• Aucun résultat trouvé

Lagrangian scheme for scalar advection

N/A
N/A
Protected

Academic year: 2021

Partager "Lagrangian scheme for scalar advection"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01821098

https://hal.archives-ouvertes.fr/hal-01821098

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Lagrangian scheme for scalar advection

Benoît Trouette, Georges Halim Atallah, Stéphane Vincent

To cite this version:

Benoît Trouette, Georges Halim Atallah, Stéphane Vincent. Lagrangian scheme for scalar advection.

Turbulence and Interactions TI2018, Jun 2018, Trois Ilets, France. �hal-01821098�

(2)

Lagrangian scheme for scalar advection

B. Trouette, G. Halim Atallah and S. Vincent benoit.trouette@u-pem.fr

P ROBLEM

Solve advection–diffusion equation, for low diffusivity ( Γ ) or high Péclet num- bers values. Applications: pollutant transport, two phase-flow, . . .

S PLITTING A PPROACH

Φ ? − Φ n

∆t + ∇ · (u n Φ n ) = 0 ⇒ QUICK, MUSCL, WENO and VSM [1] schemes Φ n+1 − Φ ?

∆t = ∇·(Γ∇Φ n+1 ) ⇒ centered scheme, implicit, direct solver (MUMPS)

C ODE D ESCRPITION

• Finite-Volumes on staggered grids.

• Augmented Lagrangian or KSP [2] for Pressure / Velocity coupling.

• VOF, Level Set, Front Traking.

• Lagrangian particle tracking.

• DNS and LES turbulence modelling.

• Penalty methods.

16 32 64 128 256 512 1024 2048 4096

16 32 64 128 256 512 1024 2048 4096

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A(n procs) E(n procs = A(n procs)/n procs

n

procs

Ideal speed up MPI Speed up on Occigen (CINES), N

3

=128

3

N

3

=256

3

N

3

=512

3

L AGRANGIAN SCHEME

1. M markers (Lagrangian particles) of positions X m and volumes δV m carry the local information φ m of the Eulerian field Φ . At initial time, φ 0 m = Φ 0 (X m ) , m = 1, . . . , M . 2. The markers are advected with the fluid velocity: dX dt n+1 m = u n , m = 1, . . . , M .

3. Post advection value of Φ is evaluated with averages on each Eulerian cell Ω i,j .

Φ ? i,j = X

m:X n+1 m ∈Ω i,j

φ n m δV m 0

,

X

m:X n+1 m ∈Ω i,j

δV m 0 with δV m 0 = δV m ∩ Ω i,j

4. Φ n+1 is then obtained solving the unsteady diffusion equation.

5. The local (Lagrangian) information is updated according the variation of Φ at the particle position: ∂φ ∂t m

X n+1 m

= ∂t Φ

X n+1 m . For a first order integration scheme, φ n+1 m = φ n m + Φ n+1 (X n+1 m ) − Φ ? (X n+1 m ), m = 1, . . . , M.

R EFERENCES

[1] S. Vincent et al. Eulerian-Lagrangian multiscale methods for solving scalar equations.

Application to incompressible two-phase flows. In Journal of Comptutational Physics (2010) [2] J-.P. Caltagirone & S. Vincent. A Kinematic Scalar Projection method (KSP) for incom-

pressible flows with variable density. In Open Journal of Fluid Dynamics (2015)

A CKNOWLEDGMENT

The authors are grateful for the compu- tational facilities of GENCI under project n o A0032B06115 and to M. El Ouafa, M.

Mbaye and to E. Belut & S. Lechêne (INRS).

R ESULTS

Advection/Diffusion of a pollutant peak

max( ) = 0.985 Exact solution

L=1 m, R=0.1 m, =10-6 m2/s u(y)=- (y-L/2)/2 m/s

v(x)=+ (x-L/2)/2 m/s

0(r)=(R-r)/R, if r<R =0, if r>R

time = 0 s

max( ) = 0.979

time = 1 s

max( ) = 0.973

time = 2 s

max( ) = 0.969

time = 3 s

max( ) = 0.964

time = 4 s

Quick scheme

max( ) = 0.620 | max(

exact

) = 0.964

Mesh 128

2

, CFL = 0.5 Isolines: 0.9, 0.5, 0.1, 0.01

X

Y

0.3 0.4 0.6 0.7

0.6 0.7 0.8 0.9

Muscl scheme

max( ) = 0.638 | max(

exact

) = 0.964

Mesh 128

2

, CFL = 0.5 Isolines: 0.9, 0.5, 0.1, 0.01

X

Y

0.3 0.4 0.6 0.7

0.6 0.7 0.8 0.9

Weno 5 scheme

max( ) = 0.857 | max(

exact

) = 0.964

Mesh 128

2

, CFL = 0.5 Isolines: 0.9, 0.5, 0.1, 0.01

X

Y

0.3 0.4 0.6 0.7

0.6 0.7 0.8 0.9

Lagrangian scheme (2 ppdpc) max( ) = 0.922 | max(

exact

) = 0.964

Mesh 128

2

, CFL = 0.5 Isolines: 0.9, 0.5, 0.1, 0.01

X

Y

0.3 0.4 0.6 0.7

0.6 0.7 0.8 0.9

Weno 5 scheme

max( ) = 0.917 | max(

exact

) = 0.964

Mesh 256

2

, CFL = 0.5 Isolines: 0.9, 0.5, 0.1, 0.01

X

Y

0.3 0.4 0.6 0.7

0.6 0.7 0.8 0.9

Lagrangian scheme (4 ppdpc) max( ) = 0.925 | max(

exact

) = 0.964

Mesh 128

2

, CFL = 0.5 Isolines: 0.9, 0.5, 0.1, 0.01

X

Y

0.3 0.4 0.6 0.7

0.6 0.7 0.8 0.9

Weno 5 scheme

max( ) = 0.948 | max(

exact

) = 0.964

Mesh 512

2

, CFL = 0.5 Isolines: 0.9, 0.5, 0.1, 0.01

X

Y

0.3 0.4 0.6 0.7

0.6 0.7 0.8 0.9

Lagrangian scheme (8 ppdpc) max( ) = 0.957 | max(

exact

) = 0.964

Mesh 128

2

, CFL = 0.5 Isolines: 0.9, 0.5, 0.1, 0.01

X

Y

0.3 0.4 0.6 0.7

0.6 0.7 0.8 0.9

Computational cost in % of the Ref. (Weno, 512 2 (13h)) Weno, 128 2 1.2% Lag., 128 2 , 2–4 ppdpc ∼ 2 %

Weno, 256 2 19.2% Lag., 128 2 , 8 ppdpc 6.1%

Weno, 512 2 Ref. Lag., 128 2 , 16 ppdpc 48%

Phase inversion problem with KSP method [2]

Phase 1

1=900 kg/m3

1=0.1 Pa.s C=0

Phase 2

2=1000 kg/m3

2=0.1 Pa.s C=1

H=0.1 m g=9.81 m/s2

=0.045 N/m

time=0.0 time=0.4 time=1.2 time=2.0 time=3.2

Snapshots of the color function over time. Mesh 128 2 . Blue is KSP, VOF-PLIC, black line is C = 0.5 for the Augmented Lagrangian, VOF-PLIC method and orange line stands for the Lagrangian advection scheme with 4 ppdpc and KSP.

Ventilated cavity (collaboration with INRS)

X Y

Z

Lag.

Weno

C=0.25

X Y

Z

Lag.

Weno

C=0.5

X Y

Z

Lag.

Weno

C=0.75

Simulation of air flow at Re = 1500 (injection) in a cuboid cavity. Air flow carries a tracer gas with air properties ( Γ ≈ 10 −5 m 2 /s). Iso-surfaces 0.25, 0.5 and 0.75 of con- centration C for Lagrangian scheme with 4 ppdpc (left) and Weno 5 scheme (right) are plotted for t = 1.5 second. The non diffusive character of the Lagrangian scheme is ob- served. (Mesh: 64 × 32 × 32 , ∆t = 5 × 10 −3 s.)

-5 -4 -3 -2 -1 0

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 log

10

( ∆ x)

Weno Lag. 2 ppdpc 4 ppdpc 8 ppdpc 16 ppdpc

slope 2

slope 1

log

10

(err

L2

) log

10

(err

)

• Same conclusion for pure transport ( Γ = 0 ).

• Oscillations are reduced

increasing M (ppdpc).

Références

Documents relatifs

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,