• Aucun résultat trouvé

Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

N/A
N/A
Protected

Academic year: 2022

Partager "Tetrathiafulvalene-based azine ligands for anion and metal cation coordination"

Copied!
5
0
0

Texte intégral

(1)

s1

Supporting Information for

Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

Awatef Ayadi1,2, Aziz El Alamy3, Olivier Alévêque1, Magali Allain1, Nabil Zouari2, Mohammed Bouachrine3 and Abdelkrim El-Ghayoury1*

Address: 1Laboratoire MOLTECH Anjou, Université d’Angers, UFR Sciences, UMR 6200, CNRS, Bât. K, 2 Bd. Lavoisier, 49045 Angers Cedex, France, 2Laboratoire de Physico-chimie de l’état solide, Université de Sfax, Route de Soukra; Km 4; BP: 802, 3038, Sfax, Tunisia and 3MEM, High School of Technology (ESTM), University, Moulay Ismail, Meknès, Morocco

E-mail: Abdelkrim El-Ghayoury* - abdelkrim.elghayoury@univ-angers.fr

*Corresponding author

Additional analytical data

Figure S1: Partial crystal packing of ligand L1 with columns of stacked head to tail molecules that are connected laterally through S···O heteroatom contacts.

(2)

s2 Figure S2: Electronic delocalization scheme for ligands L1 and L2.

HOMO -4,78 eV HOMO -4,92 eV

LUMO -2.10 eV LUMO -2,37 eV

Figure S3: HOMO-LUMO Frontier orbitals representation for compounds 1 and 2.

Figure S4: Color change of ligand L1 upon addition of inorganic anions.

(3)

s3 Figure S5: Color change of ligand L2 upon addition of inorganic anions.

Figure S6: UV-visible absorption spectra of L1 upon addition of 1 equiv of anion.

Figure S7: UV-visible absorption spectra of L2 upon addition of 1 equiv of anion.

(4)

s4 Figure S8: Cyclic voltammograms of ligands L1 (left) and L2 (right) (2 × 10−5 M) without (black, bold lines first cycle and dashed lines for second cycle) and with (red,

bold lines first cycle and dashed lines for second cycle) 2 equiv of F. CVs recorded at 100 mV·s−1 on a glassy carbon electrode in CH2Cl2/CH3CN (9/1, v/v) with n-

Bu4NPF6 (0.1 M).

Figure S9: 1H NMR spectra of ligand L1 (4 × 10−3 M in DMSO-d6) upon addition of successive aliquots of TBAF (DMSO-d6).

(5)

s5 Figure S10: UV–visible absorption spectra of complex 3 (c 1.1 × 10−4 M in dichloromethane/acetonitrile, 9/1, (v/v)), room temperature. Ligand L2 is added for comparison.

Figure S11: Cyclic voltammograms of L2 (red, added for comparison) and complex 3 (black) (1.1 × 10−4 M) at 100 mVs−1 on a glassy carbon electrode in CH2Cl2/CH3CN (9/1, v/v) with n-Bu4NPF6 (0.1 M).

Références

Documents relatifs

………..dans chacune de ces entités , on trouve un champ appelé ………permlettant d’identifier chaque ………(appelé aussi ………).. Pour créer une base de donnees on

After filtration, to remove the excess of 10a which did not react, the filtrate was concentrated in a vacuum and the final complex 11 (25 mg, 14 μ mol) was precipitated by addition

The UV–visible absorption spectrum of the rhenium complex 3 recorded in a mixture of dichloromethane/acetonitrile (9:1, v/v) at room temperature (c 1.1 × 10 −4 M) presents the

In addition, a tetrahedral neutral zinc metal complex of ligand (2) formulated as (MeS) 3 -TTF-SCH 2 CONH-Tpy-ZnCl 2 MeOH [complex (3)] and an octahedral nickel complex formulated

Laboratoire MOLTECH-Anjou, CNRS UMR 6200 LUNAM Université, Université d’Angers. 2 Bd Lavoisier, 49045 Angers Cedex, FRANCE Fax:

Committee: R. Paul Sabatier, Toulouse, France. "Trinuclear ruthenium clusters supported by bridging ligands: evaluation in homogeneous catalysis". "Transition

d) Etudier la nature de la branche infinie de C au voisinage de

4°/ Quel volume d’eau minimal doit-on ajouté à pour avoir une solution saturé sans dépôt. PHYSIQUE