• Aucun résultat trouvé

Distribution functions of the sequence phi(n)/n, n in (k,k+N]

N/A
N/A
Protected

Academic year: 2021

Partager "Distribution functions of the sequence phi(n)/n, n in (k,k+N]"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-00871083

https://hal.archives-ouvertes.fr/hal-00871083

Submitted on 31 Oct 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

(k,k+N]

Vladimir Balaz, Pierre Liardet, Oto Strauch

To cite this version:

Vladimir Balaz, Pierre Liardet, Oto Strauch. Distribution functions of the sequence phi(n)/n, n in

(k,k+N]. Integers : Electronic Journal of Combinatorial Number Theory, State University of West

Georgia, Charles University, and DIMATIA, 2010, 10, pp.705–732. �hal-00871083�

(2)

THE SEQUENCE ϕ(n)/n, n ∈ (k, k + N ]

V. Bal´ aˇ z – P. Liardet – O. Strauch

Abstract. It is well known that the sequence ϕ(n)/n, n = 1, 2, . . . has a singular asymptotic distribution function. P. Erd˝ os in 1946 found a sufficient condition on the sequence of intervals (k, k + N ], such that ϕ(n)/n, n ∈ (k, k + N ], has the same singular function. In this note we prove a sufficient and necessary condition. For simplification of necessary condition we express the sum P

k<n≤k+N

(ω(n) − log log N )

2

, where ω(n) is the number of different primes divided n.

1. Introduction

Many papers have been devoted to the study of the distribution of the sequence ϕ(n)

n , n = 1, 2, . . . ,

where ϕ denotes the Euler phi function. I. J. Schoenberg [S1, S2] established that this sequence has a continuous and strictly increasing asymptotic distribution function (basic properties of distribution functions can be found in [KN, p. 53], [DT, p. 138–

157] and [SP, p. 1–7]) and P. Erd˝os [E1] showed that this function is singular (i.e.

has vanishing derivative almost everywhere on [0, 1], see [SP, p. 2–191]). Here the asymptotic distribution function g 0 (x) of the sequence ϕ(n)/n, n = 1, 2, . . . , is defined as

g 0 (x) = lim

N→∞

1 N

N

X

n=1

c [0,x)

µ ϕ(n) n

, for every x ∈ [0, 1],

where c [0,x) (t) is the characteristic function of a subinterval [0, x) of [0, 1]. For an interval (k, k + N ] and x ∈ [0, 1] define the step distribution function

F (k,k+N ] (x) = 1 N

X

k<n≤k+N

c [0,x)

µ ϕ(n) n

¶ .

P. Erd˝os [E2] proved that the limit

N→∞ lim

log log log k

N = 0

1991 Mathematics Subject Classification. 11K06, 11K36.

Key words and phrases. Euler function, sequence, distribution function.

This research was supported by the VEGA Grant 2/7138/27 and VEGA grant 1/2005/05.

1

(3)

implies that

F (k,k+N] (x) → g 0 (x), (x ∈ [0, 1]) (1) as N → ∞. In opposite case he found N and k such that lim N →∞ log log log k

N = 1 2 and F (k,k+N ] (x) 6→ g 0 (x). In this note we give necessary and suffice condition for (1).

2. Necessary and sufficient condition

Theorem 1. For any two sequences N and k of positive integers we have (1) if and only if for every s = 1, 2, . . . ,

N lim →∞

1 N

X

k<n≤k+N

X

N <d|n

Φ(d) = 0, (2)

where

Φ(d) = Y

p|d

µµ 1 − 1

p

¶ s

− 1

(3) for square-free d, Φ(d) = 0 otherwise, and p are primes.

Proof. Applying Weyl’s limit relation (see [SP, p. 1–12, Th. 1.8.1.1]) we see that (1) holds if and only if, for every s = 1, 2, . . . ,

N lim →∞

1 N

X

k<n≤k+N

µ ϕ(n) n

¶ s

= Z 1

0

x s dg 0 (x), (4)

where [P, p. 363]

Z 1 0

x s dg 0 (x) = lim

N→∞

1 N

N

X

n=1

µ ϕ(n) n

¶ s

= Y

p

µ 1 − 1

p + 1 p

µ 1 − 1

p

¶ s ¶ .

We express N 1 P

k<n≤k+N

³ ϕ(n) n

´ s

by means of

X

d|n

Φ(d) =

µ ϕ(n) n

¶ s

.

We have

X

k<n≤k+N

X

d|n

Φ(d) =

k+N

X

d=1

Φ(d)

µ· k + N d

¸

· k d

¸¶

=

k+N

X

d=1

N Φ(d)

d +

k+N

X

d=1

Φ(d) µ½ k

d

¾

½ k + N d

¾¶

,

(4)

where [x] is integer part and {x} fractional part of x. Since

½ k d

¾

½ k + N d

¾

=

½ − © N

d

ª if © k

d

ª + © N

d

ª < 1 1 − © N

d

ª others (5)

the boundary k + N of summations can be reduced to N and following equality holds 1

N

X

k<n≤k+N

µ ϕ(n) n

¶ s

=

N

X

d=1

Φ(d) d + 1

N

N

X

d=1

Φ(d) µ½ k

d

¾

½ k + N d

¾¶

+ 1 N

X

N <d≤k+N

{

kd

} +

Nd

≥1

Φ(d). (6)

We begin by proving

X

N <d≤k+N

{

kd

} +

Nd

≥1

Φ(d) =

N

X

j=1

X

d|k+j d>N

Φ(d) (7)

for every k, N = 0, 1, 2, . . . . Proof: Expressing k = m d d + r d , where 0 ≤ r d < d, m d ≥ 0 are integers, we see that

½ k d

¾ + N

d ≥ 1 ⇐⇒ r d + N ≥ d ⇐⇒ r d = d − N + i d

where 0 ≤ i d < N . This gives k = (m d + 1)d − N + i d , thus d(m d + 1) = k + N − i d and, for d > N , we have © k

d

ª + N d ≥ 1 if and only if d

µ· k d

¸ + 1

= k + j (8)

for some j = 1, 2, . . . , N . In the following we see that for every d|k + j we have that (8) ⇐⇒ j ≤ d. Really, put d = k + j − x and express k + j = p α 1

1

. . . p α n

n

, k + j − x = p β 1

1

. . . p β n

n

, where p i are primes. Now d satisfies (8) if and only if

(k + j − x)

µ· k k + j − x

¸ + 1

= k + j ⇐⇒

· k k + j − x

¸

= x

k + j − x

⇐⇒

"

p α 1

1

−β

1

. . . p α n

n

−β

n

− j p β 1

1

. . . p β n

n

#

= p α 1

1

−β

1

. . . p α n

n

−β

n

− 1

⇐⇒ j ≤ p β 1

1

. . . p β n

n

Since j ≤ N and d > N , we have j < d and we conclude that (8) hods and applying it in (6) we get the following basic equality

1 N

X

k<n≤k+N

µ ϕ(n) n

¶ s

=

N

X

d=1

Φ(d) d + 1

N

N

X

d=1

Φ(d) µ½ k

d

¾

½ k + N d

¾¶

+ 1 N

X

k<n≤k+N

X

N <d|n

Φ(d). (9)

(5)

Because (see A. G. Postnikov [P, p. 361–363])

|Φ(d)| ≤ s ω(d)

d , where ω(d) is the number of different primes which divide d,

N

X

d=1

|Φ(d)| = O((1 + log N ) s ),

X

d=N+1

|Φ(d)|

d ≤ 3 s (1 + log N ) s

N ,

X

d=1

Φ(d)

d = Y

p

µ 1 − 1

p + 1 p

µ 1 − 1

p

¶ s ¶

, (10)

(9) shows that (1) holds if and only if 1

N

X

k<n≤k+N

X

N <d|n

Φ(d) → 0

as N → ∞ and the proof of Theorem 1 is complete. ¤ Notes 1. Using the basic equation (9) and

1 N

X

k<n≤k+N

X

N <d|n

Φ(d) + 1 N

X

k<n≤k+N

X

d|n,d≤N

Φ(d) = 1 N

X

k<n≤k+N

µ ϕ(n) n

¶ s

we obtain 1 N

X

k<n≤k+N

X

d|n,d≤N

Φ(d) =

N

X

d=1

Φ(d) d + O

µ (1 + log N ) s N

and thus, as N → ∞, the left hand side converges to Q

p

³ 1 − 1 p + 1 p ³

1 − p 1 ´ s ´ uni- formly with respect to k.

3. Erd˝ os’ approach

For any positive integer n and real t ≥ 2, denote n(t) = Y

p|n p≤t

p, n (t) = Y

p|n p>t

p, and P (t) = Y

p≤t

p, (11)

where p are primes and the empty product is 1. P. Erd˝os in [E2] proved (without an

explicit error term and for s = 1) the following lemma:

(6)

Lemma 1. For every integer k, N and t = N we have 1

N

X

k<n≤k+N

µ ϕ(n(t)) n(t)

¶ s

= 1 N

N

X

n=1

µ ϕ(n) n

¶ s

+ O

µ 3 s (1 + log N ) s N

(12) for s = 1, 2, . . .

Proof. We have X

k<n≤k+N

µ ϕ(n(t)) n(t)

¶ s

= X

k<n≤k+N

X

d|n(t)

Φ(d) = X

d|P (t)

Φ(d)

µ· k + N d

¸

· k d

¸¶

= N X

d|P (t)

Φ(d)

d + X

d|P (t)

Φ(d) µ½ k

d

¾

½ k + N d

¾¶

.

Bearing in mind X

d|P (t)

Φ(d)

d = Y

p≤t

µ 1 − 1

p + 1 p

µ 1 − 1

p

¶ s ¶ ,

¯

¯

¯

¯

¯

¯ X

d|P (t)

Φ(d) µ½ k

d

¾

½ k + N d

¾¶

¯

¯

¯

¯

¯

¯

≤ X

d|P (t)

s ω(d)

d = Y

p≤t

µ 1 + s

p

= A(s)(log t) s µ

1 + O µ 1

log t

¶¶

( see [N, p. 110]), 1

N

N

X

n=1

µ ϕ(n) n

¶ s

= Y

p

µ 1 − 1

p + 1 p

µ 1 − 1

p

¶ s ¶ + O

µ 3 s (1 + log N ) s N

( see [P, p. 363]),

¯

¯

¯

¯

¯

¯

1 − Y

p>N

µ 1 − 1

p + 1 p

µ 1 − 1

p

¶ s ¶

¯

¯

¯

¯

¯

¯

≤ X

n>N

|Φ(n)|

n ≤ 3 s (1 + log N ) s

N (13)

we obtain (12). ¤

Next in his method Erd˝os used implicitly the following theorem:

Theorem 2. For every two sequences k and N and t = N we have

 Y

k<n≤k+N

ϕ(n (t)) n (t)

1 N

→ 1 = ⇒ F (k,k+N ] (x) → g 0 (x) (14)

for all x ∈ [0, 1].

Proof. Let x n , n = 1, 2, . . . , be a sequence in the interval (0, 1) and define the step

distribution function F N (x) = #{n≤N;x N

n

∈[0,x)} . By Riemann-Stiltjes integration for

(7)

every continuous function f(x) on [0, 1] we have N 1 P N

n=1 f (x n ) = R 1

0 f (x)dF N (x). By Helly theorem, if F N (x) → g(x), then R 1

0 f (x)dF N (x) → R 1

0 f(x)dg(x).

Now, assume that N 1 P N

n=1 x n → 1. If F N (x) → g(x), then R 1

0 xdg(x) = 1, which is equivalent to g(x) = c 0 (x) (it has step 1 in x = 1). But F N (x) → c 0 (x) is equivalent to statistical convergence x n → 1, i.e. for every ε > 0 and A ε = {n ≤ N ; x n ≥ 1 − ε} we have #A N

ε

→ 0. From statistical convergence x n → 1 follows statistical convergence f (x n ) → f(1) for every continuous f(x). Furthermore,

1 N

N

X

n=1

f (x n ) = Z 1

0

F (x)dF N (x) → Z 1

0

f(x)dc 0 (x) = f(1).

Thus the limit N 1 P N

n=1 x n → 1 is equivalent any of the following limits (i) N 1 P N

n=1 log(x n ) → 0, (ii) ³

Q N

n=1 x n ´ 1/N

→ 1, (iii) N 1 P N

n=1 x s n → 1.

The limits (i)–(iii) also hold assuming restriction n ∈ (k, k + N ].

Put x n = ϕ(n n

(t) (t)) . Then 1

N

X

k<n≤k+N

µ ϕ(n (t)) n (t)

→ 1 ⇐⇒ 1 N

X

k<n≤k+N

µ ϕ(n (t)) n (t)

¶ s

→ 1

and for A ε n

n ∈ (k, k + N ]; ³ ϕ(n

(t)) n

(t)

´ s

< 1 − ε o

we have #A N

ε

→ 0 for every ε > 0.

Replace in ϕ(n) n = ϕ(n(t)) n(t) ϕ(n n

(t) (t)) the ϕ(n n

(t) (t)) by 1 − ε we see 1

N

X

k<n≤k+N

µ ϕ(n) n

¶ s

 1 N

X

k<n≤k+N

µ ϕ(n(t)) n(t)

¶ s 

 (1 − ε) − (1 − ε) #A ε

N (15)

and the other hand N 1 P

k<n≤k+N

³ ϕ(n) n

´ s

N 1 P

k<n≤k+N

³ ϕ(n(t)) n(t)

´ s

and Lemma 1 gives

(1 − ε) Z 1

0

x s dg 0 (x) ≤ lim

N →∞

1 N

X

k<n≤k+N

µ ϕ(n) n

¶ s

≤ Z 1

0

x s dg 0 (x).

Thus we have 1 N

X

k<n≤k+N

ϕ(n (t))

n (t) → 1 = ⇒ F (k,k+N ] (x) → g 0 (x) (16)

and then we use (ii). ¤

(8)

Note 2. In (14) we have only implication, since the right-hand side of (15) has the following precise form

(1 − ε)

 1 N

X

k<n≤k+N

µ ϕ(n(t)) n(t)

¶ s 

 − (1 − ε)

 1 N

X

k<n≤k+N,n∈A

ε

µ ϕ(n(t)) n(t)

¶ s 

and it can be ³

1 N

P

k<n≤k+N,n∈A

ε

³ ϕ(n(t)) n(t)

´ s ´

→ 0 and #A N

ε

→ δ > 0.

Finally Erd˝os prove

Theorem 3. For every sequence of intervals (k, k + N ] we have log log log k

N → 0 = ⇒ F (k,k+N ] (x) → g 0 (x). (17)

Proof. For t = N , the n (t), k < n ≤ k + N are pairwise relatively prime, because the interval (k, k + N ] cannot contain two different positive integers divisible by the same prime p > N . Denote M (t) = Q

k<n≤k+N n (t) and x = ω(M (t)). Using the expression

Y

p≤x

µ 1 − 1

p

= e −γ log x

µ 1 + O

µ 1 log x

¶¶

(18) see [MSC, p. 259, VII. 29]) we have

ϕ(M (t))

M (t) ≥ Y

N <p≤x

µ 1 − 1

p

≥ c 1 log N log x and (a) ³

log N log x

´ 1/N

→ 1 implies (b) ³

ϕ(M(t)) M(t)

´ 1/N

→ 1. Since e c

2

x ≤ Y

N <p≤x

p ≤ (k + 1)(k + 2) . . . (k + N ) < (k + N ) N

we have c 2 x < N log(k + N ) and (c) ³

log N log(N log(k+N))

´ 1/N

→ 1 implies (a) and (b) and finally F (k,k+N ] (x) → g 0 (x). But

(c) ⇐⇒ 1 N

µ

log log N

log(N log(k + N ))

→ 0 ⇐⇒ log log log k

N → 0.

¤

Note 3. Assume that P (t)|k, where P (t) = Q

p≤t p and t = N . Analogically as in (11), for a divisor d|n denote d(t) = Q

p|d,p≤t p and d (t) = Q

p|d,p>t p. Since d(t)|n = k + j, d(t)|k then d(t) ≤ N and if we assume d > N , then must be d (t) > 1. Hence

X

N <d|n

Φ(d) = X

d(t)|n(t)

Φ(d(t)) X

d

(t)|n

(t) d

(t)>1

Φ(d (t)) =

µ ϕ(n(t)) n(t)

¶ s µµ

ϕ(n (t)) n (t)

¶ s

− 1

(9)

which gives

¯

¯

¯

¯ X

N <d|n

Φ(d)

¯

¯

¯

¯

≤ 1 −

µ ϕ(n (t)) n (t)

¶ s

.

Applying Theorem 1 we see that lim N →∞ 1 N

P

k<n≤k+N

³ ϕ(n

(t)) n

(t)

´ s

= 1 implies (1).

Since ϕ(M(t)) M(t)ϕ(n(t)) n(t) also ϕ(M(t)) M(t) → 1 implies (1). These results directly follows from Erd˝os Theorem 2 and moreover for general k.

Using Erd˝os’ Lemma 1 we prove the following quantitative form of Theorem 1.

Theorem 4. For any two sequences N and k of positive integers and for every s = 1, 2, . . . , we have

1 N

X

k<n≤k+N

X

N <d|n

Φ(d) = 1 N

X

k<n≤k+N

µ ϕ(n) n

¶ s

− 1 N

N

X

n=1

µ ϕ(n) n

¶ s

+ O

µ 3 s (1 + log N ) s N

(19)

Proof. Replace n by n(t) in (9). Then 1

N

X

k<n≤k+N

X

d|n(t)

Φ(d) = 1 N

X

k<n≤k+N

µ ϕ(n(t)) n(t)

¶ s

=

=

N

X

d=1

Φ(d) d + 1

N

N

X

d=1

Φ(d) µ½ k

d

¾

½ k + N d

¾¶

+ 1 N

X

k<n≤k+N

X

N <d|n(t)

Φ(d).

Erd˝os’ Lemma 1 implies that for every k, N , N → ∞ 1

N

X

k<n≤k+N

X

N <d|n(t)

Φ(d) → 0. (20)

Since

X

N <d|n

Φ(d) = X

N <d|n(t)

Φ(d) + X

d|n(t)n

(t) (d,n

(t))>1

Φ(d)

and the second sum is equal to ³

ϕ(n(t) n(t)

´ s ³³

ϕ(n

(t)) n

(t)

´ s

− 1 ´

we see (19). ¤ 4. Examples

For the optimality of log log log k in Theorem 3, Erd˝os gave the following example.

(10)

Example 1. Divide P (t) = Q

p≤t p into N numbers A 1 , A 2 , . . . , A N such that (i) A i , i = 1, 2, . . . , are relatively prime,

(ii) ϕ(A A

i

)

i

< 1 2 for i = 1, 2, . . . ,

(iii) if p is the maximal prime in A i , then for A i = A i /p we have ϕ(A A

i

)

i

> 1 2 . The part (iii) implies ϕ(A A

i

)

i

> 1 4 and thus µ 1

4

¶ N

< Y

p≤t

µ 1 − 1

p

= ϕ(A 1 )

A 1 . . . ϕ(A N ) A N <

µ 1 2

¶ N

.

From it, applying (18), we find N < c 1 log log t. By Chinese theorem there exists k 0 <

A 1 . . . A N such that k 0 ≡ −i (mod A) i for i = 1, 2, . . . , N . Put k = k 0 + A 1 . . . A N , then we have

e c

2

t < P (t) = A 1 . . . A N < k which implies t < c 3 log k and log log t < c 4 log log log k. Thus

log log log k N > 1

c 1 c 4

log log t log log t .

Furthermore for these k and N we have F (k,k+N ] (x) 6→ g 0 (x) since by (ii) 1

N

X

k<n≤k+N

ϕ(n) n < 1

2 < 1 N

N

X

n=1

ϕ(n) n = 6

π 2 + O

µ log N N

¶ .

In the following Example 2 we find integer sequences k, N , for which (1) holds and lim N →∞ log log log k

N = ∞.

Example 2. Let x = x(N ) be increases arbitrary quickly as N → ∞, e.g. x(N ) = e e

eN

. The left boundary point k = k(N ) of the interval (k, k + N ] we put as k = Q

p≤x p, where p are primes. Let M = Q

x<p≤x+y(x) p having the same number of prime divisors as M (t) (t = N ). Clearly, to prove ϕ(M(t)) M(t) → 1 it suffices to show

ϕ(M )

M = Y

x<p≤x+y(x)

µ 1 − 1

p

→ 1 (21)

as x → ∞. Using the expression (18) we have that (21) holds if log ³

1 + y(x) x ´

log x → 0 (22)

as x → ∞. The inequality

M ≤ M = Y

k<n≤k+N

n (t) ≤ (k + N ) N ≤ (2k) N

(11)

leads to P

x<p≤x+y(x) log p ≤ 2N P

p≤x log p and thus X

p≤x+y(x)

log p ≤ (2N + 1) X

p≤x

log p. (23)

Applying the well known inequality (see [L, p. 83]) log 2 ≤ lim inf

x→∞

P

p≤x log p

x ≤ lim sup

x→∞

P

p≤x log p

x ≤ 2 log 2 into (23), then we have, for x ≥ x 0 (ε), that y(x) satisfies

(log 2 − ε)(x + y(x)) ≤ (2N + 1)(2 log 2 + ε)x

which implies y(x) x ≤ cN , where c is a constant. Thus (21) and consequently (1) holds, if x = x(N ) ≥ e N . Since k(N ) = Q

p≤x(N ) p ≥ e c

1

x(N ) , for x(N ) = e e

eN

we have

N→∞ lim

log log log k

N = ∞,

what we asked for.

4. Normal order of ω(n) , n ∈ (k, k + N ]

To simplify (2) we study the normal ordering of ω(n)-the umber of distinct prime divisors of n- in the interval (k, k + N ] (compare with V.A. Plaksin, see [MSC, p.

156]).

Theorem 4. For every positive integers k and N we have

X

k<n≤k+N

(ω(n) − log log N ) 2 = O(N log log N ) + X

k<n≤k+N

X

N <p.q|k+n p6=q

1.

A proof follows from the following lemmas.

Lemma 2. For every positive integers k and N we have

X

k<n≤k+N

ω(n) = N log log N + B.N + O µ N

log N

+ X

k<n≤k+N

X

N <p|n

1,

where the constant B = lim N →∞ ³³ P

p≤N 1 p

´ − log log N ´

.

(12)

Lemma 3. For every positive integers k and N we have

X

k<n≤k+N

(ω(n)) 2 = N (log log N ) 2 + O(N log log N ) +

N

X

k<n≤k+N

X

N <p.q|n p6=q

1

+ X

k<n≤k+N

X

N <p|n

1.

Proof of Lemma 1.

X

k<n≤k+N

ω(n) = X

p≤k+N

µ· k + N p

¸

· k p

¸¶

= X

p≤k+N

N

p + X

p≤k+N

½ k p

¾

½ k + N p

¾ . The final sum we divide into two parts; P

p≤N and P

N <p≤k+N . The first sum is O(π(N )) and for the second we use (5) and the summation method in (7) which gives

X

N <p≤k+N

½ k p

¾

½ k + N p

¾

= X

N <p≤k+N

− N

p + X

k<n≤k+N

X

N <p|n

1.

Thus

X

k<n≤k+N

ω(n) = X

p≤N

N

p + O(π(N )) + X

k<n≤k+N

X

N <p|n

1. (24)

Bearing in mind

X

p≤N

1

p = log log N + B + O µ 1

log N

the proof is finished. ¤

Notes 2. Similarly to Notes 1 we have

N

X

j=1

X

p|k+j p≤N

1 = X

p≤N

N

p + O(π(N )) uniformly on k.

Proof of Lemma 2.

X

k<n≤k+N

ω 2 (n) = X

all pairs of primes (p,q) p,q≤k+N

X

k<n≤k+N p|nandq|n

1

= X

p.q≤k+N p6=q

· k + N p.q

¸

· k p.q

¸

+ X

p≤k+N

· k + N p

¸

· k p

¸

= X

p.q≤k+N p6=q

N

p.q + X

p.q≤k+N p6=q

½ k p.q

¾

½ k + N p.q

¾

+ X

p≤k+N

N

p + X

p≤k+N

½ k p

¾

½ k + N p

¾

(13)

Since (using (5) and (7)) X

p.q≤N p6=q

½ k p.q

¾

½ k + N p.q

¾

= O(N log log N ),

X

N <p.q≤k+N p6=q

½ k p.q

¾

½ k + N p.q

¾

= X

N <p.q≤k+N p6=q

− N p.q +

N

X

j=1

X

N <p.q|k+j p6=q

1,

X

p≤N

½ k p

¾

½ k + N p

¾

= O µ N

log N

¶ ,

X

N <p≤k+N

½ k p

¾

½ k + N p

¾

= X

N <p≤k+N

− N p +

N

X

j=1

X

N <p|k+j

1,

and moreover

X

p.q≤N p6=q

1

p.q = (log log N ) 2 + O(log log N ), thus the proof of Lemma 2 is finished. ¤

Finally, the proof of Theorem 4 follows directly from the expression X

k<n≤k+N

(ω(n) − log log N ) 2 = X

k<n≤k+N

ω 2 (n) − 2 log log N X

k<n≤k+N

ω(n)

+ N (log log N ) 2 , from the Lemma 2 and 3 and from

X

k<n≤k+N

X

N <p|n

1 − 2 log log N X

k<n≤k+N

X

N <p|n

1 ≤ 0.

For every integers k, N , the sum N 1 P

k<n≤k+N

P

N <d|n Φ(d) can be approximate by using the following steps.

a) Let ω(n) ≤ c. log log N for fixed c > 0. Since (see [P, p. 361])

¯

¯

¯

¯

¯

¯ X

N <d|n

Φ(d)

¯

¯

¯

¯

¯

¯

≤ 2 ω(n) s ω(n) N

and 2 ω(n) ≤ ¡

e log log N ¢ c log 2

= (log N ) c

1

, s ω(n) ≤ (log N ) c

2

, thus

¯

¯

¯

¯

¯

¯ X

N <d|n

Φ(d)

¯

¯

¯

¯

¯

¯

≤ (log N ) c

3

N .

(14)

b) Let ω(k + j ) > c. log log N . Then |ω(k + j ) − log log N | > (c − 1) log log N . Denote by (as in a classical proof of normal order of ω(n))

R ε ((k, k + N ]) = #{n ∈ (k, k + N ]; |ω(n) − log log N | > ε log log N } then

R ε ((k, k + N ])ε 2 (log log N ) 2 ≤ X

k<n≤k+N

(ω(n) − log log N ) 2 . Applying Theorem 4 we obtain

R ε ((k, k + N ]) ≤ 1 ε 2

 O

µ N log log N

+ 1

(log log N ) 2

X

k<n≤k+N

X

N <p.q|n p6=q

1

 .

Thus we need to estimate the following R c−1 ((k, k + N ])

N . max

k<n≤k+N

¯

¯

¯

¯

¯

¯

¯

¯

X

N <d|n ω(n)≥c log log N

Φ(d)

¯

¯

¯

¯

¯

¯

¯

¯ .

5. Concluding remarks

1. Lemma 1 implies that every d.f. g(x), F (k,k+N] → g(x) a.e. on [0, 1] must satisfies Z 1

0

x s dg(x) ≤ Z 1

0

x s dg 0 (x), for every s = 1, 2, . . . .

2. Replaced 1/2 by 1/N in (ii) in Example 1, then by Chinese theorem we can find k, N such that F (k,k+N] (x) → c 1 (x) where d.f. c 1 (x) has a step 1 in x = 1.

3. A. Schinzel and Y. Wang [SW] proved that for every fixed N the N − 1-dimensional sequence

µ ϕ(k + 2)

ϕ(k + 1) , ϕ(k + 3)

ϕ(k + 2) , . . . , ϕ(k + N ) ϕ(k + N − 1)

, k = 1, 2, . . . , N

is dense in [0, ∞) N−1 . Thus, for any given (α 1 , α 2 , . . . , α N −1 ) ∈ [0, ∞) N −1 we can select a sequence of k such that

µ ϕ(k + 2)

ϕ(k + 1) , ϕ(k + 3)

ϕ(k + 2) , . . . , ϕ(k + N ) ϕ(k + N − 1)

→ (α 1 , α 2 , . . . , α N−1 ).

Select a subsequence of k such that ϕ(k+1) k+1 → α. Then µ ϕ(k + 1)

k + 1 , ϕ(k + 2)

k + 2 , . . . , ϕ(k + N ) k + N

→ (α, αα 1 , αα 1 α 2 , . . . , αα 1 α 2 . . . α N −1 ).

(15)

Summary, if α n , n = 1, 2, . . . is an infinite sequence in [0, ∞) then there exists a sequence k = k(N ) and α ∈ [0, 1] such that F (k,k+N ] (x) → g(x) and g(x) is the as- ymptotic distribution function of the sequence αα 1 . . . α n , n = 1, 2, . . . . The constant α is not arbitrary, since

N lim →∞ α 1 N

N −1

X

n=0

α 1 . . . α n ≤ 6 π 2 .

4. For completeness we referee some known properties of the d.f. g 0 (x). P. Erdo˝os [E3] estimates modulus of continuity of g 0 (x). The explicit construction of g 0 (x) is given in H. Davenport [D].

References

[D] DAVENPORT, H., Uber numeri abundantes, Sitzungsber. Preuss. Acad., Phys.-Math. Kl. ¨ 27 (1933), 830–837.

[DT] DRMOTA, M.-TICHY, R. F., Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, Heidelberg, 1997.

[E1] ERD ¨ OS, P., On the smoothness of the asymptotic distribution of additive arithmetical func- tions, Amer. Journ. Math. 61 (1939), 722–725.

[E2] ERD ¨ OS, P., Some remarks aout additive and multiplicative functions, Bull. Amer. Mat. Soc.

52 (1946), 527–537.

[E3] ERD ¨ OS, P., On the distribution of numbers of the form σ(n)/n and some related questions, Pacific Jour. Math. 52 (1974), 59–65.

[KN] KUIPERS, L. – NIEDERREITER, H., Uniform Distribution of Sequences, John Wiley &

Sons, New York, 1974; reprint edition, Dover Publications, Inc., Mineola, New York, 2006.

[L] LANDAU, E. , Handbuch der Lehre von der Verteilung der Primzahlen, Band 1, Verlag von B. G. Teubner, Leipzig, 1909.

[MSC] MITRINOVIC, D.S. – S ´ ANDOR, J. – CRSTICI, B. , Handbook of Number Theory, Mathe- matics and its Applications, vol. 351, Kluver Academic Publisher, Dordrecht, 1996.

[N] NARKIEWICZ, W., Number Theory, Biblioteka Matematyczna, Tom 50, PWN, Warsaw, 1990. (Poland)

[P] POSTNIKOV, A. G., Introduction to Analytic Number Theory, Izd. Nauka, Moscow, 1971 (Russian); English translation by G. A. Kandall, Translation of Mathematical Monographs, vol. 68, Amer. Math. Soc., Providence, RI, 1988.

[SW] SCHINZEL, A. – WANG, Y., A note on some properties of the functions φ(n), σ(n) and θ(n), Ann. Polon. Math. 4 (1958), 201–213.

[S1] SCHOENBERG, I.J., Uber die asymptotische Verteilung reeller Zahlen ¨ mod 1, Math. Z.

28 (1928), 171–199.

[S2] SCHOENBERG, I. J., On asymptotic distribution of arithmetical functions, Trans. Amer.

Math. Soc. 39 (1936), 315–330.

[SP] STRAUCH, O. - PORUBSK ´ Y, ˇ S., Distribution of Sequences: A Sampler, Schriftenreihe der Slowakischen Akademie der Wissenschaften, Band 1, Peter Lang, Frankfurt am Main, 2005.

Vladimir Bal´ aˇ z Department of Mathematics of the Chemical Technology Faculty, Ralinskeho 9, SK-812 37 Bratislava, Slovak republic

Pieree Liardet

Oto Strauch Mathematical Institute of the Slovak Academy of Sciences, ˇ Stef´ anikova 49, SK-814 73 Bratislava, Slovak republic

E-mail address: vladimir.balaz@stuba.sk strauch@mat.savba.sk

Références

Documents relatifs

We proposed to see a binary sequence of length 2 n as the truth table of a Boolean function, compute its nonlinearity and absolute indicator and compare it to the expected values

Having at hand the expression (2.2) for the Stern sequence in terms of iterates of the Gauss map, the first step towards the proof of Theorem 1.2 is to construct a generating series

Supercooled liquids and metallic glasses are viewed as defected states of bond-orien- tational order: regions of short-range icosahedral I3,3,51 order are broken by an array

This problem has been completely solved for certain aggregation functions (see for instance [21, §7.2]), especially piecewise linear functions such as weighted sums [5] (see also

We will denote by L the language corresponding to words associated to recurrent configurations on simple wheels of any size: a word of length n belongs to L if and only if

of reducing the statistical properties of additive arithmetical functions to that of sums of independent terms, his tools are however a bit complicated especially

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation

An inversion formula expressing the texture function in terms of angular distribution