in group~hcory.

Lemma 2.4.1 I,e/ Ai.1:5i:5II,begroUp3withidmtitic3Ci ,andUi,1:5i:5 n be 1mb!JrouJI!l of the productA

= ni::l

Aisuch tliat, jor eachi,'II';(Ui)is afinite index .~llb9roIlPofA;and 7fj(Ui)=Cifor

i

<i,wherell'jis the natural projedion of A on/(Itli.TheIl, tile group genera/cdby UU, is a finite indezsubgroupof A.

(46)

:16

Proof. We prove the Lemma by illduclioll011 11.Itis clear for"=I.Now;ISS\ll1ll~

that the Lemma is true forn(1 S

II).

Thusif A=re~11Ai,thenII

=

(n:~lAi) x An+!=C

X

An+

l

withC=

nr=l

Ai.Let11"(;: A~()I){~the naturalprujt~ditlll.

The group generated by;rC(U~=lU;)is a finite index subgrollp ofCIH~callSt~ Wl~mil apply the induction hypothesis to the gronps1I"c(Ui), I ::; i ::;71,Therefore, it is sufficient to prove the Lemma in casen

=

2, So letA=Al X112 ,lind writ.e Al

=

Uq1l"1(Udal'andA2=Ukll'2(U2)02k, each a disjoint ullion uf rillildy manym:;d-~, Then we claim thatA

=

U,.k(U.,U2}(al,,(I2d,where(UItU~) dt~llult~ tllt~grollp generated byU1andU~.Indeed, for any(011(12)EA,wril.t~III =lfl(lldfll¥,II~= 1I"2(u2)aa,for sometilE U1,U2EU2 •l3yasslllllption11"1(U2 )

=

I.llt!llw(fl.,fl2l

=

("'I(U2udal,''''2(U2u\ujl)an)

=

u2ul(alq,1I"2(ujl)02d. Uut lI"2(uj')U'n EA2 ,so it

ThisSIIOWSthe claim, and hence the result follows. Cl

Theorem 2.4,1Assume !hat

if

SO has a principal faetor

witltmi=1thenGidoe.'notJiaacat101H,bcfiIHlliomomory!liicimt,gr. IllJiid,illjizf:rJ pointfree. Further suppose QS docs nol have .9impfe r.or/llKmcnt.,II[Ow fnlll/min!1 type:

(i)a non-commutativedivision algebra oIlier than atoltillydeliuitr.f/lIulcMlirJII algebra;

(47)

37 (ii)fl2X:1maln'z ring over the mUonals,'

(iii)(J.2x2matriz ring over a quadratic imaginary extension of the rationals;

(iv)'L:I. x:1matMz ring over a rum-commutative division algebra.

'{'lieu the group ,fJcncmlcd by Ihe following clements is offinifeindez in U(ZS):

(i) theIJ(lS,~cyclic units Os ofZSj

(ii)the bicyclic units {I

+

g8(1 - 9),1

+

(1- 9)8918 E 5,9 EGR{S)}.

Proof. Nole thatif Sdocs /lot have a zero clement, then ZSo~ZSffi ZOs(a dirl~dprodud of rillgs). Hence to prove theresult we may assume thatShas a zero dement.Os.

Wtl know that

Further Icl1l"; denote the projection of the latter ringontothe i-th summand.Let /; hI: the identity ofQO(S;{Si+J)'Then

IA!LUi III! lhcsubgroupofU(ZS)generatedbyBs,and {l+gs{l-g),l+(l-g)sfJ

I

~ESo',!}E GR(S,.l}. ThcH, in case mi ;?: 3,from Proposition 2.3.2 it follows that 1r,(1/J(U,))i3of finitc index inU (Zo(S;/S,+I)

+

Zft). [n case mj=1, thcsame holds hceause of thcrC3ull3in (11) (note that 1I";(Ib(ZS)) is a group ring). Finally note lIml for cachiand11; E Uj ,II"j{1b(lIi))=

Ij

rorj <i.By Lemma 2.4.l, the group gcncrated byt/,(U,Ui )is of finite index inU(fIJ;(ZO(Sj/S.+I)

+

Zfi)ffiZOs).Hence therC~1ll1~rollows. Cl

(48)

:Ill

Itisworthmentionins that.rcttllllyJopcl"S and Lealill[12] (Irteribl.'(l precisely when a simple component ofthe ratioll.J.1group algebra QG of a finite l1il'1011'1I1 group is ofthe exceptional type mcnlioooo in"'COrCl1l2.'1.1. AslLlI ill\1lIt!(lil\h' consequence one can also classify when an exceptionalllilllllic cOlll1lO1IC1I1 OCr-Un!in semisirnple Artinian ralional scmigroup algebra"offinite nilpollmlJl(lmigrtllIIIS.

Reull that a scmigroupSis said tobenilpolCllfofcI(lUn,'1 notioninirflll,lt~l'll by Malccv {20/ (see also 117J),ifSsatis~c.~the idelltityX.=

Yo,

ami ni~lin!IC~l~~t positive integer with this properly. I·lere we say Ihl1 idcliLiLyX"=:Y"iM~i\liHli(:dill S if1'.

=

Yn for all z,yES andU11.~,."ESwith llwfullowillllddilliliol1ll uf;r.

2:0

=1',

Yo=y,

and, for 0 Sn,

By [17, Lemma 2.1, p.986J.S= MD(G;rn,m;l')isnill'0lclIl if/l/lllOlllyir(:j~

nilpotent andSis an inverse semigroup. F'urthcrmorc,irSis<\nilpotel1tlII'llligrtMll' (nol necessarily complcl.cly o-simple),thenallyIIllMemigroup or Sibt,M iSilllilpolr.nl semigroup.

Before we state our resull, we need somel101aliom~of [12).

Q,,,,=(o,lIlg'"

=

1,1t'"",O"'/1,hgh-1="9-1),In>2,2Jm,tlullllmtllriliun KfUUIl of order 2m,

H(F),thequatcrnioll algebraQver a fieldI'~

~n,IIprimitivcn - Ih root

0/

unity, C,,=(glg"=I), cyclicgrOlJpofordan,

(49)

39 'D~..:;:Cq>hl,tJ"

=

1,hJ

=

1,lIgll-1=t('),m>2,lhedihcdralgroupofordcr2m, S~M;l'::(,(I,/II!l'"

=

1,1i~=l,hgh-I='9-1+2"-'),3$m,

V ::(II,b,c

la' =

b'l::/:4

=

l,oc=ca,lK:=

cb,oo=

c2ab), V+={tt,b,clu4

=

1,6'= l,c4

=

1,ac=ca,cb=bc,ba=ca3b), 'D~,={II,b

I

(IB=b"l:::I,bn

=

a&b),

'D~,=Sw,

GY II,t.he central product ofgwups GandIIwiLh somcccntral subgroups identified (d. [:IN,-1.1

fill,

hutit willbed~arfrom the context whichcentralgroups these arc.

Nuw,l:Otrc~pondiligto Tlworctns 2.2 and 2.3 of (12], we have

Theorem 2.4.2Lei S 6e(1.jillilcnilpotentscmigTOup.~uchthatQS is(JMlnisimplc Arliuillllrillg_Htr/her,Ict

11f:IIprillcipuI9r.ric.~ofS'lJ

=

SulO},allliS;/Sitl~MO{Gi;rni,m,.;Pi), Oi(lgroup, /',.-1 EA-/no,(Q(,';)'i::::0, I, ... ,11,

QS" '"

EI1

Mm.(QG,)

m

QO,.

':..0

"'imlll!J, IrJl'br: a pn'milivc ceulmlitI~mpolcntofQS,

(i)IfQ8/:i,~rJflUlleornmulativedipi!iotl ring,then there cxisls somemj

=

1,and 11Ir./'1:cli,~l$ (IIlrimitive ccnlTfl{idempotentCiinQGi suchthali/O,eiisa

!J-!/I'(JU/I,(;,'/(Jjc/?i5.Q~.,:I:5tI,andQSc~QG;c;~H(Q(6n-.+{;.~d);1/

Ow;i~IlI/La2·gl'Oup, C;{Cic;~Q8 XC.,flodd, QSe~QC;Ci~H{Q(enll, lHulthr.rJIYlCI-of2modulon isodd,

(50)

,Ill

(ii)IfQSc';:5.M~U'),anddimQ(F)$;1, I"IIfir-Ill,l{,cnlbnTI'.fixl,....ml/I'",;;::I, ornJj=2, arliLlhere czislsa pl-;milillc cenlmliflelll/lOlr:,,!I:j illQ(;;XIH'"tlwl ifm;= I lindG;c;is4!1-gmup,1/11'11 01/1:11/IJII; Ifl/lflll1ill!/,.illlllliml."fl('I'III'X:

(b) QG;c,=:!F=

Q(J2"l

andG;jGiCj= 'P1l\;

(d)QG;c;!:!!'f

=

Q(i)andGi/G;I:; S!!1)~l!D,111'1)+;

If m;:;1and C;c;is !lol2-grollp,aWlQ(,'i(;i';:5.I,' ;;:: Q((;ll tI/Hl (,';jU;{';~ VSxc.J ,orQ8xC:J; Finally, jllll;

=

2, IhwQ(,';Cj~Q({y,l !l1It1(,'if';~(.'", whercq;=1,2,3,401'6,

sometil;= Ior1IIj=2,and Ihereczi,~I.,Itpl'illlili1J(:l'I:ulmlidcIII/mll'IlII';

inQC;such!lUllifW;= I,ami 0;1:;i" fl !i-gm/IT/, 'hwQ(";I~;S:'/)2:' H(Q(6.-1

+ (2.

I_r ))amloTlc QJllu:Jollowill,IJ,'1ihUllilm.'1 (/{:I:UI'.'I:

(b) C;/G;c;~IIU1/gImlcreII is(I/lol'lIIal,'Iub,I/ml/f)01 imlt::r.:1i71(J;/(;;f:;

.~uehthat IIconlRi1~,flnml-lri"ialllomUlJ,'/lb,I!7'01/fJNwilhNnyN!J-1

=

II

m; :::: IIlndCiC; is7IIltII2.yffluTI,lIWfl QG;f:i~ JJ';:5. II{QU,,))Imll G;fG;c;~SxCn, nanodd number _,ueh/lulllhecmler012 mmluloIti.,/!I/d, and Sis onc

0/

thefollowinggroups:

Références

Documents relatifs

We show that the amalgamated free products of two free groups over a cyclic subgroup admit amenable, faithful and transitive actions on infinite countable sets.. This work

Table 3.2 on page 410 contains the exceptional group of Lie type S, a lower bound µ(S) for the degree of a non-trivial transitive faithful permutation representation, an upper

istence of the Minkowski unit in the subfield Additional necessary conditions are the isomorphism of the factor-group of units.. and the group of integers of the

We study the structure and point out weaknesses of recently-proposed random number generators based on special types of linear recurrences with small coefficients, which allow

For example, many recent works deal with F I -modules (functors from the category of finite sets with injec- tions to abelian groups, see [1]); finitely generated F I -modules

Short axes orientations are most deviated from the transport direction along the lateral edges of the model with minimum displacement and shortening and vary across the central

· H1 : la gestion du risque dans les salles des marchés peut être appréhendée partiellement à travers les idéaltypes de l'appareil, du réseau et du marché

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les