• Aucun résultat trouvé

基于GreenLab的油松结构-功能模型 (A FUNCTIONAL-STRUCTURAL MODEL GREENLAB FOR PINUS TABULAEFORMIS)

N/A
N/A
Protected

Academic year: 2021

Partager "基于GreenLab的油松结构-功能模型 (A FUNCTIONAL-STRUCTURAL MODEL GREENLAB FOR PINUS TABULAEFORMIS)"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-00781242

https://hal.archives-ouvertes.fr/hal-00781242

Submitted on 25 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

��GreenLab�����-���� (A FUNCTIONAL-STRUCTURAL MODEL GREENLAB FOR PINUS

TABULAEFORMIS)

Hong Guo, Xiangdong Lei, Veronique Letort, Yuanchang Lu, Philippe de Reffye

To cite this version:

Hong Guo, Xiangdong Lei, Veronique Letort, Yuanchang Lu, Philippe de Reffye. ��GreenLab�����-���� (A

FUNCTIONAL-STRUCTURAL MODEL GREENLAB FOR PINUS TABULAEFORMIS). Chinese

Journal of Plant Ecology, Chinese Academy of Sciences, 2009, 33 (5), pp.950-957. �10.3773/j.issn.1005-

264x.2009.05.014�. �hal-00781242�

(2)

——————————————————

: 2008-10-22 : 2009-05-15

: (RIFRIGTZGZ2007008) (60073007 30872022) 948

(2008-4-63)

* E-mail: hongguo@caf.ac.cn

GreenLab -

1*

1

Veronique Letort

2

1

Philippe de Reffye

2

(1 , 100091) (2 , 100080)

- (Functional-structural models, FSMs) ,

, GreenLab -

- , , (Pinus tabulaeformis) ,

GreenLab , 9

, ,

, , :

0.78~0.91 , ,

-

- -

A FUNCTIONAL-STRUCTURAL MODEL GREENLAB FOR PINUS TABULAE- FORMIS

GUO Hong

1*

, LEI Xiang-Dong

1

, Veronique Letort

2

, LU Yuan-Chang

1

, and Philippe de Reffye

2

1Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China, and 2Sino-French Laboratory of Informatics, Automation and Applied Mathematics, Institute of Automation,, Chinese Academy of Sciences, Beijing 100080, China

Abstract Aims Functional-structural plant modeling is concerned with the integration of architec-

ture and resource allocation as aspects of plant function. It can depict the three-dimensional presentation of plants for use in analyzing individual tree growth and interactions between structural architecture and resource allocation in environments. Our objective was to parameterize and validate the func- tional-structural model GreenLab for young Pinus tabulaeformis to simulate its growth. Few studies have applied the GreenLab model to trees.

Methods Destructive sampling was done to collect detailed data including structure and biomass

measurements from 9 young P. tabulaeformis trees. We used the functional-structural GreenLab model that has been successfully calibrated for several crops. To extend its application in tree growth analysis, we validated the basic hypotheses of the model such as constant allometry rules and source-sink rela- tionships. Direct parameters were attained from the measurement data and hidden parameters of the model were calibrated using the generalized least squares method.

Important findings Simulations of

P. tabulaeformis growth based on the fitted parameters were rea- sonably accurate. The coefficients of determination of linear regression equations between observations and predictions ranged from 0.78 to 0.91. The topological code system was set up to analyze tree topo- logical structure for simulation. The calibrated parameters can be used to simulate and visualize 3D representation of pine trees. The methods for measuring tree topology and biomass and coding system can serve as a reference for the development of functional-structural models of coniferous trees.

Key words

tree functional-structural model, biomass production and allocation, topological structure,

source-sink relationship, Pinus tabulaeformis

(3)

5 : GreenLab - DOI: 10.3773/j.issn.1005-264x.2009.05.014 951

DOI: 10.3773/j.issn.1005-264x.2009.05.014

, ,

- ,

,

(Sievänen et al., 2000) 20 90

, -

(de Reffye & Blaise, 1999) ,

, , LIGNUM

,

(Pinus sylvestris var. mongolica) (P.

banksiana) (Acer saccharum)

(Perttunen et al., 1996, 1998, 2001) ECOPHYS (Rauscher et al., 1990) SIMWAL

(Le Dizè et al., 1997) ,

(Populus tremuloides) (Juglans regia)

, ( LIGNUM),

( L-PEACH) ( , 2006)

GreenLab

, ,

(Hu et al., 2003) , -

,

, ,

- ,

GreenLab

, ,

,

( , 2006) ,

(Yan et al., 2004;

Guo et al., 2006) : (2001)

- ,

(Triticum aestivum)

; Guo (2006) (2006)

- (Zea mays)

; Dong (2003) (Lycopersicon

esculentum) ,

, ,

GreenLab Zhan (2003)

,

(Pinus tabu-

laeformis) , GreenLab

, ,

, (ECP)

DigiPlante (Cournède et al., 2006),

, ,

-

1

(40°20 N, 116°15 E) ,

2006 4

,

, 2 1 2 2 3 3

2 5

2

2.1 GreenLab

,

, ,

(Halle et al., 1978; Perttunen & Sievänen, 2005), Sievänen

(2000) (Ideal ele-

mentary unit, IEU) GreenLab , (Metamer) ,

(Internode) (Growth unit, GU)

, ,

, ,

(4)

,

(Caraglio & Barthelemy, 1997)

,

(Room et al., 1994)

(Growth cycle, GC)

(Physiological

age, PA) (Chronological age)

GreenLab ,

, ,

( , 2003)

(Topological structure) ,

2.2

(

) (

, 2006)

— — 2.2.1

, , (1) (2) (de Reffye & Blaise, 1999;

, 2003):

2 1

) ( )

(

β

= b q j

+

j

l

e e e

(1)

2 1

) 1 (

) (

β

= q j

b j

S

e

e e

(2)

, l

e

(j) S

e

(j) q

e

(j) j

; ,

b

e

2.2.2

, , (2004),

, (3) :

, LA , q

a

, SLW (Specific leaf weight)

2.3

,

, ,

1 5

,

1 5

Fig. 1 Topological structure for 5-year-old Pinus tabulaeformis

, (Branching order)

(Godin et al., 1999) 0,

1, ,

,

, 1,

2, 1~5

, , 4

, 1 a ,

1 a ,

,

2 A

A , GUA; B

GUA B , GUAB, C

GUAB , GUABC, ,

(5)

5 : GreenLab - DOI: 10.3773/j.issn.1005-264x.2009.05.014 953

2

Fig. 2 Topological code system GU: Growth unit

, A B C D E

1 ,

GU02, GU02 1

GU0201, 1 ,

GU020101 ,

, ,

,

(g),

(0.01 mm) (cm)

(cm), (g),

2.4 GreenLab

GreenLab ,

, ,

- GreenLab

GreenLab (Source),

; (Sink),

( ) , -

2.4.1

,

CO

2

,

, ,

GreenLab

, ,

(Zhan et al., 2003), , ,

(Yan et al., 2004)

i ,

(4) :

, Q(i) i

, E(i) i , n(i) i

, ,

,

1; Sp ( , 2006),

r , S

j

j

, ∑

n(i)j=1Sj

i

2.4.2

, GreenLab , (Sink strength, )

,

, o P

o

i, o

(5):

( ) ( ) i

=

D P i

Q ( i

1 )

q

o o

(5)

, q

o

(i) o i

(6)

, D(i) i , Q(i 1) i 1

i :

, o ,

, Nb

o

o

,

(Immediately expansion),

GreenLab ,

1 , i

1, (7)

:

) , 1 (

) , ) (

( q i

i k k q

P

a o

o

= (7)

, q

o

( k , i ) k i

3

3.1

:

,

(Hidden parameter) ,

9 ;

, 9

1 (Target file)(Yan

et al., 2004) ,

Corner Fit ( , 2001), 9

3.1.1

,

: ,

b

e

, T

, 1

(7) ,

3 ,

P

e

P

a

3 ,

1

Table 1 Parameters for Pinus tabulaeformis saplings

Parameter PA 1 PA 2 PA 3 PA 4

Pe 0.65 0.25 0.08 0.03

Pa 1.00 0.95 0.18 0.10

T 3 a

SLW 0.08 g·cm2

be 47.75 134.33 270.93 190.71

0.06 0.06 0.12 0.50

Sp 0.13 m2

r 0.48

Pe: Internode sink Pa: Needle sink T: Needle functioning time SLW: Spe- cific leaf weight be: The scale coefficient of internodes of different physiological ages :

The form coefficient of internodes of different physiological ages Sp: Plant projection area r: Water resistance PA i: i

Physiological age i (i=1, 2, 3, 4)

3 Fig. 3 The ratio of internode fresh mass to

needles fresh mass PA i: i Physiological age i (i=1, 2, 3, 4)

R

2

0.60~0.91 , PA2

, , PA2

, , PA2

b

e

(1) , 1 4

,

R

2

0.89~0.96 , ,

(7)

5 : GreenLab - DOI: 10.3773/j.issn.1005-264x.2009.05.014 955

4

Fig. 4 Internode allometry

PA i: i Physiological age i (i=1, 2, 3, 4)

(1)

(Functional time)

, ,

3 a,

3 a

SLW (2004)

3.1.2

, , ,

, ,

Sp, r Corner Fit

, 1

3.2

9 3 ,

, ,

,

, -

5A 5B 4 (1 2 3 5 a)

, R

2

0.91

0.85; 5C 5D 9

, R

2

0.80

0.78 , GreenLab

, ,

, ,

3.3

-

,

,

(

), Digiplante (Cournède et al., 2006) ,

6 1 3 5 a

4

, GreenLab -

,

, , GreenLab

, GreenLab

, ,

, ,

,

, ,

, ,

,

, ,

GreenLab -

, ,

;

, ;

, ,

, ,

(8)

5

Fig. 5 Model calibration

6 (1 3 5 )

Fig. 6 3D visualization for Pinus tabulaeformis saplings (1a, 3a, and 5a)

,

Caraglio Y, Barthelemy D (2007). Plant morphology and architecture: a dynamic, multilevel and comprehensive approach of plant form and ontogeny. Annals of Botany, 99, 375 407.

Cournède PH, Kang MZ, Rostand-Mathieu A, Yan HP, Hu BG, de Reffye Ph (2006). Structural factorization of plants to compute their functional and architectural growth. Simulation, 82, 427 438.

de Reffye Ph, Blaise F (1999). Calibration of a hydraulic architecture-based growth model of cotton plants.

Agronomie, 19, 265 280.

Dong QX, Wang YM, Barczi JF, de Reffye Ph, Hou JL (2003). Tomato growth modeling based on interaction of its structure-function. In: Hu BG, Jaeger M eds.

(9)

5 : GreenLab - DOI: 10.3773/j.issn.1005-264x.2009.05.014 957

Plant Growth Modeling and Applications: 2003 In- ternational Symposium on Plant Growth Modeling, Simulation, Visualization and Their Applications.

Tsinghua University Press-Springer, Beijing, 250 262.

Godin C, Costes E, Sinoquet H (1999). A method for describing plant architecture which integrates topology and geometry. Annals of Botany, 84, 343 357.

Guo Y, Ma YT, Zhan ZG, Li BG, Dingkuhn M, Luquet D, de Reffye Ph (2006). Parameters optimization and field validation of the functional-structural model Greenlab for maize. Annals of Botany, 97, 217 230.

Halle F, Oldeman RAA, Tomlinson PB (1978). Tropical Trees and Forests: an Architectural Analysis.

Springer-Verlag, Berlin.

Hu BG, de Reffye Ph, Zhao X, Yan HP, Kang MZ (2003).

GreenLab: a new methodology towards plant func- tional-structure model—structural aspect. In: Hu BG, Jaeger M eds. Plant Growth Modeling and Applica- tions: 2003 International Symposium on Plant Growth Modeling, Simulation, Visualization and Their Appli- cations. Tsinghua University Press-Springer, Beijing, 21 35.

Kang MZ ( ) (2003). Functional and Structural Sto- chastic Plant Modeling Based on Substructures (

). PhD disserta- tion, Institute of Automation, Chinese Academy of Sciences, Beijing, 21. (in Chinese)

Le Dizè S, Cruiziat P, Lacointe A, Sinoquet H, Le Roux X, Balandier PH, Jacquet P (1997). A model for simulat- ing structure-function relationships in walnut tree growth processes. Silva Fennica, 31, 313 328.

Lei XD ( ), Chang M ( ), Lu YC ( ), Zhao TZ ( ) (2006). A review on growth modeling and visualization for virtual trees. Scientia Silvae Sinicae ( ), 42(11), 123 131. (in Chinese with English abstract)

Ma YT ( ), Guo Y ( ), Zhan ZG ( ), Li BG ( ), de Reffye Ph (2006). Evaluation of the plant growth model l GREENLAB-Maize. Acta Agronomica Sinica ( ), 32, 956 963. (in Chinese with English abstract)

Perttunen J, Nikinmaa E, Lechowicz MJ, Sievänen R, Messierk C (2001). Application of the functional- structural tree model LIGNUM to sugar maple saplings (Acer saccharum Marsh) growing in forest gaps. An- nals of Botany, 88, 471 481.

Perttunen J, Sievänen R (2005). Incorporating Lindenmayer systems for architectural development in a func-

tional-structural tree model. Ecological Modelling, 181, 479 491.

Perttunen J, Sievänen R, Nikinmaa E (1998). LIGNUM: a model combining the structure and the functioning of trees. Ecological Modelling, 108, 189 198.

Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J (1996). LIGNUM: a tree model based on simple structural units. Annals of Bot- any, 77, 87 98.

Rauscher HM, Isebrands JG, Host GE, Dickson RE, Dickmann DR, Crow TR, Michael DA (1990). ECO- PHYS: an ecophysiological growth process model for juvenile poplar. Tree Physiology, 7, 255 281.

Room PM, Maillette L, Hanan JS (1994). Module and metamer dynamics and virtual plants. Advances in Ecological Research, 25, 105 157.

Sievänen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000). Components of func- tional-structural tree models. Annals of Forest Science, 57, 399 412

Song YH ( ), Guo Y ( ), Li BG ( ), de Reffye Ph (2003). Virtual maize model II. Plant mor- phological constructing based on organ biomass accumulation. Acta Ecologica Sinica ( ), 23, 2579 2586. (in Chinese with English abstract)

Yan HP, Kang MZ, de Reffye Ph, Dingkuhn M (2004). A dynamic, architectural plant model simulating re- source-dependent growth. Annals of Botany, 93, 591 602.

Yang D ( ), Yang XQ ( ) (2004). Studies on biomass and productivity of Pinus tabulaeformis plantation in the Wufengshang of Wudu, Gansu Province. Journal of Northwest Normal University

(Natural Science) ( ( )),

40, 70 73. (in Chinese with English abstract)

Zhan ZG ( ), Wang YM ( ), de Reffye Ph, Hu BG ( ) (2001). Morphological architecture- based growth model of winter wheat. Transactions of the Chinese Society of Agricultural Engineering (

), 17, 6 10. (in Chinese with English ab- stract)

Zhan ZG, de Reffye Ph, Houllier F, Hu BG (2003). Fitting a structural functional model with plant architectural data. In: Hu BG, Jaeger M eds. Plant Growth Modeling and Applications: 2003 International Symposium on Plant Growth Modeling, Simulation, Visualization and Their Applications. Tsinghua University Press- Springer, Beijing, 236 249.

: :

Références

Documents relatifs

GreenLab has been used many times on real crop plants (e.g. maize, Guo et al. Scots pine, Wang et al. 2010), which guarantees further applications. For the combination, GreenLab

In order to obtain maximal yield of pruned leaves, a single objective optimal control problem was first formulated based on the functional-structural plant growth model GreenLab

Written in c++, QingYuan implements the basic deterministic GreenLab, common with previous software, including simulation of plant topological structure with a dual-scale

Figure 10.2: Importance ranks of parameters with respect to time, without consid- eration of the interaction of auxiliaries, based on expectation of (a) total green leaf biomass

Nous pr´ esentons les r´ esultats obtenus pour les m´ etam` eres du brin maˆıtre, c’est-` a-dire les diff´ erences entre les mesures et les valeurs donn´ ees par la simulation

In GreenLab, architecture has an influence mainly for simulation of trees, for which hydraulic resistances of structure networks can be considered and partitioning of ring biomass

It explores the ratio of the fresh weight of leaf and internode with experimental data, estimates the model parameters by model inversion, constructs the simplified

In Sobol’s measure, we excluded the two most sensitive factors in the analysis, then the system linearity tends to be weaker and we got the detailed sensitivity indexes for the