• Aucun résultat trouvé

2 Our work

N/A
N/A
Protected

Academic year: 2022

Partager "2 Our work"

Copied!
54
0
0

Texte intégral

(1)

Introduction Our work

Counting smaller trees in the Tamari order

Gr´ egory Chatel, Viviane Pons

April 27, 2015

(2)

Introduction Our work

1 Introduction Basic definitions Tamari lattice Goal

2 Our work

Main result

Example

Sketch of proof

(3)

Introduction Our work

Basic definitions Tamari lattice Goal

Permutation and weak order

Permutations

A permutation σ is a word of size n where every letter of {1, . . . , n} appear only once.

Ex : 1234, 15234, 4231.

Weak order : partial order on permutations

At each step, we inverse two increasing consecutives values.

123 213 132

231

312

(4)

Introduction Our work

Basic definitions Tamari lattice Goal

Binary trees

Binary trees

• •

• •

• •

Canonical labelling

x

5 1

3

1 7

(5)

Introduction Our work

Basic definitions Tamari lattice Goal

Permutation to binary tree

Binary search tree insertion

15324 →

4

2

1 3

5

(6)

Introduction Our work

Basic definitions Tamari lattice Goal

Permutation to binary tree

Binary search tree insertion

15324 →

4 2

1 3

5

(7)

Introduction Our work

Basic definitions Tamari lattice Goal

Permutation to binary tree

Binary search tree insertion

15324 →

4 2

1

3

5

(8)

Introduction Our work

Basic definitions Tamari lattice Goal

Permutation to binary tree

Binary search tree insertion

15324 →

4 2

1

3

5

(9)

Introduction Our work

Basic definitions Tamari lattice Goal

Permutation to binary tree

Binary search tree insertion

15324 →

4 2

1 3

5

(10)

Introduction Our work

Basic definitions Tamari lattice Goal

Order relation

Right rotation

x y

A B

C →

x A y

B C

This gives a partial order on binary trees.

Example

4 4

4

(11)

Introduction Our work

Basic definitions Tamari lattice Goal

Tamari lattice

Figure : Tamari lattices of size 3 and 4.

(12)

Introduction Our work

Basic definitions Tamari lattice Goal

Tamari lattice as a quotient of the weak order

123 213 132

231 312

1 2

3

1 2

3 1

2 3

1

2 3

1 2

2 4

5

13254

31254 13524

31524 15324

35124 51324

(13)

Introduction Our work

Basic definitions Tamari lattice Goal

What do we want to do ?

Goal

We want a formula that computes, for any given tree T the number of trees smaller than T in the Tamari order.

Example : how many trees are smaller than this one ?

1 2 3

4

5

6

(14)

Introduction Our work

Main result Example Sketch of proof

1 Introduction Basic definitions Tamari lattice Goal

2 Our work

Main result

Example

Sketch of proof

(15)

Introduction Our work

Main result Example Sketch of proof

Tamari polynomials

Tamari polynomials

Given a binary tree T , we define:

B ∅ := 1 (1)

B T (x ) := x B L (x ) x B R (x ) − B R (1)

x − 1 (2)

with T =

L

R

(16)

Introduction Our work

Main result Example Sketch of proof

Main theorem

Theorem

Let T be a binary tree. Its Tamari polynomial B T (x) counts

the trees smaller than T in the Tamari order according to the

number of nodes on their left border. In particular, B T (1) is

the number of trees smaller than T .

(17)

Introduction Our work

Main result Example Sketch of proof

Example

B ∅ := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5

6

(18)

Introduction Our work

Main result Example Sketch of proof

Example

B := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5 6

• B T (x ) = B 4 (x) = xB 3 (x ) B

6

(x)−B x−1

6

(1)

• B 3 (x ) = x B 1 (x )

• B 1 (x ) = x B

2

(x)−B x−1

2

(1)

• B 2 (x ) = x

• B 1 (x ) = x (1 + x ) = x + x 2

• B 3 (x ) = x (x + x 2 ) = x 2 + x 3

(19)

Introduction Our work

Main result Example Sketch of proof

Example

B := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5 6

• B T (x ) = B 4 (x) = x B 3 (x ) B

6

(x)−B x−1

6

(1)

• B 3 (x ) = x B 1 (x )

• B 1 (x ) = x B

2

(x)−B x−1

2

(1)

• B 2 (x ) = x

• B 1 (x ) = x (1 + x ) = x + x 2

• B 3 (x ) = x (x + x 2 ) = x 2 + x 3

(20)

Introduction Our work

Main result Example Sketch of proof

Example

B := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5 6

• B T (x ) = B 4 (x) = x B 3 (x ) B

6

(x)−B x−1

6

(1)

• B 3 (x ) = x B 1 (x )

• B 1 (x ) = x B

2

(x)−B x−1

2

(1)

• B 2 (x ) = x

• B 1 (x ) = x (1 + x ) = x + x 2

• B 3 (x ) = x (x + x 2 ) = x 2 + x 3

(21)

Introduction Our work

Main result Example Sketch of proof

Example

B := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5 6

• B T (x ) = B 4 (x) = x B 3 (x ) B

6

(x)−B x−1

6

(1)

• B 3 (x ) = x B 1 (x )

• B 1 (x ) = x B

2

(x)−B x−1

2

(1)

• B 2 (x ) = x

• B 1 (x ) = x (1 + x ) = x + x 2

• B 3 (x ) = x (x + x 2 ) = x 2 + x 3

(22)

Introduction Our work

Main result Example Sketch of proof

Example

B := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5 6

• B T (x ) = B 4 (x) = x B 3 (x ) B

6

(x)−B x−1

6

(1)

• B 3 (x ) = x B 1 (x )

• B 1 (x ) = x B

2

(x)−B x−1

2

(1)

• B 2 (x ) = x

• B 1 (x ) = x (1 + x ) = x + x 2

• B 3 (x ) = x (x + x 2 ) = x 2 + x 3

(23)

Introduction Our work

Main result Example Sketch of proof

Example

B := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5 6

• B T (x ) = B 4 (x) = x B 3 (x ) B

6

(x)−B x−1

6

(1)

• B 3 (x ) = x B 1 (x )

• B 1 (x ) = x B

2

(x)−B x−1

2

(1)

• B 2 (x ) = x

• B 1 (x ) = x (1 + x ) = x + x 2

• B 3 (x ) = x (x + x 2 ) = x 2 + x 3

(24)

Introduction Our work

Main result Example Sketch of proof

Example

B ∅ := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5

6 • B T (x ) = B 4 (x) = x(x 2 + x 3 ) B

6

(x)−B x−1

6

(1)

• B 6 (x ) = x B 5 (x )

• B 5 (x ) = x

• B 6 (x ) = xx = x 2

(25)

Introduction Our work

Main result Example Sketch of proof

Example

B ∅ := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5

6 • B T (x ) = B 4 (x) = x(x 2 + x 3 ) B

6

(x)−B x−1

6

(1)

• B 6 (x ) = x B 5 (x )

• B 5 (x ) = x

• B 6 (x ) = xx = x 2

(26)

Introduction Our work

Main result Example Sketch of proof

Example

B ∅ := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5

6 • B T (x ) = B 4 (x) = x(x 2 + x 3 ) B

6

(x)−B x−1

6

(1)

• B 6 (x ) = x B 5 (x )

• B 5 (x ) = x

• B 6 (x ) = xx = x 2

(27)

Introduction Our work

Main result Example Sketch of proof

Example

B ∅ := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5

6 • B T (x ) = B 4 (x) = x(x 2 + x 3 ) B

6

(x)−B x−1

6

(1)

• B 6 (x ) = x B 5 (x )

• B 5 (x ) = x

• B 6 (x ) = xx = x 2

(28)

Introduction Our work

Main result Example Sketch of proof

Example

B := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5 6

• B 4 (x ) = x (x 2 + x 3 )(1 + x + x 2 )

• B 4 (x ) = x 6 + 2x 5 + 2x 4 + x 3

(29)

Introduction Our work

Main result Example Sketch of proof

Example

B := 1

B T (x ) := x B L (x ) x B R (x ) − B R (1) x − 1

1 2 3

4

5 6

• B 4 (x ) = x (x 2 + x 3 )(1 + x + x 2 )

• B 4 (x ) = x 6 + 2x 5 + 2x 4 + x 3

(30)

Introduction Our work

Main result Example Sketch of proof

Example

1 2 3

4 5

6 B T (x) = x 3 + 2x 4 + 2x 5 + x 6 B T (1) = 6

(31)

Introduction Our work

Main result Example Sketch of proof

Sketch of proof

Increasing and decreasing forests

4

2 5

1 3 9

7

6 8

(32)

Introduction Our work

Main result Example Sketch of proof

Sketch of proof

Increasing and decreasing forests

4

2 5

1 3 9

7

6 8

(33)

Introduction Our work

Main result Example Sketch of proof

Sketch of proof

Increasing and decreasing forests

4

2 5

1 3 9

7

6 8

1 2

3

4 5

6 7 9

8

(34)

Introduction Our work

Main result Example Sketch of proof

Sketch of proof

Increasing and decreasing forests

4

2 5

1 3 9

7

6 8

4

2 3

1

5 9

7 8

6

(35)

Introduction Our work

Main result Example Sketch of proof

Initial and final intervals

1 2

3

1 2

3 1

2 3

1

2 3

1 2

3

1

2 3

123 213 132

231 312

321

(36)

Introduction Our work

Main result Example Sketch of proof

Initial and final intervals

1 2

3

1 2

3 1

2 3

1

2 3

1 2

3

1 2 3

123 213 132

231 312

321

(37)

Introduction Our work

Main result Example Sketch of proof

Initial and final intervals

1 2

3

1 2

3 1

2 3

1

2 3

1 2

3

1

2 3

123 213 132

231 312

321

(38)

Introduction Our work

Main result Example Sketch of proof

Linear extensions of any interval

(39)

Introduction Our work

Main result Example Sketch of proof

Linear extensions of any interval

1

2 3

4

(40)

Introduction Our work

Main result Example Sketch of proof

Linear extensions of any interval

1 2

3

4

(41)

Introduction Our work

Main result Example Sketch of proof

Linear extensions of any interval

1

2 3

4

(42)

Introduction Our work

Main result Example Sketch of proof

Sketch of proof

Bilinear form

B T (x ) = xB L (x) x B R (x ) − B R (1) x − 1

B(f , g ) = xf (x ) xg(x ) − g(1)

x − 1

(43)

Introduction Our work

Main result Example Sketch of proof

Sketch of proof

Combinatorial interpretation

X

T

0

<T

[T 0 , T ] = B ( X

T1

0

<T1

[T 1 0 , T 1], X

T2

0

<T2

[T 2 0 , T 2])

with T =

T 1

T 2

(44)

Introduction Our work

Main result Example Sketch of proof

B (

1 2

3

, 2

1 3

) =

1 2

3

4

1 2

3

+ 1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

(45)

Introduction Our work

Main result Example Sketch of proof

B (

1 2

3

, 2

1 3

) =

1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

(46)

Introduction Our work

Main result Example Sketch of proof

B (

1 2

3

, 2

1 3

) =

1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

(47)

Introduction Our work

Main result Example Sketch of proof

B (

1 2

3

, 2

1 3

) =

1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

(48)

Introduction Our work

Main result Example Sketch of proof

B (

1 2

3

, 2

1 3

) =

1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

+ 1 2

3 4

5 6

7

(49)

Introduction Our work

Main result Example Sketch of proof

1 2 3

4 5

6

B ( 3

1 2

+

3 1

2

, 2

1 )

[

3 2 1

, 3

2

1 ] [

3 2

1 ,

3 2

1 ] [ 2

1

, 2

1 ]

(50)

Introduction Our work

Main result Example Sketch of proof

B ( 3

1 2 +

3 1

2

, 2

1 ) = 4

3 1 2

6 5

+

4 3 1 2

6 5

+

4 3 1 2

6 5

+

4 4 4

(51)

Introduction Our work

Main result Example Sketch of proof

4 3 1 2

6 5

+

4 3 1 2

6 5

+

4 3 1 2

6 5

+

4 3 1 2

6

5 +

4 3 1 2

6

5 +

4 3 1 2

6

5

(52)

Introduction Our work

Main result Example Sketch of proof

[

• •

• •

,

• •

• • ]

x 6

+

+ [

• •

,

• •

• • ]

x 5

+

+

[

• •

• •

,

• •

• • ]

x 4

+

+

[

• •

,

• • ] + [

• •

,

• • ] + [

• • ,

• • ]

(53)

Introduction Our work

Main result Example Sketch of proof

Example

(54)

Introduction Our work

Main result Example Sketch of proof

Questions ?

Références

Documents relatifs

On va utiliser comme s´ erie g´ en´ eratrice une s´ erie formelle en la variable t (qui compte le nombre de sommets dans les arbres binaires plans) ` a coefficients dans Q[u, v, x,

Theorem 4.1 The number of closed flows of a given forest F is the number of elements smaller than or equal to a certain binary tree T (F ) in the Tamari order.. The binary tree

Furthermore, if we understand the interval as a couple of a lower bound and upper bound, then the action on the upper bound is simple: the shape of the upper bound binary tree is

Rather than simple patriotism, Stimson’s work responds to the violence and conflictual process of colonization and its postcolonial aftermath that he witnesses on the streets

A relation between the anticyclic structure of the dendriform operad and the Coxeter transformations in the Grothendieck groups of the derived categories of modules over the

In other words, the joint distribution of the number of non-initial contacts (of the lower path) and the initial rise (of the upper path) is symmetric.. For any ring A, we denote

Then, in Section 4, we use the Polish encoding of trees to construct an algorithm that computes common upper bounds for trees in the Tamari ordering and we deduce a unique normal

On va chercher une équation fonctionnelle pour la série génératrice des D n (x, y, y, 1), puis montrer que ceci implique que cette série génératrice est algébrique et enfin