• Aucun résultat trouvé

Experiments on anisotropic and rate sensitive strain ratio and modulus of columnar-grained ice

N/A
N/A
Protected

Academic year: 2021

Partager "Experiments on anisotropic and rate sensitive strain ratio and modulus of columnar-grained ice"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Journal of Offshore Mechanics and Arctic Engineering, 111, 4, pp. 354-360, 1989

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1115/1.3257107

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Experiments on anisotropic and rate sensitive strain ratio and modulus

of columnar-grained ice

Sinha, N. K.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=f8825293-95ad-4356-ba01-c2bcbd21e49c

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f8825293-95ad-4356-ba01-c2bcbd21e49c

(2)

. -

Se

r

TH1

&'1d

no.

1515

c. 2

National Research

Conseil national

BLDG

I

Council Canada

de recherches Canada

- - - -

Institute for

lnstitut de

Research in

recherche en

Construction

construction

Experiments on Anisotropic and Rate

Sensitive Strain Ratio and Modulus of

Columnar-

Grained Ice

by N.K. Sinha

A N A L Y Z E D

Reprinted from

Proceedings of the Seventh International Conference on

Offshore Mechanics and Arctic Engineering

Houston, Texas, February 7

-

12, 1988

VO~.

IV, p. 55-62

(IRC Paper No. 1515)

Price

$3.00

NRCC 28748

N R C

-

CISTI

I R C

LlSWARY

APR 8

1236

B I B L I O T H Z Q U E

(3)

On a Ctudit les caractCristiques d'anisotropie et de sensibilitk au taux du rapport de la

dCfomation lattrale

B

fa d B f o d o n axiale, ainsi que le module effectif de sensibilitk au

taux

pour de la glace d'eau d a c e et

de

la glace de mer P grains prismatiques de 1'Arctique.

Des essais ont

td

&alisCs

B

-20

OC

dans des conditions de non-microfissuration sous des

charges uniaxiales

(

rpendiculaires B la longueur des grains) dans la plage de taux de

%=

contrainte

de

1

x 10-

MN-m-2

3-1

B

1 x

102 M N * ~ - 2

s-1, soit une variation Cquivalente

du taux de &formation

de

1 x

10-7 s-1

P

1

x

10-2 s- 1. Dans le cas d'augmentatian du taux

de conmink, le

rapport

est pas& d'environ 0,2 P0,3 dans le plan

pardele

aux prisrnes,

tandis qu'il est

pasd

d'environ 0,65 h 0,3 dans le plan normal.

On a

utilid un appareil

d'essai fonctionnant en boucle fem6e associC P des jauges 21 feuille mince montees

directement sur l'6prouvette. Pour Cvaluer la justesse des jauges

i%

feuitie

&nee,

on s'est

servi d'une jauge

de

&placement clipsable.

(4)

EXPERIMENTS ON ANISOTROPIC AND RATE SENSITIVE STRAIN RATIO AND MODULUS OF COLUMNAR-GRAINED ICE

N. K. Sinha

National Research Council Canada Ottawa, Ontario. Canada

ABSTRACT

A n i s o t r o p i c and r a t e s e n s i t i v e c h a r a c t e r i s t i c s o f t h e r a t i o o f l a t e r a l s t r a i n t o a x i a l s t r a i n i n a d d i t i o n t o t h e r a t e s e n s i t i v e e f f e c t i v e modulus f o r columnar-grained f r e s h w a t e r i c e and sea i c e from t h e A r c t i c , have been i n v e s t i g a t e d . Tests were c a r r i e d o u t a t -20°C, f o r c o n d i t i o n s o f no m i c r o c r a c k i n g under u n i a x i a l l o a d s (normal t o t h e l e n g t h o f t h e g r a i n s ) i n t h e s t r e s s r a t e r a n e o f 1 x M N ~ - ~ s - ~ t o 1 x

l o 2

M N . ~ - ~ s-P o r an e q u i v a l e n t s t r a i n r a t e range o f 1 x

lo-'

s - l t o 1 x s - l . With i n c r e a s e i n s t r e s s r a t e , t h e r a t i o i n c r e a s e d f r o m about 0.2 t o 0.3 i n t h e p l a n e p a r a l l e l t o t h e columns whereas i t decreased from about 0.65 t o 0.3 i n t h e p l a n e normal t o t h e c o l umns. A c l o s e d - l o o p c o n t r o l l e d t e s t system i n a s s o c i a t i o n w i t h f o i l gauges, mounted d i r e c t l y on t h e specimen, was used. A c l ip o n displacement gauge was used t o e v a l u a t e t h e accuracy o f t h e f o i l gauges.

INTRODUCTION

A measure o f t h r e e dimensional deformation i n a m a t e r i a l i s g i v e n by t h e P o i s s o n ' s r a t i o . T h i s i s d e f i n e d as t h e r a t i o o f t h e l a t e r a l s t r a i n t o t h e l o n g i t u d i n a l s t r a i n i n a homogeneous m a t e r i a l f o r a u n i a x i a l e l a s t i c l o a d i n g c o n d i t i o n . It i s a m a n i f e s t a t i o n o f t h e f a c t o r s t h a t p l a y a c e n t r a l r o l e i n t h r e e dimensional c o n s t i t u t i v e f o r m u l a t i o n s f o r m a t e r i a l s i n c l u d i n g i c e . P o i s s o n ' s r a t i o i n t h e range 0.31 t o 0.37 f o r f r e s h w a t e r i c e was t a b u l a t e d some y e a r s ago by Gold ( 1 ) . L i n ' K o v ' s ( 2 ) i n - s i t u s e i s m i c d e t e r m i n a t i o n s f o r i c e ranged f r o m 0.36 t o 0.39. Both Peschansky ( 3 ) and Langleben and Pounder ( 4 ) r e p o r t e d dynamic values o f 0.29 f o r sea i c e . There i s l i t t l e d i s c r e p a n c y i n t h e d y n a m i c a l l y o b t a i n e d data, i r r e s p e c t i v e o f t h e i c e t y p e . S t a t i c a l l y determined v a l u e s , on t h e o t h e r hand, show g r e a t v a r i a b i l i t y i n t h e r e s u l t s r e p o r t e d by d i f f e r e n t i n v e s t i g a t e r s . For t r a n s v e r s e l y i s o t r o p i c , c o l umnar-grained, f r e s h w a t e r i c e 1 oaded p e r p e n d i c u l a r t o t h e c o l umns, G o l d ' s s t a t i c experiments i n d i c a t e d values i n t h e Presented at the Seventh International Conference on

Offshore Mechanics and Arctic Engineering Houston, Texas - February 7-12, 1988

range o f 0.31 t o 0.54 f o r t h e r a t i o o f t r a n s v e r s e t o l o n g i t u d l n a l s t r a l n s (1). Corresponding t o t h i s ,

Wang ( 5 ) r e p o r t e d a range o f 0.8 t o 1.2 f o r sea i c e ,

however, he o b t a i n e d values i n t h e range of 5 t o 0.2 when t h e l o a d was a p p l i e d f n t h e d i r e c t i o n p a r a l l e l t o t h e l e n g t h o f t h e columns. Saeki e t a1 (6) a l s o s t u d i e d d e f o r m a t i o n a l o n g t h e l e n g t h o f t h e columns i n sea i c e b u t r e p o r t e d a r a t h e r complex response, t h e r a t i o i n c r e a s i n g from 0.02 t o 0.48 w i t h i n c r e a s e i n s t r e s s r a t e f r o m 0.01 t o 0.5 M N * ~ - ~ s - l . I n t h e same s t r e s s r a t e range and f o r t h e d i r e c t i o n normal t o t h e columns a t -5OC, Murat and L a i n e y ( 7 ) r e p o r t e d t h e r a t i o d e c r e a s i n g from 0.48 t o 0.38. Moreover Saeki e t a1 ( 6 ) r e p o r t e d t h a t t h e r a t i o i n c r e a s e d w i t h decrease i n t e m p e r a t u r e whereas an o p p o s i t e temperature e f f e c t was observed by Murat and L a i n e y ( 7 ) . While examining t h e r a t e

s e n s i t i v i t y o f t h e compressive s t r e n g t h o f congealed f r a z i l sea i c e , Sinha ( 8 ) observed t h a t t h e s t r a i n r a t i o depends n o t o n l y on r a t e o f l o a d i n g b u t a l s o on s t r e s s o r s t r a i n l e v e l and t h e s t a t e o f damage ( m i c r o c r a c k i n g ) o f t h e m a t e r i a l .

The v a r i a b i l i t y observed i n t h e s t a t i c a l l y determined values o f t h e r a t i o between t h e l a t e r a l s t r a i n and t h e a x i a l s t r a i n i n d i c a t e s t h e complex mechanical response o f i c e . The c o m p l e x i t i e s a r i s e p r i m a r i l y because working temperatures w i t h i c e a r e v e r y c l o s e t o i t s m e l t i n g p o i n t , T

,

and a r e u s u a l l y g r e a t e r t h a n 0.9 Tm where The t e m p e r a t u r e i s g i v e n i n K e l v i n scale. At h i g h temperatures,

>

0.4 T

,

p o l y c r y s t a l l i n e d e f o r m a t i o n i s g r e a t l y affecTed by i n t e r g r a n u l a r s l i d i n g mechanisms and g r a i n boundary e m b r i t t l e m e n t processes i n a d d i t i o n t o t h e i n t e r g r a n u l a r d e f o r m a t i o n due t o t h e e l a s t i c d i s t o r t i o n o f t h e l a t t i c e and m o b i l i t y o f l a t t i c e d i s l o c a t i o n s . C o n s t i t u t i v e e q u a t i o n s f o r i c e t h e r f o r e must g i v e c o n s i d e r a t i o n t o t h e s e

mechanisms. A micromechani c a l l y based r h e o l o g i c a l model was proposed (9) t o show t h a t t h e m a t e r i a l

response, however complex, i s reasonably

p r e d i c t a b l e . T h i s model a l s o p o i n t e d o u t t h e d i r e need f o r r e l i a b l e e x p e r i m e n t a l d a t a on t h r e e dimensional d e f o r m a t i o n o f i c e w i t h known f a b r i c , t e x t u r e , g r a i n s i z e and damage s t a t e , and o b t a i n e d

(5)

under w e l l d e s c r i b e d experimental c o n d i t i o n s such as temperature, s t r e s s and s t r e s s r a t e , s t r a i n and s t r a i n h i s t o r y . The p r e s e n t paper d e s c r i b e s an e f f o r t towards t h i s goal and p r e s e n t s some r e s u l t s on s t r a i n r a t i o and e f f e c t i v e modulus o f

columnar-grained f r e s h - w a t e r and sea i c e over a wide ( o v e r f i v e o r d e r s o f magnitude) range of l o a d i n g r a t e s f o r c o n d i t i o n s w i t h no d e t e c t a b l e m i c r o c r a c k i n g a c t i v i t i e s . The maximum s t r e s s wat k e p t below t h a t r e q u i r e d t o form m i c r o c r a c k s .

ICE CHARACTERISTICS AND SPECIMEN PREPARATION I n v e s t i g a t i o n s were p r i m a r i l y c a r r i e d out on 1 a b o r a t o r y made t r a n s v e r s e 1 y i s o t r o p i c

c o l umnar-grained f r e s h w a t e r , S-2 t y p e i c e , w i t h l o a d a p p l i e d i n t h e p l a n e o f i s o t r o p y , t h a t i s , a t r i g h t angles t o t h e l o n g a x i s o f t h e columns. The i c e was t r a n s p a r e n t w i t h no a i r bubbles and had a d e n s i t y o f 917.8 ~ g - m - ~ , a t - l O ° C , which was t h e same as t h a t o f s i n g l e c r y s t a l d e n s i t y . The c r o s s s e c t i o n a l g r a i n s i z e s v a r i e d i n t h e range o f 2 t o 3 mm. G r a i n s t r u c t u r e i n t h e mid-plane o f one o f t h e specimen (L83) t e s t e d i s shown i n F i g u r e 1. Note t h e

u n i f o r m i t y i n t h e c r o s s s e c t i o n a l g r a i n s i z e s t h r o u g h t h e e n t i r e 250 mn l o n g specimen. D e t a i l s o f g r a i n s a r e g i v e n i n F i g u r e 2. I n t h i s t h i n s e c t i o n , 1498 g r a i n s were counted i n an area o f 90 mm x 100 mm, g i v i n g an average g r a i n area, a, o f 6.01 mm2 which

g i v e s an e q u i v a l e n t g r a i n diameter, d ( d = 2

G),

of 2.77 mm. The c o r r e s p o n d i n g average g r a i n s i z e

o b t a i n e d from t h e i n t e r c e p t method, u s i n g t e n random1 y s e l e c t e d 1 i nes over t h e same o b s e r v a t i o n area, was 2.33 mm. This i s 16% lower than t h a t g i v e n by t h e f i r s t method. I f a l l t h e g r a i n s a r e assumed t o be square i n cross s e c t i o n , t h e n 6.01 mn area i s e q u i v a l e n t t o a square w i t h s i d e s o f 2.4 mm which agrees w e l l w i t h t h e s i z e g i v e n by t h e i n t e r c e p t method.

Experiments were performed i n s i d e a c o l d room k e p t a t -20°C

+

O.l°C on specimens w i t h f i n a l

dimensions o f 50 mm x 100 mm x 250 mm, h a v i n g t h e 100 mm x 250

mn

faces a t r i g h t angles t o t h e l e n g t h o f t h e c o l umnar-grai ns .' They were machined w i t h a m i l l i n g machine and a l a t h e i n s i d e an a d j a c e n t c o l d

room a t -15OC. C u t t e r marks on t h e s u r f a c e s were removed w i t h f i n e sandpaper on a f l a t g r a n i t e b l o c k . F i n a l f i n i s h was g i v e n by w i p i n g w i t h a t i s s u e s l i g h t l y moistened w i t h a1 coho1

.

The samples were t h e n s t o r e d at-20°C w i t h i n t h e experimental c o l d room

i n i n d i v i d u a l bags u n t i l t h e y were t e s t e d w i t h i n a few days. It should be p o i n t e d o u t h e r e t h a t f o r t h e chosen o r i e n t a t i o n o f t h e g r a i n s , r e c t a n g u l a r

geometry o f t h e specimen i s more c o m p a t i b l e t h a n t h e c y l i n d r i c a l specimen. Though obvious, t h i s f a c t i s over1 ooked by most i n v e s t i g a t o r s .

A few t e s t s were a l s o c a r r i e d out a t -20°C on a specimen o f f i r s t - y e a r columnar-grained sea i c e w i t h p r e f e r r e d c - a x i s o r i e n t a t i o n i n t h e h o r i z o n t a l p l a n e (S-3 t y p e ) . The specimen had t h e f i n a l dimensions o f 100 mm x 100 mm x 250 mn w i t h t h e

l o n g dimension para1 1 e l t o t h e p r e f e r r e d c - a x i s o r i e n t a t i o n i n t h e p l a n e normal t o t h e columns. T h i s sample was made from an i c e b l o c k sampled i n May 1986 from A d m i r a l t y I n l e t near B a f f i n I s l a n d . The s a l i n i t y ( ~ O / O O ) and m i c r o s t r u c t u r e o f t h i s i c e was s i m i l a r t o t h a t r e p o r t e d i n Nakawo and Sinha (12) f o r sea i c e from E c l i p s e Sound, B a f f i n I s l a n d .

FIGURE 1 . H o r i z o n t a l ( a ) and v e r t i c a l ( b ) t h i n s e c t i o n s o f t e s t specimen L83, made a f t e r c o m p l e t i n g t h e t e s t s e r i ~ q

FIGURE 2. Mid-plane t h i n s e c t i o n o f t e s t specimen L83 e x h i b i t i n g no grain-boundary

d i s t o r t i o n s , small a n g l e boundaries and c r a c k s .

TEST METHODS

A commercial c l osed-1 oop, servohydraul i c t e s t machine, w i t h a d e s i g n l o a d c a p a c i t y o f 1 MN f o r t h e frame (MTS) and s i t u a t e d i n s i d e t h e c o l d room near an o b s e r v a t i o n window, was used. The c o n t r o l s , pumps, and r e c o r d i n g systems were k e p t o u t s i d e t h e c o l d room. The l o a d i n g t r a i n c o n s i s t e d o f t w o 152 mn diameter compression p l a t e n s (one a t t h e t o p and one a t t h e bottom o f t h e specimen), a s p h e r i c a l seat, a 250 kN c a p a c i t y l o a d c e l l and a 250 kN c a p a c i t y a c t u a t o r . The lower p l a t e n was a t t a c h e d t o t h e a c t u a t o r and t h e upper p l a t e n r e a c t e d a g a f n s t t h e l o a d frame t h r o u g h t h e

s p h e r i c a l seat and t h e l o a d c e l l . The lower p l a t e n

was s p e c i a l l y designed w i t h a l i q u i d c i r c u l a t i o n

system t o m a i n t a i n i t a t t h e c o l d roan a i r

t e m p e r a t u r e and thereby p r e v e n t jt from any wanning e f f e c t f r a n t h e o i l i n t h e a c t u a t o r . C m p r e s s i v e

(6)

l o a d s were a p p l i e d p a r a l l e l t o t h e l o n g a x i s o f t h e specimens and hence normal t o t h e l e n g t h o f t h e

columnar g r a i n (See F i g u r e 3 ) . A x i a l l o a d r a t e and

hence s t r e s s r a t e was m a i n t a i n e d c o n s t a n t d u r i n g a

t e s t by t h e feedback system. Tests were conducted

over a wide range o f s t r e s s r a t e s f r o m 1

l o m 3

M N * ~ - ~ s - I t o 1.25 x

l o 2

M N * ~ - ~ S-l.

E a r l i e r experiments ( l o ) , c a r r i e d out on c o l umnar-grai ned i c e , showed t h a t m i c r o c r a c k s , about t h e s i z e o f t h e g r a i n f a c e t s , form when t h e

s t r e s s exceeds about 1.2 M N * ~ - ~ f o r s t r e s s r a t e s

g r e a t e r t h a n 1 x M N - ~ - ~ s - l . It was decided

t o keep t h e peak s t r e s s , a w e l l below c r a c k i n g

l e v e l t o a v o i d any e f f e c t s l i u e t o t h e cracks. The

system was programmed t o a p p l y t h e l o a d up t o an e q u i v a l e n t s t r e s s l e v e l o f about 0.75 ~ N - r n - ~ and

t h e n t o unload r a p i d l y t o zero s t r e s s . A l o n g

i n c u b a t i o n t i m e was g i v e n a f t e r each t e s t s d u r i n g which t h e specimen s t r a i n s were m o n i t o r e d i n o r d e r t o be c e r t a i n t h a t t h e specimen was a t an

e q u i l i b r i u m s t a t e b e f o r e l o a d i n g again. S t r e s s r a t e s were chosen randomly t o a v o i d any e f f e c t due t o m i c r o s t r u c t u r a l change t h a t c o u l d occur d u r i n g t h e t e s t s and s y s t e m a t i c a l l y i n f l u e n c e t h e r e s u l t s .

To a v o i d specimen t o specimen v a r i a t i o n , i t was

planned t o do as many t e s t s as p o s s i b l e on t h e same

specimen. However, an a c c i d e n t occured d u r i n g

h a n d l i n g and t h e f i r s t t e s t specimen ( d e s i g n a t e d as L81), a f t e r several t e s t s , broke i n t o small p i e c e s

when i t s l i p p e d and dropped on t h e f l o o r . A second

specimen ( ~ 8 3 ) was then used. Tests were t e r m i n a t e d

on t h i s specimen a f t e r s e v e r a l days o f t e s t i n g vlhen two f o i l gauges came o f f t h e specimen d u r i n g s t o r a g e

o v e r a weekend. T h i s specimen showed no c r a c k s

a f t e r a1 1 t h e t e s t s . M i c r o s t r u c t u r a l examination o f

t h i s specimen was t h e n made and a r e shown i n F i g u r e s

1 and 2. Tests on t h e sea i c e specimen (L82) were

t e r m i n a t e d when i t was damaged d u r i n g handl i n g . For t h e chosen maximum s t r e s s l e v e l o f 0.75

M N * ~ - ~ , t h e t o t a l l o a d i n g t i m e i s 0.0075 seconds a t

t h e i n t e n d e d maximum s t r e s s r a t e o f 1 x

l o 2

M N . ~ - ~

s . I n o r d e r t o r e c o r d a reasonably c o n t i n u o u s

h i s t o r y of l o a d i n g , t h e r e should a t l e a s t be 100

d a t a p o i n t s d u r i n g t h e l o a d i n g phase. This means

t h a t d a t a should be c o l l e c t e d a t a r a t e o f 1.3 x

l o 4

s - l

.

A v a i l a b i l i t y o f a s i x channel t r a n s i e n t r e c o r d e r , capable of r e c o r d i n g a1 1 t h e channels s i m u l t a n e o u s l y up t o 2 x

l o 6

s - l proved i d e a l . I t was i m p e r a t i v e t h a t t h e a x i a l l o a d and t h e deformation of e s s e n t i a l l y t h e e n t i r e specimen, g i v e n by t h e 200 mm l o n g MTS displacement gauge ( F i g u r e 3) mounted d i r e c t l y on t h e specimen, be

recorded. This procedure a1 1 owed on1 y f o u r

channels t o be used f o r o t h e r measurements. A l l

t h e e l e c t r o n i c equipment was kept o u t s i d e t h e c o l d room.

Four commercially a v a i l a b l e constantan a l l o y g r i d f o i l s t r a i n gauges, w i t h a c t i v e gauge l e n g t h of 12 mm, were mounted on t h e specimen a t t h e t e s t temperature o f -20°C as shown i n F i g u r e 3 f o l l o w i n g

t h e method d e s c r i b e d l a t e r . Longer gauges, though

p r e f e r a b l e , were not used because o f d i f f i c u l t i e s o f

rnounti ng them u n i form1 y

.

These gauges p r o v i d e d

independent measurements o f b o t h a x i a l and l a t e r a l s t r a i n s on two surfaces, one p a r a l l e l t o t h e l e n g t h o f t h e columnar g r a i n s and t h e o t h e r normal t o i t . The gauges were e x c i t e d by a commercial s i g n a l c o n d i t i o n e r and t h e gauge o u t p u t s were a m p l i f i e d b e f o r e r e c o r d i n g . An e x c i t a t i o n v o l t a g e o f 7 v o l t s , f o r t h e 350-ohm s t r a i n gauges, was found s a t i s f a c t o r y w i t h o u t showing any adverse e f f e c t due t o h e a t i n g .

Experiments were conducted w i t h two t y p e s o f

f o i l gauges. No d i f f e r e n c e s were noted i n t h e i r

1 . 2 , 3 . 4 - FOIL GAUGES

5 - DISPLACEMENT GAUGE

O

- ANCHOR I C E

FIGURE 3

EXPERIMENTAL ARRANGEMENT FOR THE GAUGES ON A SPECIMEh

response. Both were i n t e g r a l l e a d t y p e w i t h

a constantan a l l o y g r i d and a c t i v e gauge l e n g t h o f

12 mm. The gauge l e n g t h i s l a r g e enough t o cover

s e v e r a l g r a i n s , y e t small enough t o f r e e z e

u n i f o r m l y on t h e specimen surface. Two t y p e s o f

" o f f t h e s h e l f " M i c r o Measurement I n c . gauges were used: (model number CEA-06-500UW-350) w h i c h were c o m p l e t e l y encapsulated i n a f l e x i b l e p o l y i m i d e

c o a t i n g , and (model number EA-06-500-BL350W), which

were open faced w i t h o n l y a polymide backing. I n

b o t h cases t h e l e a d w i r e s were cleaned and

c a r e f u l l y s o l d e r e d o n t o t h e t a b s . The a c t i v e gauge p o r t i o n o f t h e open faced gauges was t h e n

waterproofed by c o a t i n g f i r s t w i t h a t h i n l a y e r o f Dow Corning 3140 RTV f o l l o w e d by a t h i n l a y e r o f M i c r o Measurements n i t r i l e rubber c o a t i n g , model M. The open ends o f t h e l e a d w i r e s and t h e t a b s were a l s o w a t e r p r o o f e d f o r b o t h t y p e s of gauges by t h e

two l a y e r technique. The encapsulated gauges were

p r e f e r r e d and used i n t h e main p a r t of t h i s study. Several methods, i n c l u d i n g t h a t d e s c r i b e d by Murat ( l l ) , were t r i e d i n s i d e t h e experimental c o l d room f o r mounting t h e s t r a i n gauges on t h e specimen

surfaces. The s i m p l e s t and y e t s a t i s f a c t o r y method

may be d e s c r i b e d as f o l l o w s . A f t e r s e l e c t i n g t h e d e s i r e d l o c a t i o n and p o s i t i o n i n g t h e gauges, about 1 0 mm o f t h e l e a d wires, a t a d i s t a n c e o f about 50 mm from t h e a c t i v e p o r t i o n , was f r o z e n t o t h e specimen u s i n g an eye dropper and two o r t h r e e drops o f water

from a c o n t a i n e r m a i n t a i n e d a t about 0°C. These

d r o p s a c t e d as t h e anchors and i s o l a t e d t h e gauges and t h e j o i n t s from any p u l l i n g a c t i o n o f t h e l e a d

w i r e s d u r i n g f u r t h e r handl i ng

.

Moreover, t h e y a1 so

p r o t e c t e d t h e gauges from any v i b r a t i o n a l s t r a i n induced by t h e l e a d w i r e s t h a t were o f t e n seen t o v i b r a t e d u r i n g t h e experiment when t h e l o a d was a p p l i e d suddenly f o r t h e r a p i d t e s t s o r due t o t h e a i r c i r c u l a t i o n i n s i d e t h e c o l d r o a n d u r i n g t h e s l o w

(7)

anchor, t h e gauge was l i f t e d s l i g h t l y , and two d r o p s o f c o l d water were a p p l i e d t o t h e area where t h e

gauge was t o be mounted. The gauge was then q u i c k l y

and a c c u r a t e l y pressed i n t o place, u s i n g a f l a t rubber pad, and h e l d u n t i l f r e e z i n g o f t h e water was

complete. The pad was t h e n removed. A f t e r

i n s p e c t i o n , t o ensure o v e r a l l f r e e z i n g and f l a t n e s s , a t h i n l a y e r o f water was placed over t h e gauge and a small p o r t i o n o f t h e l e a d w i r e s , f o r p r o t e c t i o n a g a i n s t s u b l i m a t i o n . Needless t o say, a g r e a t deal o f p r a c t i c e was r e q u i r e d b e f o r e t h e gauges c o u l d be

p r o p e r l y mounted. The common problem was t h e p a r t i a l f r e e z i n g and w r i n k l i n g o f t h e gauges. It should be mentioned here t h a t t h e use o f water a t about

f r e e z i n g p o i n t was found necessary t o a v o i d m i c r o c r a c k s on t h e specimen s u r f a c e due t o thermal

s t r e s s . Examination under a microscope r e v e a l e d

t h a t even one drop o f water a t 20°C ( u s u a l warm room t e m p e r a t u r e ) damages t h e i c e s u r f a c e a t -20°C.

RESULTS AND ANALYSIS

Two q u e s t i o n s were examined d u r i n g t h e t e s t s ( a ) how w e l l t h e machine performed and whether s t r e s s r a t e s were m a i n t a i n e d c o n s t a n t and ( b ) how we1 1 t h e d e f o r m a t i o n s were measured.

For a x i a l s t r e s s r a t e s f r o m 1 x M N * ~ - ~ s - l t o about 2 x

l o 1

M N * ~ - ~ s - l , t h e system was found capable o f 1 oading t h e specimen a t t h e i n t e n d e d c o n s t a n t s t r e s s r a t e s and o f u n l o a d i n g i t

a

6 N E

2

4 2 b- 2 0 10 LO 8 6 w- 4 2 0 "7 4

0

, 3 w 2 $ 1 0 0 4 8 12 16 20 24 T I M E , t , s F I G U R E 4 S T R E S S A N D S T R A I N H I S T O R I E S F O R A S L O W T E S T r a p i d l y a f t e r r e a c h i n g t h e peak l o a d bl as may be seen i n F i g u r e s (4) and ( 5 ) . Although !he s t r e s s r a t e was c o n s t a n t d u r i n g t h e major p a r t o f t h e l o a d i n g c y c l e , t h e l a c k o f constancy i n t h e l o a d r a t e d u r i n g t h e b e g i n n i n g and t h e end o f t h e c y c l e , was e v i d e n t a t r a t e s ,

b1

,

.20 M N * ~ - ~ s - l ( F i g u r e 6 ) . These were r a t h e r r a p i d t e s t s and i n v o l v e d l o a d r i s e t i m e , t

,

l e s s t h a n 40 m i l l i s e c o n d s o r frequency, f, ( = T/2 t r ) . g r e a t e r t h a n about 10 Hz. An average s t r e s s r a t e , a

-

a /t was t h o u g h t t o be a p p r o p r i a t e f o r d e s c r i b i n g tRe yoading r a t e s a t t h e s e h i g h r a t e s . F i g u r e 4 shows t h a t t h e a x i a l s t r a i n s measured by t h e f o i l gauges, 1 and 3, agree w e l l w i t h t h a t g i v e n by t h e displacement gauge 5. C o n s i d e r a t i o n i s g i v e n t o t h e f a c t t h a t t h e s t r a i n l e v e l s were e x t r e m e l y small and t h a t even a s l i g h t r o u n d i n g of t h e edges o f t h e 1 oad b e a r i n g end s u r f a c e s (50 mm x

100 mm) would s i g n i f i c a n t l y a f f e c t t h e s u r f a c e s t r a i n o f t h e s i d e s u r f a c e s . It should be n o t e d t h a t b o t h a x i a l and l a t e r a l s t r a i n s i n c r e a s e d l i n e a r l y w i t h t i m e g i v i n g i n d i c a t i o n s o f a l i n e a r

dependence o f s t r a i n on s t r e s s . Time dependence of

t h e s t r a i n r e c o v e r y and t o t a l r e c o v e r y a f t e r u n l o a d i n g were i n d i c a t e d by b o t h t h e f o i l gauges

and t h e displacement gauge ; permanent s t r a i n s , i f

any, were t h e r e f o r e beyond t h e accuracy o f t h e measurement. T h i s t y p e o f t o t a l r e c o v e r y was 0 . 8 I I I T 1 1 1 1

-

-

0 . 6

-

T E S T : L 8 3 . 1 7

-

-

-

I - 8

-

1

-

Y) I

-

-

-

I

-

I LO

'

4 - I 2 I I 10

-

I w I I- 2

-

-

N w I

-

d. 0 I 1 I 0 0 . 1 0.2 0.3 0.4 0.5 T I M E , t , s F I G U R E 5 S T R E S S A N D S T R A I N H I S T O R I E S F O R A M E D I U M R A T E T E S T observed i n a l l t h e l o a d i n g c y c l e s . T o t a l accumulated permanent s t r a i n i n a specimen a t t h e end of a l l t h e t e s t s was l e s s t h a n about 3 x 10-5

and t h e r e f o r e n e g l i g i b l e . Evidence o f 1 i t t l e permanent change i n t h e specimen L83, a f t e r 23 t e s t s , i s p r o v i d e d i n F i g u r e 2. Note t h a t t h e 58

(8)

, 4 0

-

I I I ,"

-

0

-

2 0

-

A t , = t, if0111 - t, ( d ~ s p l + . J C A * A A - a TEST : L83.20 - 2 0 ' ~ . 5 - 2 ICE 1.0 + 0. f l ' - a "? 2 0 6 - - w

.

-

- 0.4 , -A G D 2 - 0. 0 . i - - c - - o - r - u 0.-t

,-.

.

.

-

m

--

-

-.-

-

6-.- ,

-

-

.

..

A. .*-A.,. A . . ; A

-

\A

*',

-

-

- 2 0 ° c

-

A - L E I A

-

8 -L82 \ -L83

f

-

t

I I I I 10-3 10-2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3 S T R E S S R A T E . 6,

.

~ ~ - r n - ~ r - l FIGURE 7

STRESS RATE DEPENDENCE OF THE RESPONSE OF THE FOIL GAUGES

a p p l i e d a l o n g x

,

t h e l a t e r a l compliances o f concern a r e

land

S31y and t h e major s t r a i n r a t i o s a r e g i v e n by P21 =

-

S 2 i

/

Sll =

-

E2/e1 and ( 2 ) 0 1 2 3 4 5 6 p 3 1 =

-

S31

/

SI1 =

-

c3/E1 TIME. 1 .

s

FIGURE 6

STRESS AND STRAIN HISTORIES FOR A R A P I D T E S T The h i s t o r i e s o f E2 and E3 f o r t h e t e s t c o r r e s p o n d i n g t o F i g u r e 4 a r e presented i n F i g u r e 8 which shows t h a t t h e l a t e r a l s t r a i n s i n t h e p l a n e g r a i n boundaries have no i r r e g u l a r i t i e s and no o f i s o t r o p y and normal t o i t d i f f e r e d s i g n i f i c a n t l y small a n g l e boundaries can be seen i n any g r a i n s . f r a n each o t h e r b u t b o t h m a i n t a i n e d

a

l i n e a r

A new phenomenon i n t h e response o f t h e f o i l r e l a t i o n s h i p w i t h t h e a x i a l s t r a i n . S i m i l a r gauges was observed as t h e r a t e o f l o a d i n g o b s e r v a t i o n s were made i n a l l t h e t e s t s i n c l u d i n g i n c r e a s e d . The gauges recorded n o t o n l y l o w e r t h o s e on S-3 sea i c e . Thus t h e s t r a i n r a t i o s do a x i a l s t r a i n s , w i t h i n c r e a s e i n s t r e s s r a t e , t h a n

t h a t g i v e n by t h e displacement gauge b u t a l s o

showed a s i g n i f i c a n t l y damped response ( F i g u r e s 5 5 , , , 1 1 , 1 , 1 , , 1

and 6 ) . The o u t p u t from t h e displacement gauge was ? o TEST : L83.7

-

n o t e d t o be i n phase w i t h t h e s t r e s s a t a l l s t r e s s 4

-

-20°c, s - 2 IC[,~-,

r a t e s b u t t h e c o r r e s p o n d i n g peak response i n t h e 10

-

4 - &,=0.05 MN. m

-

f o i l gauges o c c u r r e d a f t e r a s i g n i f i c a n t l a p s e of w HORIZONTAL

t i m e . R e s u l t s summarized i n F i g u r e 7 f o r t h r e e

-

s e t s o f measurements show t h a t (a) phase l a g i n t h e

-

f o i l gauges occurs a t about

b

>

3 M N * ~ - * s - I and

( b ) f o i l gauges c o u l d g i v e a c c e p t a b l e s t r a i n d a t a

-

f o r

b

<

0.1 M N * ~ - ~ s - l . C

'/l 2 -

-

The general i z e d Hooke1 s l a w r e l a t i n g s t r a i n ,

E ~ , t o s t r e s s u j i s g i v e n by

-

-

( 1 lJ J y i , j = 1 , 2 . . . 6

€ i = S . . u . '

-

where Sij denotes t h e compliances. F o r 1 1 1 1 1 1 1 1 I I I I ,

columnar-grained i c e w i t h t h e assumption of xl and 0 2 4 6 8 10 12 14

x 2 axes i n t h e h o r i z o n t a l p l a n e o r t h e p l a n e o f t h e AXIAL STRAIN. 6,. i c e cover ( a l s o t h e p l a n e o f i s o t r o p y f o r S-2 i c e )

and x along t h e l o n g i t u d i n a l a x i s and hence t h e

g r o w t 2 d i r e c t i o n o f t h e columnar g r a i n s (see Fig. FIGURE 8

3). t h e usual concern i s w i t h t h e compliances SYll DEPENDENCE OF LATERAL STRAIN ON AXIAL SZ2 and S ; th e p r i n c i p a l s t r e s s e s a r e u s u a l l y i n STRAIN RECORDED B Y THE FOIL GAUGES x1 and x233i r e c t i o n s f o r most engineering

s i t u a t i o n s . I n case o f u n i a x i a l s t r e s s , al,

(9)

n o t depend, a t l e a s t n o t s i g n i f i c a n t l y , on t h e s t r e s s o r s t r a i n l e v e l w i t h i n t h e e x p e r i m e n t a l ranges i n v e s t i g a t e d . Dependence o f p 2 ~ and p 3 on s t r e s s r a t e s , u s i n g t h e peak s t r a i n s recorded k y t h e two p a i r s o f f o i l gauges a r e p r e s e n t e d i n F i g u r e 9. A c o n t i n u i t y i n t h e r a t e s e n s i t i v i t y of t h e s t r a i n r a t i o s i s e v i d e n t here. Note t h a t t h i s c o n t i n u i t y extends from l o w r a t e s a t which f o i l gauges a r e r e l i a b l e t o h i g h r a t e s where t h e i r response i s q u e s t i o n a b l e . The two r a t i o s approaching a common dynamic v a l u e a t h i g h r a t e s a r e a1 so p h y s i c a l l y understandable. T h i s o b s e r v a t i o n i n d i c a t e s t h a t t h e damping e f f e c t on t h e f o i l gauges a f f e c t e d t h e t o t a l o u t p u t w i t h o u t i n f l u e n c i n g t h e i r response r e l a t i v e t o each o t h e r . Since t h e a x i a l and l a t e r a l s t r a i n s on t h e two o r t h o g o n a l s u r f a c e s were measured s e p a r a t e l y u s i n g p a i r s o f f o i l gauges, t h e r e 1 i a b i l i t y i n t h e measurement o f s t r a i n r a t i o s w i t h t h e s e gauges c o u l d perhaps be extended s i g n i f i c a n t l y t o h i g h e r s t r e s s r a t e s t h a n t h e l i m i t i n g r a t e of about 0.1 MN* m-2 s - I discussed e a r l i e r . Independent t e s t s a r e r e q u i r e d t o v e r i f y t h i s p o i n t . F i g u r e s 4-6 show t h a t t h e s t r a i n r a t e s were m w e - o r l e s s c o n s t a n t d u r i n g l o a d i n g i n a l l t h e t e s t s . The t e s t r e s u l t s t h e r e f o r e c o u l d a l s o be p r e s e n t e d i n t e n s o f c o n s t a n t s t r a i n r a t e s such as shown i n F i g u r e 10 i n which t h e s t r a i n r a t e s r e p r e s e n t t h o s e measured by t h e 200 mm gauge l e n g t h displacement gauge (No. 5). A s y s t e m a t i c v a r i a t i o n i n p 2 and ~ 3 1 i s again noted.

{ t r e s s r a t e dependence o f t h e e f f e c t i v e modulus, E, = ol

/

clp, where

E i s measured

gy

t h e displacement gauge, i s

? % r e n t e d i n F i g u r e 11. A complementary i l l u s t r a t i o n would be F i g u r e 12 e x h i b i t i n g t h e s t r a i n r a t e dependence o f t h e e f f e c t i v e modulus.

DISCUSSION

Complete s t r a i n r e c o v e r y a f t e r u n l o a d i n g demonstrates c l e a r l y t h e e l a s t i c n a t u r e o f t h e d e f o r m a t i o n processes i n v o l v e d . The t i m e dependent r e c o v e r y i n d i c a t e s t h a t a t l e a s t two processes a r e i n v o l v e d f o r t h e l o a d i n g c o n d i t i o n s used. T h i s I t y p e o f response was termed as " e l a s t o - d e l a y e d

e l a s t i c " (ede) by t h i s a u t h o r ( 9 ) . The "regime" of "ede" response i s e s s e n t i a l l y l i m i t e d t o t r a n s i e n t stage o f p o l y c r y s t a l l i n e behaviour when t h e s t r a i n s a r e small and t h e d e f o r m a t i o n i s homogeneous. I n t h i s regime, grain-boundary shear i n f r e s h w a t e r i c e o r i n t e r p l a t e l e t s l i d i n g i n sea i c e , c o n t r i b u t e s s i g n i f i c a n t l y t o t h e t o t a l s t r a i n i n a d d i t i o n t o t h e i n t r a g r a n u l a r e l a s t i c s t r a i n . These processes i n f l u e n c e b o t h e f f e c t i v e e l a s t i c modulus and s t r a i n r a t i o u n l e s s v e r y h i g h frequency l o a d i n g s a r e i n v o l v e d . I n t r a g r a n u l a r e l a s t i c s t r a i n , due t o t h e d i s t o r t i o n o f t h e l a t t i c e , i n v o l v e s v o l u m e t r i c change and a measure o f t h i s change i s g i v e n by " P o i s s o n ' s " r a t i o . I n t e r g r a n u l a r grain-boundary s l i d i n g o r delayed e l a s t i c process, i n t h e absence o f any c r a c k i n g a c t i v i t y , would be i s o t r o p i c and would i n v o l v e no a p p r e c i a b l e v o l umet r i c change ( 9 ) , f o r a l l p r a c t i c a l purposes. Thus i n t h e ede regime, s t r a i n r a t i o depends s i g n i f i c a n t l y on t h e degree o f c o n t r i b u t i o n o f delayed e l a s t i c s t r a i n t o t h e t o t a l s t r a i n . A t h e o r y has been proposed f o r i s o t r o p i c p o l y c r y s t a l l i n e m a t e r i a l and discussed i n ( 9 ) . T h i s t h e o r y has been extended t o p r e d i c t t h e a n i s o t r o p i c behaviour o f c o l umnar-grained i c e b u t w i l l be presented elsewhere because o f t h e space l i m i t a t i o n s here. However, t h e s o l i d l i n e s i n P21 F31 A - A - L 8 1 > ~ - 2 I C E 0 - 0 - L83 - L 8 2 - 5 - 3 I C E

.

-.

1

0 . 4 THEORY 0 . 2 O 0.0 I O - ~ IO-~ l o 3 - 2 - 1 S T R E S S R A T E , 6,. M N . m . S FIGURE 9

STRESS RATE DEPENDENCE OF STRAIN RATIO

0.4

THEORY

A A A A A

S T R A I N R A T E . il , S - l

FIGURE 10

STRAIN RATE DEPENDENCE OF STRAIN RATIO F i g u r e s 9 and

10,

o b t a i n e d u s i n g t h i s t h e o r y f o r c o l umnar-grai ned i c e o f average c r o s s - s e c t i o n a l g r a i n diameter o f 2.5 mm, g r a i n l e n g t h t o g r a i n diameter r a t i o (aspect r a t i o ) o f 20 and m a t e r i a l c o n s t a n t s g i v e n i n (9, 1 3 ) g i v e i n d i c a t i o n s t h a t m a t e r i a l response, however complex, i s r e a s o n a b l y

p r e d i c t a b l e . The t h e o r y a l s o c l a r i f i e s some o f t h e v a r i a b i l i t i e s i n s t a t i c a l l y determined s t r a i n r a t i o s p r e s e n t e d e a r l i e r i n t h e i n t r o d u c t i o n o f t h i s paper. Wang ( 5 ) r e p o r t e d values o f 0.8 t o 1.2 f o r p 2 ~ and Saeki e t a l l s ( 6 ) o b s e r v a t i o n s on ~ 3 1 , in c r e a s i n g f r o m 0.02 t o 0.48 w i t h s t r e s s r a t e , were c e r t a i n l y due t o t h e e f f e c t o f m i c r o c r a c k i n g a c t i v i t i e s as t h e s t r e s s l e v e l s i n v o l v e d i n t h e s e experiments were h i g h (up t o 6 M N . ~ - * ) . D i r e c t e x p e r i m e n t a l o b s e r v a t i o n s on t h e dependence o f t h e e f f e c t i v e modulus on s t r a i n r a t e , f o r c o n d i t i o n s o f no c r a c k i n g , a r e a v a i l a b l e up t o a s t r a i n r a t e o f 4 x s-1 as can be seen i n T r a e t t e b e r g e t a l , 1975 (14). The p r e s e n t r e s u l t s

(10)

* . .

-

-

-

-

THEORY, d=2.5rnrn - - 2 0 ° c . 5 - 2 I C E

-

-

a;

= 0. 75 MN. m-'

-

d = 2 . 8 rnm lo-3 lo-2 10-l l o 3 S T R E S S R A T E , M N . ~ - ' s - ' FIGURE 11

STRESS RATE DEPENDENCE OF EFFECTIVE MODULUS

-

-

- 2 0 ° c , S - 2 I C E 5 = 0 . 7 5 M N . r n - ' - 4 - L 8 1

-

* - L 8 3 I I L I I 10" 1 0 . ~ 10-I S T R A I N RATE.;,

.

s-' FIGURE 12

STRAIN RATE DEPENDENCE OF EFFECTIVE MODULUS ( F i g u r e s 11, 1 2 ) , t h e r e f o r e , extend t h e a v a i l a b i l i t y o f experimental d a t a t o a s i g n i f i c a n t l y h i g h e r l o a d i n g r a t e . The s o l i d l i n e s i n F i g u r e 11 show t h e r e s u l t s c a l c u l a t e d f o r e f f e c t i v e modulus, E = 01,

/

~ ~ ~ , u s l n g ) t h e t h e o r y and m a t e r i a l c o n s t a n f s des r i b e i n 13 f o r i c e

w i t h g r a i n diameter o f 2.5 mm. The same r e s u l t s

a r e presented i n F i g u r e 1 2 as a f u n c t i o n of t h e

c a l c u l a t e d average s t r a i n r a t e . Again, it can b e

seen t h a t t h e e x p e r i m e n t a l r e s u l t s a r e reasonably p r e d i c t a b l e . CONCLUSIONS For s t r e s s r a t e s i n t h e range o f 1 x

l o m 3

t o 1.2 x

l o 2

M N * ~ - ~ s - l o r s t r a i n r a t e s i n t h e range o f 1 x

lo-'

t o 1 x s - l , f o r s t r e s s l e v e l s up t o 0.75 M N * ~ - ~ o r s t r a i n l e v e l s up t o 1.5 x a t a temperature o f -20°C and f o r l o a d s a p p l i e d i n t h e p l a n e normal t o t h e l e n g t h o f t h e columns, t h e l a t e r a l s t r a i n s i n c o l umnar-grained i c e m a i n t a i n a 1 in e a r r e l a t i o n s h i p w i t h l o n g i t u d i n a l o r a x i a l s t r a i n s d u r i n g l o a d i n g i n t h e p l a n e p a r a l l e l t o t h e l e n g t h o f t h e columns as w e l l as t h e o t h e r normal

t o it. The l a t e r a l s t r a i n , normal t o t h e l e n g t h o f

t h e columnar g r a i n s , i s about 3 t i m e s l a r g e r t h a n t h a t a r a l l e l t o t h e columns a t a s t r e s s r a t e o f 1

x

lo-!

M N * ~ - ~ s-1 o r s t r a i n r a t e o f 1 x s - I .

The s t r a i n r a t i o , , p 2

,

i n t h e l o a d i n g plane, decreases monoton~ca!ly from about 0.7 a t a s t r a i n

r a t e o f 1 x s - l t o about 0.3 a t 1 x s - l .

However, t h e s t r a i n r a t i o , b 3 ~ , c o r r e s p o n d i n g t o t h e p l a n e p a r a l l e l t o t h e l e n g t h o f t h e columns, i n c r e a s e s from about 0.2 t o about 0.3 f o r t h e same

range o f l o a d i n g r a t e s . Both f r e s h w a t e r i c e and

sea i c e shows s i m i 1 a r a n i s o t r o p i c response.

Since t h e response o f t h e f o i l gauges i s poor a t t h e h i g h end o f t h e l o a d i n g r a t e s i n v e s t i g a t e d , t h e d a t a o b t a i n e d on t h e s t r a i n r a t i o s i n t h e dynamic l o a d i n g ranges, though a p p a r e n t l y

reasonable, a r e o f q u e s t i o n a b l e value. Independent

t e s t s a r e r e q u i r e d t o v e r i f y t h e s e measurements. The s t r e s s / s t r a i n r a t i o o r t h e e f f e c t i v e modulus i n c r e a s e s m o n o t o n i c a l l y from 4 G N * ~ - ~ a t a s t r a i n r a t e o f 1 x s - l t o about 9.5 G N * ~ - ~ a t 1 x s - l

.

These r e s u l t s f i l l t h e gap i n t h e d a t a a v a i l a b l e i n t h e l i t e r a t u r e , i n t h e l o a d frequency range o f 3 t o 100 Hz and a r e i n agreement w i t h t h e t h e o r e t i c a l p r e d i c t i o n s made e a r l i e r .

ACKNOWLEDGEMENTS

The a u t h o r i s i n d e b t e d t o R. Jerome and R. S t a h l f o r t h e i r a s s i s t a n c e w i t h o u t which t h i s study

would n o t have been p o s s i b l e . T h i s i s a

c o n t r i b u t i o n from t h e I n s t i t u t e f o r Research i n C o n s t r u c t i o n , N a t i o n a l Research Council o f Canada. REFERENCES

1. Gold, L.W., "Some Observations on t h e

Dependence o f S t r a i n on S t r e s s f o r Ice," Canadian Journal o f Physics, Vol. 36, No. 10, 1958, PP. 1265-1276.

2. LinlKov, E.M., "Study o f t h e E l a s t i c P r o p e r t i e s

o f an I c e Cover i n t h e A r c t i c " ( i n Russian), Vestni k, Leningradskogo Univ. 13, 1958, pp. 17-22.

3. Peschansky, I.S., Problemy A r k t i k i , 2, 1957,

p. 161.

4. Langleben, M.P. and Pounder, E.R., " E l a s t i c

Parameters o f Sea Ice," I c e and Snow, e d i t e d by

W.D. Kingery, M.1 .T. Press, Cambridge, Mass.,

1963, pp. 69-78.

5. Wanq. Y.S.. " U n i a x i a l Compression T e s t i n q o f

~ r c t i c Sea

Ice,"

~ r o c e e d i n ~ s o f t h e 6 t h

-

I n t e r n a t i o n a l conTerence on P o r t and Ocean

E n g i n e e r i n g under A r c t i c C o n d i t j o n s , Laval

U n i v e r s i t y , Quebec, Canada, Yo1

.

1, 1981,

pp. 346-355.

6. Saeki, H., Ozaki, A. and Kubo, Y.,

"Experimental Study on F l e x u r a l S t r e n g t h and E l a s t i c Modulus o f Sea Ice," Proceedings o f t h e 6 t h I n t e r n a t i o n a l Conference on P o r t and Ocean E n g i n e e r i n g under A r c t i c C o n d i t i o n s , Laval

U n i v e r s i t v . Ouebec. Canada. Vol

.

1. 1981.

pp. 536-54;. '

7. Murat, J.R., and Lainey, L.M., "Some

Exoerimental Observations on t h e Poi ssonls

~ a t i o o f Sea Ice," C o l d Regions Science and

(11)

8. sin ha,^

N.X.,

"Young A r c t i c F r a z i l Sea I c e : F i e l d and L a b o r a t o r y S t r e n g t h Tests

,"

Journal o f M a t e r i a l s Science, Vol

.

21, No. 5,

1

9

8

6

,

pp. 1533-1546.

9. Sinha. N.K.. " E f f e c t i v e P o i s s o n ' s R a t i o o f

10. Sinha, N.K., " A c o u s t i c

mission

and M i c r o c r a c k i n g i n Ice," Proceedings, 1982 S o c i e t y o f ~xperimental- Japan

S o c i e t y o f Mech. Enaineers. Honolul u/Maui

.

~awaii", May 1982, p a r t 2,

pi.

767-772:

11. Murat, J.-B., "Small Scale Surface S t r a i n Measurement on Sea Ice," Proceedings o f t h e Workshop on Sea I c e F i e l d Measurement, St. John's, Centre f o r Cold Ocean Resources Engineering, k m o r i a1 U n i v e r s i t y o f Newfoundland, Pub1 i c a t i o n s No. 80-21, 1980, pp. 55-74.

reprinted f r o m

published b y

12. Nakawo, M., and Sinha, N.K., "A Note on B r i n e Layer Spacing o f F i r s t - Y e a r Sea I c e " ,

Atmosphere-Ocean, Vol

.

22,

No.

2, 1984, pp. 193-206.

13. Sinha, N.K., "Creep Model o f Ice,, f o r

M o n o t o n i c a l l y I n c r e a s i n g Stress, Cold Re I o n s Science and Techno1 ogy

,

Vo1

.

8,

*

o

N

14. Traetteberg, A., Gold, L.W. and Frederking, R.M.W., "The S t r a i n Rate and Temperature Deoendence o f Younq's Modulus o f Ice," ~ r b c e e d i n g s , 3 r d 1 i t . Symp. on I c e Problems, I n t . Assn. o f H y d r a u l i c Research, Hanover,

pp. 479-486.

Seventh International Conference o n Offshore Mechanics and

Arctic Engineerng - Volume IV

Editors: D.S. Sodlii, C.H. Luk, and N.K. Sinha (Book No. 10250D)

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 East 47th Street, N e w York, N.Y. 10017

(12)

T h i s p a p e r

i s

b e i n g d i s t r i b u t e d i n r e p r i n t

f o r m by

t h e

I n s t i t u t e f o r R e s e a r c h

i n

C o n s t r u c t i o n .

X l i s t of

b u i l d i n g p r a c t i c e

a n d r e s e a r c h p u b l i c a t i o n s a v a i l a b l e f r o m

t h e I n s t i t u t e

may

be o b t a i n e d by w r i t i n g t o

t h e P u b l i c a t i o n s

S e c t i o n ,

I n s t i t u t e f o r

R e s e a r c h i n C o n s t r u c t i o n , N a t i o n a l R e s e a r c h

C o u n c i l

of

C a n a d a ,

O t t a w a ,

O n t a r i o ,

K I A

0R6.

Ce

document e s t d i s t r i b u 6 s o u s f o r m e d e

t i r 6 - 8 - p a r t

p a r l l I n s t i t u t d e r e c h e r c h e e n

c o n s t r u c t i o n .

O n

p e u t o b t e n i r u n e l i s t e

d e s p u b l i c a t i o n s d e

1'

I n s t i t u t p o r t a n t s u r

l e s

t e c h n i q u e s ou l e s r e c h e r c h e s e n m a t i s r e

d e b s t i m e n t e n G c r i v a n t

2

l a S e c t i o n d e s

p u b l i c a t i o n s ,

I n s t i t u t

d e

r e c h e r c h e

e n

c o n s t r u c t i o n ,

C o n s e i l

n a t i o n a l

d e

r e c h e r c h e s du

C a n a d a ,

O t t a w a ( O n t a r i o ) ,

K I A

OR6.

Figure

FIGURE  1 .   H o r i z o n t a l   ( a )   and  v e r t i c a l   ( b )   t h i n   s e c t i o n s   o f   t e s t   specimen  L83,  made  a f t e r   c o m p l e t i n g   t h e   t e s t   s e r i ~ q

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in