• Aucun résultat trouvé

Correction to "Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant"

N/A
N/A
Protected

Academic year: 2021

Partager "Correction to "Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant""

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-00761575

https://hal.inria.fr/hal-00761575

Submitted on 13 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Correction to ”Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant:

Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi

power plant”

Victor Winiarek, Marc Bocquet, Olivier Saunier, Anne Mathieu

To cite this version:

Victor Winiarek, Marc Bocquet, Olivier Saunier, Anne Mathieu. Correction to ”Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the recon- struction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant”.

Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2012, 117 (D18118),

�10.1029/2012JD018107�. �hal-00761575�

(2)

Correction to “ Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant ”

Victor Winiarek, Marc Bocquet, Olivier Saunier, and Anne Mathieu

Received 14 May 2012; published 29 September 2012.

Citation: Winiarek, V., M. Bocquet, O. Saunier, and A. Mathieu (2012), Correction to “ Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant,” J. Geophys. Res., 117, D18118, doi:10.1029/2012JD018107.

[ 1 ] In the paper “Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant:

Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant ” by Victor Winiarek et al. ( Journal of Geophysical Research, 117, D05122, doi:10.1029/2011JD016932, 2012) several equations should read as follows. One figure should also be replaced as shown below.

[ 2 ] Originally written with a zero background term (s b = 0), the formulas were, in the revised manuscript, extended to the general case, with an unfortunate mistake in the normalization term in equation (9). In order for equation (9) to be a properly normalized probability density function (pdf), it should read

if s ≥ 0 p ð Þ ¼ s Z

s≥0

e

12ðssbÞTB1ðssbÞ

d s

1

e

12ðssbÞTB1ðssbÞ

otherwise p ð Þ ¼ s 0:

8 <

:

In the case where B is diagonal, B = m 2 I N , the pdf reads if s ≥ 0 p ð Þ ¼ s ∏ N

i¼1 erfc ½ s b i

m ffiffiffi p 2

1

e

12

ð ss ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b

Þ

T

B

1

ð ss

b

Þ p= 2 ð Þ N j j B q

otherwise p ð Þ ¼ s 0 : 8 >

<

> :

Function erfc is the complementary error function defined by erfc ð Þ ¼ x

p2

ffiffi

p

Z þ∞

x

e t

2

d t:

[ 3 ] As a consequence, equation (21) should read

p ð mjr; m Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 p ð Þ d j j R

q Z

s≥ 0

e

12

ð ss

b

Þ

T

B

1

ð ss

b

Þ d s

1

Z

s≥0 e

12

ð m H s Þ

T

R

1

ð m H s Þ

12

ð ss

b

Þ

T

B

1

ð ss

b

Þ ds

¼ e

12

ð mHs

b

Þ

T

ð RþHBH

T

Þ

1

ð mHs

b

Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2p ð Þ d j j R

q Z

s≥0 e

12

ð ss

b

Þ

T

B

1

ð ss

b

Þ ds

1

Z

s≥ 0

e

12

ð ss

a

Þ

T

P

1a

ð ss

a

Þ d s:

Equation (22) should read

p ð mjr; m Þ¼ e

12ðmHsbÞT

ð

RþHBHT

Þ

1ðmHsbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 p

ð Þ

d

HBH

T

þ R q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2p ð Þ

N

j j B

q Z

s≥0

e

12ðssbÞTB1ðssbÞ

ds

1

Z

s≥0

e

12ðss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aÞTP1a ðssaÞ

2 p ð Þ

N

j j P

a

q d s:

In the general case where B is not diagonal, we can use the GHK simulator to compute both the integral terms, as specified in Appendix A of the original paper. In the case where B = m 2 I N , the likelihood reads

p ð mjr; m Þ ¼ e

12ðmHsbÞT

ð

RþHBHT

Þ

1ðmHsbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 p

ð Þ

d

HBH

T

þ R q

2

N

N

i¼1

erfc ½ s

bi

m ffiffiffi p 2

1

Z

s≥0

e

12ðss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aÞTP1aðssaÞ

2 p ð Þ

N

j j P

a

q d s;

which can be seen as the product of the regular “Gaussian case” term (the first fraction) by a correction taking into account the positivity of the source term (the “normalization term ” and the integral term). The integral term can be com- puted using the GHK simulator.

[ 4 ] These changes do not affect the results of the original paper where s b = 0, since in this case the equations are still fully valid. These changes slightly affect the results of section 3.6.2 where a non-null first guess is used, and Figure 13 should be replaced as shown here. The changes in the retrieved source are very small. Besides, the main peaks occur at the same date and have the same magnitude, and the total released activity is unchanged at the given numerical precision.

[ 5 ] Finally, in Appendix A, equation (A1) should consis- tently read

p ð mjr; m Þ¼ e

12ðmHsbÞT

ð

RþHBHT

Þ

1ðmHsbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 p

ð Þ

d

HBH

T

þ R q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 p ð Þ

N

j j B

q Z

s≥0

e

12ðssbÞTB1ðssbÞ

d s

1

Z

s≥0

e

12

ð ss ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

Þ

T

P

1a

ð ss

a

Þ 2 p ð Þ N j j P a

q ds:

©2012. American Geophysical Union. All Rights Reserved.

0148-0227/12/2012JD018107

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D18118, doi:10.1029/2012JD018107, 2012

D18118 1 of 2

(3)

Figure 13. Reconstructed temporal profile of 137 Cs under semi-Gaussian assumptions with the maxi- mum likelihood method, with the use of a non-null first guess. The full line represents the IRSN first guess profile. The dashed line represents the retrieved source term. Note that the retrieved profile coincides with the first guess profile for the first unobserved sequence of peaks, March 12 to March 14.

WINIAREK ET AL.: CORRECTION D18118

D18118

2 of 2

Références

Documents relatifs

Fig 2 : Kinetic cesium desorption in NaCl media by free or immobilized bacteria.. Initial Cs concentration in illite was approximately 0,1 mM (a) and 1

Figure 2: Simulation of arterial blood concentration using the toxicokinetic model for 5 minutes human exposure to time varying CFC-123 concentration of exposure (exposure to 10

Keywords: Radioactive tracers; North Pacific; Ocean circulation; Mode water

[ 6 ] The method used to estimate the amount of 137 Cs released directly to the ocean relied on: (1) a 3D hydrody- namic model simulating the oceanic circulation over several

Asymptotic of the terms of the Gegenbauer polynomial on the unit circle and applications to the inverse of Toeplitz matrices... In a first part we are interested in the asymptotic

Mathieu (2012), Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131

An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations... CC Attribution

TOWARDS THE OPERATIONAL APPLICATION OF INVERSE MODELLING FOR THE SOURCE IDENTIFICATION AND PLUME FORECAST OF AN ACCIDENTAL RELEASE OF RADIONUCLIDES.. Victor Winiarek 1 , Julius Vira