• Aucun résultat trouvé

Kinetic analysis and gas-liquid balances of the production of fermentative aromas during winemaking fermentations

N/A
N/A
Protected

Academic year: 2022

Partager "Kinetic analysis and gas-liquid balances of the production of fermentative aromas during winemaking fermentations"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-01837716

https://hal.archives-ouvertes.fr/hal-01837716

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Kinetic analysis and gas-liquid balances of the

production of fermentative aromas during winemaking fermentations

Jean-Roch Mouret, Carole Camarasa, Evelyne Aguera, Stéphanie Rollero, Marc Perez, Vincent Farines, Jean-Marie Sablayrolles

To cite this version:

Jean-Roch Mouret, Carole Camarasa, Evelyne Aguera, Stéphanie Rollero, Marc Perez, et al.. Ki- netic analysis and gas-liquid balances of the production of fermentative aromas during winemaking fermentations. ISSY 31, Oct 2014, Vipana et Nova Garica, Slovenia. �hal-01837716�

(2)

Kinetic analysis and gas-liquid balances of the production of fermentative aromas

during winemaking fermentations

Mouret J.R., Camarasa C., Aguera E., Rollero S., Perez M., Farines V., Sablayrolles J.M.

(3)

Introduction

Alcoholic fermentation in winemaking conditions

 Key step of the winemaking process

 Optimization of product quality

Quality markers = Aroma compounds

Grape must Alcoholic Wine

fermentation

(4)

Introduction

Wine aromas

 Complex mixture of volatile molecules of different origins Grapes

Must

Young wines

Wines

Varietal aromas: representative of grape varieties

Fermentative aromas:

 Secondary metabolites synthetized by yeast during winemaking fermentation

 Most abundant : higher alcohols and esters

Post-fermentative aromas: post-fermentative chemical reactions, produced during aging

(5)

Introduction

Fermentative aromas

 Metabolic pathways well known but:

Synthetic pathways highly connected and

interdependent

(involvement of C and N metabolisms)

Complex regulations

Development of an innovative monitoring

system to access to the kinetic parameters

Glucose Glycerol

Pyruvate Acetaldehyde

Acetic acid Acetyl-CoA

TCA

cycle α-ketoacids Amino

acids

Ethanol

Acyl-CoA

Acetate esters

Aldehydes

Higher alcohols Succinic acid

Fatty acids Ethyl esters

 Need for new approaches to better describe, understand and control

(6)

Online monitoring of fermentative aromas

Heated transfer lines

Valve selector

Cold trap - GC

16 carbon compounds analysed

Maximum analysis frequency: 1h (with 1 tank)

Calculation of kinetic parameters

Gas-liquid balances of volatile compound production

Estimation of the gas losses

Calculation of the liquid concentrations

Calculation of the total productions (sum of liquid accumulation and gas losses)

Morakul et al., 2011 Mouret et al., 2014

(7)

Losses of volatile compounds

18°C 24°C 30°C

Propanol 0.4% 0.6% 0.9%

Isobutanol 0.4% 0.6% 1.0%

Isoamyl alcohol 0.5% 0.7% 1.4%

Isoamyl acetate 14% 21% 33%

Ethyl hexanoate 29% 42% 50%

Ethyl octanoate 26% 37% 49%

Losses:

 Dependent on the studied compound

 Negligible for higher alcohols

 High for esters

Mouret et al., 2014

(8)

Gas-liquid balance

I

mportance of the gas-liquid balance for esters:

 Overestimation of T° effect on ester synthesis if considering only C°liq

0.0 0.2 0.4

0 50 100 150

Liquid content of ethyl hexanoate (mg/L)

Consumed sugar (g/L)

18°C 24°C

30°C 0.0

0.2 0.4 0.6

0 50 100 150

Total production of ethyl hexanoate (mg/L)

Consumed sugar (g/L)

18°C 24°C 30°C

Mouret et al., 2014

(9)

Experimental plan

Impact of T° and initial nitrogen content

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 Focus on 6 fermentative aromas:

3 higher alcohols: propanol, isobutanol, isoamyl alcohol

1 acetate ester: isoamyl acetate

2 ethyl esters: ethyl

hexanoate, ethyl octanoate

 Study focused on the total production of these volatile compounds:

representative of the true capacity of the yeast to

synthesize these molecules

(10)

Impact of T° and initial nitrogen content

 The synthesis profiles are mostly dependent on initial YAN

0.0E+00 5.0E+02 1.0E+03 1.5E+03 2.0E+03 2.5E+03

0 50 100 150

Rate of total production of isamyl alcohol (µg l-1h-1)

Consumed sugar (g l-1)

Different YAN, same T° MS70

MS250 MS430

Mouret et al., 2014

 T° mainly acts on the maximal production rate

 Interaction nitrogen / T° on the regulation of yeast metabolism

0.0E+00 1.0E+03 2.0E+03 3.0E+03

0 50 100 150

Rate of total production of propanol (µg/L.h)

Consumed sugar (g/L)

Different T°, same YAN

18 24 30

(11)

Kinetics of production of propanol

 Synthesis exclusively during the nitrogen consumption phase

 Amount proportional to the initial nitrogen concentration

Propanol identified as a quantitative, metabolic marker of nitrogen availability

0.0E+00 5.0E+07 1.0E+08

0 200 400

0 50 100 150

Cell count (nb cell ml-1 ) Production of propanol (*10 mg l-1 ), residual nitrogen content (mgN l-1 )

Consumed sugar (g l-1)

propanol Nitrogen Biomass

0 10 20 30 40 50

0 100 200 300 400

Final production of propanol (mg l-1)

Initial nitrogen content (mgN l-1)

Mouret et al., 2014

(12)

Valine

α-KG Glutamate

α-ketoisovalerate

Isovaleraldehyde

Isobutanol

Leucine

α-ketoisocaproate

Isoamylaldehyde

Isoamyl alcohol α-KG Glutamate BAT1, BAT2

PDC1,5,6

ADH1/5, SFA1 NADH

NAD+

BAT1, BAT2

THI3, ARO10

ADH1/5, SFA1 NADH NAD+

Isobutyl acetate Isoamyl acetate

ATF1, ATF2 Acetyl-CoA ATF1, ATF2 Acetyl-CoA

2-isopropylmalate

Acetyl-CoA CoA LEU4, LEU9

3-isopropylmalate

LEU1

NAD+ NADH LEU2

Glucose

Pyruvate

Aspartate

Methylacetaldehyde

Propanol

TCA cycle

Threonine

α-KG Glutamate

α-ketobutyrate

NADH NAD+ BAT1, BAT2

PDC1,5,6

ADH1/5, SFA1

PYC1, PYC2

α-KG Glutamate AAT1, AAT2

Threonine

Kinetics of production of propanol

 Exclusively generated by direct deamination of exogenous threonine or interconversion between other amino acids and threonine

(13)

Kinetics of production of the other aromas

 Isobutanol, isoamyl alcohol, isoamyl acetate and the 2 ethyl esters synthetized throughout the fermentation process

Production linked to carbon metabolism

Mouret et al., 2014

0.E+00 5.E+07 1.E+08

0.0 0.4 0.8

0 50 100 150

Cell count (nb cells/mL)

Total production of ethyl octanoate (mg/L)

Consumed sugar (g/L) 0.E+00

5.E+07 1.E+08

0 50 100 150

0 50 100 150

Cell count (nb cells/mL)

Total production of isoamyl alcohol (mg/L)

Consumed sugar (g/L)

(14)

Kinetics of production of the other aromas

0.E+00 5.E+07 1.E+08

0 50 100 150

0 50 100 150

Cell count (nb cells/mL)

Total production of isoamyl alcohol (mg/L)

Consumed sugar (g/L)

0.E+00 5.E+07 1.E+08

0.0 0.4 0.8

0 50 100 150

Cell count (nb cells/mL)

Total production of ethyl octanoate (mg/L)

Consumed sugar (g/L)

 2 successive linear production phases from sugar (with yields dependent on initial nitrogen content and temperature)

Higher alcohols and acetate ester: transition simultaneous to the end of the growth phase

Ethyl esters: transition at the same sugar content whatever the YAN and T° values

Mouret et al., 2014

(15)

Isobutanol and Isoamyl alcohol

0 200

400 20

25 30 0.5

1 1.5

T (°C) A

N0 (mg/L) Y1 Isoamyl alcohol (mg/g)

0 100 200 300 400 20

25 30

0.8 1 1.2 1.4 1.6 1.8

T (°C) N0 (mg/L)

B

Y2 Isoamyl alcohol (mg/g)

0 200

400 20

25 30 0.2

0.4 0.6

T (°C) A

N0 (mg/L) Y1 Isobutanol (mg/g)

0 200

400 20

25 30 0

0.2 0.4 0.6

T (°C) B

N0 (mg/L) Y2 Isobutanol (mg/g)

Isoamyl alcohol

Isobutanol

Production yields of isobutanol and

isoamyl alcohol

differently impacted by the environmental parameters

phase 1 phase 2

(16)

Kinetics of production of higher alcohols

Isobutanol and isoamyl alcohol

 Differences in the rates and specific rates of production

Major differences in the regulation of synthesis of isobutanol and isoamyl alcohol, despite their partially shared metabolic pathways

0.0E+00 2.0E+03 4.0E+03

0.0E+00 8.0E+02 1.6E+03

0 50 100 150

Rate of total production of isoamyl alcohol (µg l-1h-1) Rate of total production of isobutanol (µg l-1h-1)

Consumed sugar (g l-1)

isobutanol isoamyl alcohol

0.0E+00 5.0E-08 1.0E-07

0.0E+00 4.0E-08 8.0E-08

0 50 100 150

Specific rate of total production of isoamyl alcohol (µg l-1h-1) Specific rate of total production of isobutanol (µg l-1h-1)

Consumed sugar (g l-1)

isobutanol isoamyl alcohol

Mouret et al., 2014

(17)

Valine

α-KG Glutamate

α-ketoisovalerate

Isovaleraldehyde

Isobutanol

Leucine

α-ketoisocaproate

Isoamylaldehyde

Isoamyl alcohol

α-KG Glutamate

BAT1, BAT2

PDC1,5,6

ADH1/5, SFA1

NADH NAD+

BAT1, BAT2

THI3, ARO10

ADH1/5, SFA1 NADH NAD+

Isobutyl acetate

Isoamyl acetate

ATF1, ATF2 Acetyl-CoA ATF1, ATF2 Acetyl-CoA

2-isopropylmalate

Acetyl-CoA CoA

LEU4, LEU9

3-isopropylmalate

LEU1

NAD+ NADH

LEU2

Glucose

Pyruvate

Aspartate

Methylacetaldehyde

Propanol TCA cycle

Threonine α-KG Glutamate

α-ketobutyrate

NADH NAD+

BAT1, BAT2

PDC1,5,6

ADH1/5, SFA1

PYC1, PYC2

α-KG Glutamate

AAT1, AAT2

Threonine

Kinetics of production of higher alcohols

Isobutanol and isoamyl alcohol

 Different management of the pools of -keto-acids

(18)

 Importance of the gas-liquide balance:

Differentiation of biological and physical consequences of T° modification

Impact of T° on ester synthesis overestimated if only liquid content was considered

 Production of fermentative aromas closely linked to central carbon metabolism, except for propanol

Two successive linear production phases (with yields dependent on initial nitrogen and T°) from sugar

 Differences in the regulation of the synthesis of isobutanol and isoamyl alcohol, despite their partially shared metabolic pathways

 Propanol identified as a quantitative, metabolic marker of assimilable nitrogen

Conclusions

(19)

 Genericity of the results

Experiments in other media, especially natural musts

Study of other yeast strains

 Elaboration of a mathematical model simulating the kinetics of production of fermentative aromas

 Development of innovative strategies for controlling the production of fermentative aromas by managing assimilable nitrogen content and temperature

Perspectives

(20)

Acknowledgments

Many thanks to INRA staff in UMR SPO Montpellier and UE Pech Rouge

This work was supported by the European CAFE project from

the 7th PCRD (KBBE – 212754) and by the BIOFLAVOUR

COST Action FA0907

Références

Documents relatifs

falciparum a été significativement favorisée par le séchage au four à micro-ondes avec une prévalence de 8 % en séchage normal contre 12 % En conclusion, l'usage du four à

The production of ethyl esters was slightly 30 higher after the addition of any type of nitrogen; the production of higher alcohols other than 31 propanol was unchanged, and

La capitalisation de salles de spectacles par le groupe Lagardère a commencé en 2010 par une prise de participation de 20 % dans le capital du Zénith de Paris, qui dispose d’une

Vous étiez onze, nous dit l’Écriture, La nuit couvrait Jérusalem…!. Il

L’analyse du réseau global des relations entre tous les stagiaires PE2 de l’IUFM montre que les groupes de référence sont des lieux d’échange et de relations parfois

7 Le rayonnement international des travaux de Jean-François Sablayrolles est considérable, d’autant plus qu’il a souvent participé à des manifestations

After parameter identification, production yields were coupled to the MOMAF model to predict the kinetics of production of ethanol, isobutanol, isoamyl alcohol, isoamyl acetate,

 Possibility to simulate, for the first time, the production kinetics of these fermentative aromas from the 2 main factors affecting the fermentation process: nitrogen content