• Aucun résultat trouvé

The effective Vlasov-Poisson system for strongly magnetized plasmas

N/A
N/A
Protected

Academic year: 2021

Partager "The effective Vlasov-Poisson system for strongly magnetized plasmas"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01475673

https://hal.archives-ouvertes.fr/hal-01475673

Submitted on 24 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The effective Vlasov-Poisson system for strongly magnetized plasmas

Mihai Bostan, Aurélie Finot, Maxime Hauray

To cite this version:

Mihai Bostan, Aurélie Finot, Maxime Hauray. The effective Vlasov-Poisson system for strongly mag-

netized plasmas. Comptes Rendus. Mathématique, Académie des sciences (Paris), 2016, 354 (8),

pp.771-777. �10.1016/j.crma.2016.04.014�. �hal-01475673�

(2)

The effective Vlasov-Poisson system for strongly magnetized plasmas

Le syst`eme de Vlasov-Poisson effectif pour les plasmas fortement magn´etis´es

Miha¨ı BOSTAN a Aur´ elie FINOT a Maxime HAURAY a

a

Aix Marseille Universit´ e, CNRS, Centrale Marseille, Institut de Math´ ematiques de Marseille, UMR 7373, Chˆ ateau Gombert 39 rue F. Joliot Curie, 13453 Marseille France

R´ esum´ e

Nous ´ etudions le r´ egime du rayon de Larmor fini pour le syst` eme de Vlasov-Poisson. Le champ magn´ etique est suppos´ e uniforme. Nous restreignons l’´ etude de ce probl` eme non lin´ eaire au cas bi-dimensionnel. Nous obtenons le mod` ele limite en appliquant les m´ ethodes de gyro-moyenne cf. [1,2]. Nous donnons l’expression explicite du champ d’advection effectif de l’´ equation de Vlasov, dans laquelle nous avons substitu´ e le champ ´ electrique auto- consistant, via la r´ esolution de l’´ equation de Poisson moyenn´ ee ` a l’´ echelle cyclotronique. Nous mettons en ´ evidence la structure hamiltonienne du mod` ele limite et pr´ esentons ses propri´ et´ es : conservations de la masse, de l’´ energie cin´ etique, de l’´ energie ´ electrique, etc.

Abstract

We study the finite Larmor radius regime for the Vlasov-Poisson system. The magnetic field is assumed to be uniform. We investigate this non linear problem in the two dimensional setting. We derive the limit model by appealing to gyro-average methods cf. [1,2]. We indicate the explicit expression of the effective advection field, entering the Vlasov equation, after substituting the self-consistent electric field, obtained by the resolution of the averaged (with respect to the cyclotronic time scale) Poisson equation. We emphasize the Hamiltonian structure of the limit model and present its properties : conservationss of the mass, kinetic energy, electric energy, etc.

Email addresses: mihai.bostan@univ-amu.fr (Miha¨ı BOSTAN), aurelie.finot@univ-amu.fr (Aur´ elie FINOT),

maxime.hauray@univ-amu.fr (Maxime HAURAY).

(3)

Abridged English version

Motivated by the magnetic confinement fusion, which is one of the main application in plasma physics, we analyse the dynamics of a population of charged particles, under the action of a strong uniform magnetic field. The goal of this note is to study the finite Larmor radius regime, that is, we assume that the particle distribution fluctuates at the Larmor radius scale along the orthogonal directions, with respect to the magnetic field [5,6,7]. To simplify, we consider the two dimensional setting, i.e., x = (x 1 , x 2 ), v = (v 1 , v 2 ), with a magnetic field orthogonal to x 1 Ox 2

t f + v · ∇ x f + qB m

⊥ v · ∇ v f − q

m ∇ x φ · ∇ v f = 0, (t, x, v) ∈ R + × R 2 × R 2

−ε 0 ∆ x φ = q Z

R2

f (t, x, v) dv (t, x) ∈ R + × R 2 .

Here m is the particle mass, q is the particle charge and ε 0 is the electric permittivity of the vacuum. We study the finite Larmor radius regime (FLR in short), which consists in choosing as reference length, not that of the overall system, but the average Larmor circle length l = 2π mV qB

th

, where V th is the thermal velocity. We pick the following dimensionless variables

t = T t 0 , x = lx 0 , v = V th v 0 and introduce the dimensionless unknowns

f (t, x, v) = n

V th 2 f 0 (t 0 , x 0 , v 0 ), φ = φ 0 φ 0 , where φ 0 = mlV th

qT

where n is the average concentration of charged particles. The ratio between the cyclotronic period and the reference time appears naturally as a small parameter, when the magnetic field is strong. Its value represents also the ratio between the Larmor circle length and the reference length

ε = T c

T = 2πm qBT = l

T V th .

Notice that the choice of the reference potential corresponds to a small ratio between the potential and kinetic energies : qφ 0 /(mV th 2 ) = ε. The Poisson equation becomes

−ε λ 2 D

l 2 ∆ x

0

φ 0 = Z

R2

f 0 (t 0 , x 0 , v 0 ) dv 0 , (t 0 , x 0 ) ∈ R + × R 2 where λ D := ε

0

mV

th2

nq

2

1/2

is the Debye length. We assume moreover that √

ελ D = l (which also writes ε 0 φ 0 /(nq) = l 2 ). However, notice that the Debye length defined above is not very relevant in our scaling.

Actually the previous Poisson equation says that the typical length of the electric phenomena will be

√ ελ D here. Accordingly, in the case where the Larmor circle length coincides with the typical length of the electric phenomena, the FLR regime leads to the following ε dependent system of equations, up to a multiplicative constant ω c of order one (for simplicity we drop the primes)

t f ε + 1

ε (v · ∇ x f ε + ω c v · ∇ v f ε ) − ∇ x φ ε · ∇ v f ε = 0, (t, x, v) ∈ R + × R 2 × R 2 (1)

−∆ x φ ε = ρ ε :=

Z

R2

f ε (t, x, v) dv, (t, x) ∈ R + × R 2 (2) f ε (0, x, v) = f in (x, v), (x, v) ∈ R 2 × R 2 . (3)

2

(4)

We introduce the notations T c = 2π/ω c , ω c ε = ω c /ε, T c ε = ω

ε c

= ε ω

c

= εT c . For any v = (v 1 , v 2 ) ∈ R 2 , we denote by v the vector v = (v 2 , −v 1 ) ∈ R 2 . We study the stability of the family (f ε , φ ε ) ε>0 , when ε be- comes small. The asymptotic behavior follows by filtering out the fast oscillations of the caracteristic equa- tions for (1). It is easily seen that the changes over one cyclotronic period of the quantities ˜ x = x+ ω

v

c

, ˜ v = R(ω c t/ε)v, are negligible. We expect that the family ˜ f ε (t, x, ˜ v) = ˜ f ε (t, x−R(−ω ˜ c t/ε) v/ω ˜ c , R(−ω c t/ε)˜ v) converges, as ε becomes small, toward some profile ˜ f (t, x, ˜ v). ˜

Th´ eor` eme 0.1 Let f in = f in (x, v) be a non negative presence density satisfying H1 R

R2

R

R2

f in (x, v) dvdx < +∞

H2 R

R2

R

R2

|v|

2

2 f in (x, v) dvdx < +∞

H3 there is a bounded, non increasing function F in = F in (r) ∈ L ∩L 1 ( R + ; rdr), such that f in (x, v) ≤ F in (|v|), (x, v) ∈ R 2 × R 2 .

We consider the family (f ε , φ ε ) ε>0 of weak solutions for the Vlasov-Poisson system

∂ t f ε + 1

ε (v · ∇ x f ε + ω c ⊥ v · ∇ v f ε ) − ∇ x φ ε · ∇ v f ε = 0, (t, x, v) ∈ R + × R 2 × R 2 (4)

−∆ x φ ε = ρ ε (t, x) :=

Z

R2

f ε (t, x, v) dv, (t, x) ∈ R + × R 2 (5) f ε (0, x, v) = f in (x, v), (x, v) ∈ R 2 × R 2 (6) and we denote by ( ˜ f ε ) ε>0 the densities

f ˜ ε (t, x, ˜ v) = ˜ f ε t, x ˜ − R − ω ε

c

t ω c

⊥ ˜ v, R

− ω c t ε

˜ v

!

, (t, x, ˜ v) ˜ ∈ R + × R 2 × R 2 , ε > 0.

Therefore there is a sequence (ε k ) k converging to 0 such that ( ˜ f ε

k

) k converges strongly in L 2 ([0, T ]; L 2 ( R 2 × R 2 )), for any T ∈ R + , toward a solution f ˜ of the problem

t f ˜ + V[ ˜ f (t)](˜ x, v) ˜ · ∇ x ˜ f ˜ + A[ ˜ f (t)](˜ x, ˜ v) · ∇ ˜ v f ˜ = 0, (t, x, ˜ v) ˜ ∈ R + × R 2 × R 2 (7) with the initial condition

f ˜ (0, ˜ x, ˜ v) = f in

˜ x −

⊥ v ˜ ω c

, v ˜

, (˜ x, ˜ v) ∈ R 2 × R 2 (8)

where the velocity and acceleration vector fields V , A are given by

V[ ˜ f (t)](˜ x, v) = ˜ −ω −1 c ∇ x ˜ φ[ ˜ ˜ f (t)], A[ ˜ f (t)](˜ x, v) = ˜ ω c ⊥ ∇ ˜ v φ[ ˜ ˜ f (t)] (9) φ[ ˜ ˜ f (t)] = − 1

2π Z

R2

Z

R2

ln |˜ v − w| ˜

|ω c | 1

{|˜ x−˜ y|≤

v−|ωc|w|˜

} + ln |˜ x − y| ˜ 1

{|˜ x−˜ y|>

v−|ωc|w|˜

}

f ˜ (t, y, ˜ w) d ˜ ˜ wd˜ y. (10)

That asymptotic regime has already been studied before. In [5,6,7] the authors appeal to the two scale

convergence method. Nevertheless, the fast time variable persists in the limit model, and the computation

of the velocity and acceleration vector fields of the limit Vlasov equation requires the resolution of a

Poisson equation for every couple of slow/fast time variables, and some averaging procedure. In [1] the

author obtained a convergence result towards a simpler model, which is valid only for well-prepared initial

data. Our result applies to general initial data, and the limit model is a rather simple equation. It is a

fully explicit non linear transport equation, whose characteristic system is Hamiltonian (with respect to

the appropriate variables) and which can be studied in a much simpler way. Roughly speaking, the fast

time variable appearing in the previous works is averaged in a fully explicit way.

(5)

1. Trajectoires effectives

Ce travail s’inscrit dans le cadre de la mod´ elisation des plasmas de fusion. Nous concentrons notre

´

etude au r´ egime du rayon de Larmor fini pour le syst` eme de Vlasov-Poisson bi-dimensionnel d´ ecrit par (1), (2), (3). La m´ ethode d´ evelopp´ ee ici consiste ` a exprimer le potentiel ´ electrique ` a l’aide de la solution fondamentale de l’op´ erateur de Laplace dans R 2 , puis ins´ erer cette expression dans les trajectoires de l’´ equation de Vlasov. Nous obtenons alors, ` a l’aide des m´ ethodes classiques de gyro-moyenne [1,2,3] les trajectoires limites et ainsi, les expressions effectives des champs vitesse et acc´ el´ eration de la nouvelle

´

equation de Vlasov, d´ ecrivant le r´ egime asymptotique consid´ er´ e. Pour plus de d´ etails sur les preuves de ces r´ esultats, nous renvoyons ` a [4].

Notons e la solution fondamentale de l’op´ erateur de Laplace dans R 2 e(z) = − 1

2π ln |z|, z ∈ R 2 \ {0}

c’est-` a-dire −∆e = δ 0 dans D 0 ( R 2 ). Le potentiel ´ electrique, solution de l’´ equation de Poisson (2), s’´ ecrit donc

φ ε (t, x) = Z

R2

e(x − y)ρ ε (t, y) dy = Z

R2

Z

R2

e(x − y)f ε (t, y, w) dwdy. (11) Les ´ equations caract´ eristiques de l’´ equation de transport (1) sont donn´ ees par

dX ε

dt = V ε (t) ε , dV ε

dt = ω c

⊥ V ε (t)

ε − ∇ x φ ε (t, X ε (t)), (X ε (0), V ε (0)) = (x, v).

Nous cherchons des quantit´ es qui varient peu sur une p´ eriode cyclotronique. Plus exactement, ` a tout instant fix´ e t > 0, on introduit le changement de coordonn´ ees

˜ x = x +

⊥ v

ω c , ˜ v = R ω c t

ε

v

o` u R(θ) d´ esigne la rotation de R 2 d’angle θ. On v´ erifie ais´ ement que le d´ eterminant jacobien vaut 1 et alors ces transformations pr´ eservent la mesure de Lebesgue de R 4 i.e., d˜ vd˜ x = dvdx. En effet, ˜ x est le centre du cercle de Larmor d’´ ecrit par une particule passant par x avec la vitesse v. Ce centre ne varie pas ` a l’´ echelle du mouvement rapide cyclotronique, correspondant ` a la fr´ equence cyclotronique ω ε

c

. Plus exactement on a

d ˜ X ε dt = −

⊥ ∇ x φ ε ω c

(t, X ε (t)) = −

⊥ ∇ x φ ε ω c

t, X ˜ ε (t) − R ω c

− ω c t ε

⊥ V ˜ ε (t)

(12) d ˜ V ε

dt = −R ω c t

ε

∇ x φ ε (t, X ε (t)) = −R ω c t

ε

∇ x φ ε

t, X ˜ ε (t) − R ω c

− ω c t ε

⊥ V ˜ ε (t)

. (13)

On souhaite remplacer le potentiel ´ electrique par l’´ expression de (11). On introduit les densit´ es de pr´ esence en les coordonn´ ees (˜ x, v) ˜

f ε (t, x, v) = ˜ f ε (t, x, ˜ v), ˜ ˜ x = x +

⊥ v ω c

, v ˜ = R ω c t

ε

v.

Ainsi, (11) conduit ` a φ ε

t, X ˜ ε (t) − R ω c

− ω c t ε

⊥ V ˜ ε (t)

= Z

R2

Z

R2

e X ˜ ε (t) − y ˜ − R ω c

− ω c t ε

( ˜ V ε (t) − w) ˜

!

f ˜ ε (t, y, ˜ w) d ˜ ˜ wd˜ y

4

(6)

et par cons´ equent, (12), (13) deviennent d ˜ X ε

dt = − 1 ω c

Z

R2

Z

R2

⊥ ∇e

X ˜ ε (t) − y ˜ − 1 ω c

R

− ω c t ε

⊥ ( ˜ V ε (t) − w) ˜

f ˜ ε (t, y, ˜ w) d ˜ ˜ wd˜ y (14) d ˜ V ε

dt = −R ω c t

ε Z

R2

Z

R2

∇e

X ˜ ε (t) − y ˜ − 1 ω c

R

− ω c t ε

⊥ ( ˜ V ε (t) − w) ˜

f ˜ ε (t, y, ˜ w) d ˜ ˜ wd˜ y. (15) En prenant la moyenne de (14) sur la p´ eriode cyclotronique [t, t + T c ε ], avec T c ε = ε ω

c

, et en introduisant la variable rapide s = (τ − t)/ε, τ ∈ [t, t + T c ε ], nous obtenons

X ˜ ε (t + T c ε ) − X ˜ ε (t)

T c ε = − 1

ω c T c ε Z t+T

cε

t

Z

R2

Z

R2

⊥ ∇e X ˜ ε (τ) − y ˜ − R

− ω c τ ε

( ˜ V ε (τ) − w) ˜ ω c

!

f ˜ ε (τ ) d ˜ wd˜ ydτ

= − 1 ω c T c

Z T

c

0

Z

R2

Z

R2

⊥ ∇e X ˜ ε (t + εs) − y ˜ − R

− ω c t ε − ω c s

⊥ ( ˜ V ε (t + εs) − w) ˜ ω c

!

f ˜ ε (t + εs) d ˜ wd˜ yds

≈ −

⊥ ∇ ξ

ω c Z

R2

Z

R2

E ( ˜ X ε (t) − y, ˜ V ˜ ε (t) − w) ˜ ˜ f ε (t, y, ˜ w) d ˜ ˜ wd˜ ydθ (16) o` u la fonction E est d´ efinie par

E(ξ, η) = 1 2π

Z 2π

0

e ξ − ω −1 c R(θ) η

dθ, ξ, η ∈ R 2 . Nous proc´ edons de la mani` ere identique pour obtenir, ` a partir de (15)

V ˜ ε (t + T c ε ) − V ˜ ε (t)

T c ε = − 1

T c ε Z t+T

cε

t

R ω c τ ε

Z

∇e X ˜ ε (τ) − y ˜ − R

− ω c τ ε

( ˜ V ε (τ) − w) ˜ ω c

!

f ˜ ε (τ)d ˜ wd˜ ydτ

=− 1 T c

Z T

c

0

R ω c t

ε + ω c s Z

∇e X ˜ ε (t + εs) − y ˜ − R

− ω c t ε − ω c s

⊥ ( ˜ V ε (t + εs) − w) ˜ ω c

!

f ˜ ε (t + εs)d ˜ wd˜ yds

≈ ω c ⊥ ∇ η

Z

R2

Z

R2

E ( ˜ X ε (t) − y, ˜ V ˜ ε (t) − w) ˜ ˜ f ε (t, y, ˜ w) d ˜ ˜ wd˜ ydθ. (17) En passant ` a la limite dans (16), (17), quand ε & 0, nous obtenons les trajectoires apr` es filtration du mouvement rapide cyclotronique

d ˜ X dt = −

⊥ ∇ ξ

ω c Z

R2

Z

R2

E( ˜ X (t)−˜ y, V ˜ (t)− w) ˜ ˜ f (t) d ˜ wd˜ y, d ˜ V

dt = ω c ⊥ ∇ η

Z

R2

Z

R2

E( ˜ X (t)−˜ y, V ˜ (t)− w) ˜ ˜ f (t) d ˜ wd˜ y o` u ˜ f = lim ε&0 f ˜ ε est la distribution limite. Par la suite nous d´ eterminons une expression pour E(ξ, η).

Cela r´ esulte de la propri´ et´ e de la moyenne pour les fonctions harmoniques. En effet, si |ξ| > |η|/|ω c |, la fonction z → e(z) est harmonique dans l’ouvert R 2 \ {0}, contenant le disque ferm´ e, de centre ξ et de rayon |η|/|ω c |, et par cons´ equent nous avons, grˆ ace ` a la formule de la moyenne

E (ξ, η) = e(ξ) = − 1

2π ln |ξ|, |ξ| > |η|

|ω c | . Plus exactement, on d´ emontre cf. [4]

Lemme 1.1 Pour tout ξ, η ∈ R 2 , nous avons

E(ξ, η) = e η

ω c

1 {|ξ|≤|η|/|ω

c

|} + e(ξ)1 {|ξ|>|η|/|ω

c

|}

∇ ξ E(ξ, η) = ∇e(ξ) 1 {|ξ|>|η|/|ω

c

|} , ∇ η E(ξ, η) = ω c −1 ∇e η

ω c

1 {|ξ|≤|η|/|ω

c

|} au sens des distributions.

(7)

2. Le mod` ele limite

Nous introduisons le potentiel ´ electrique φ[ ˜ ˜ f (t)](˜ x, v) = ˜

Z

R2

Z

R2

E(˜ x − y, ˜ v ˜ − w) ˜ ˜ f (t, y, ˜ w) d ˜ ˜ wd˜ y

= Z

R2

Z

R2

e

v ˜ − w ˜ ω c

1 {|˜ x−˜ y|≤|˜ v− w|/|ω ˜

c

|} + e(˜ x − y) ˜ 1 {|˜ x−˜ y|>|˜ v− w|/|ω ˜

c

|}

f ˜ (t, y, ˜ w) d ˜ ˜ wd˜ y et les fonctions

V[ ˜ f (t)](˜ x, v) = ˜ −

⊥ ∇ ξ

ω c

Z

R2

Z

R2

E (˜ x − y, ˜ ˜ v − w) ˜ ˜ f (t, y, ˜ w) d ˜ ˜ wd˜ y = −

⊥ ∇ x ˜

ω c

φ[ ˜ ˜ f (t)]

A[ ˜ f (t)](˜ x, ˜ v) = ω c ∇ η

Z

R2

Z

R2

E(˜ x − y, ˜ v ˜ − w) ˜ ˜ f (t, y, ˜ w) d ˜ ˜ wd˜ y = ω c ∇ ˜ v φ[ ˜ ˜ f (t)].

En d´ erivant sous le signe int´ egral, il est ´ egalement possible de repr´ esenter les champs vitesse et acc´ el´ eration sous la forme (cf. Lemme 1.1)

V[ ˜ f (t)](˜ x, ˜ v) = − 1 ω c

Z

R2

Z

R2

⊥ ∇ ξ E(˜ x − y, ˜ v ˜ − w) ˜ ˜ f (t, y, ˜ w) d ˜ ˜ wd˜ y (18)

= − 1 ω c

Z

R2

Z

R2

⊥ ∇e(˜ x − y) ˜ 1 {|˜ x−˜ y|>|˜ v− w|/|ω ˜

c

|} f ˜ (t, y, ˜ w) d ˜ ˜ wd˜ y

A[ ˜ f (t)](˜ x, v) = ˜ ω c Z

R2

Z

R2

⊥ ∇ η E (˜ x − y, ˜ ˜ v − w) ˜ ˜ f (t, y, ˜ w) d ˜ ˜ wd˜ y (19)

= ω c Z

R2

Z

R2

⊥ ∇e

v ˜ − w ˜ ω c

1 {|˜ x−˜ y|≤|˜ v− w|/|ω ˜

c

|} f ˜ (t, y, ˜ w) d ˜ ˜ wd˜ y.

Les trajectoires limites sont d´ etermin´ ees par les champs vitesse et acc´ el´ eration V[ ˜ f ], A[ ˜ f ] d ˜ X

dt = V[ ˜ f (t)]( ˜ X (t), V ˜ (t)), d ˜ V

dt = A[ ˜ f (t)]( ˜ X(t), V ˜ (t)).

Les densit´ es de pr´ esence ´ etant conserv´ ees le long des trajectoires, nous obtenons

f ˜ ε (t, X ˜ ε (t), V ˜ ε (t)) = f ε (t, X ε (t), V ε (t)) = f (0, x, v) = f(0, x ˜ − ω −1 c v, ˜ ˜ v)

et par cons´ equent la densit´ e limite ˜ f est solution de (7), (8). Notons que les ´ equations caract´ eristiques limites forment un syst` eme hamiltonien, en les variables conjugu´ ees (˜ x 2 , ω −1 c v ˜ 1 ) et (ω c x ˜ 1 , ˜ v 2 )

d ˜ X 2

dt = ∂ φ[ ˜ ˜ f(t)]

∂(ω c x ˜ 1 ) ( ˜ X (t), V ˜ (t)), d(ω c −1 V ˜ 1 )

dt = ∂ φ[ ˜ ˜ f (t)]

∂ v ˜ 2

( ˜ X (t), V ˜ (t)) d(ω c X ˜ 1 )

dt = − ∂ φ[ ˜ ˜ f (t)]

∂˜ x 2 ( ˜ X (t), V ˜ (t)), d ˜ V 2

dt = − ∂ φ[ ˜ ˜ f (t)]

∂(ω −1 c v ˜ 1 ) ( ˜ X(t), V ˜ (t)).

3. Quelques propri´ et´ es du mod` ele limite

Les champs de vitesse et acc´ el´ eration ´ etant ` a divergence nulle div x ˜ V[ ˜ f (t)] = − 1

ω c

div x ˜ ˜ x φ[ ˜ ˜ f (t)] = 0, div v ˜ A[ ˜ f (t)] = ω c div v ˜ v ˜ φ[ ˜ ˜ f (t)] = 0

6

(8)

l’´ equation (7) s’´ ecrit aussi sous la forme conservative

∂ t f ˜ + div x ˜ { f ˜ V [ ˜ f (t)]} + div v ˜ { f ˜ A[ ˜ f (t)]} = 0.

En particulier nous obtenons la conservation de la masse. Plus g´ en´ eralement, nous d´ emontrons le r´ esultat suivant.

Proposition 3.1 Soit f ˜ = ˜ f (t, x, ˜ v) ˜ la solution du probl` eme (7), (8) et ψ = ψ(˜ x, ˜ v) une fonction int´ egrable par rapport ` a f ˜ (0, x, ˜ ˜ v)d˜ vd˜ x = f in (˜ x − ω −1 c ˜ v, v)d˜ ˜ vd˜ x.

(i) Pour tout t ∈ R + nous avons

2 d dt

Z

R2

Z

R2

ψ(˜ x, v) ˜ ˜ f(t, x, ˜ ˜ v) d˜ vd˜ x = Z

R2

Z

R2

Z

R2

Z

R2

f ˜ (t, y, ˜ w) ˜ ˜ f (t, x, ˜ v) ˜ (20)

× 1

ω c

(∇ y ˜ ψ(˜ y, w) ˜ − ∇ x ˜ ψ(˜ x, ˜ v)) · ∇e(˜ x − y) ˜ 1 {|˜ x−˜ y|>|˜ v− w|/|ω ˜

c

|}

+ (∇ ˜ v ψ(˜ x, v) ˜ − ∇ w ˜ ψ(˜ y, w)) ˜ · ∇e

v ˜ − w ˜ ω c

1 {|˜ x−˜ y|<|˜ v− w|/|ω ˜

c

|}

d ˜ wd˜ yd˜ vd˜ x.

(ii) En particulier, pour tout t ∈ R + nous avons Z

R2

Z

R2

{1, x, ˜ ˜ v, |˜ x| 2 , |˜ v| 2 } f ˜ (t, x, ˜ v) d˜ ˜ vd˜ x = Z

R2

Z

R2

{1, x, ˜ v, ˜ |˜ x| 2 , |˜ v| 2 }f in (˜ x − ω −1 c v, ˜ ˜ v) d˜ vd˜ x.

Preuve.

(i) Pour tout t ∈ R + , nous obtenons, grˆ ace aux formules de repr´ esentation (18), (19) d

dt Z

R2

Z

R2

ψ(˜ x, ˜ v) ˜ f (t, x, ˜ v) d˜ ˜ vd˜ x = Z

R2

Z

R2

ψ(˜ x, ˜ v)∂ t f ˜ d˜ vd˜ x

= Z

R2

Z

R2

h ∇ x ˜ ψ · V[ ˜ f (t)] + ∇ v ˜ ψ · A[ ˜ f (t)] i

f ˜ (t, x, ˜ v) d˜ ˜ vd˜ x

= − 1 ω c

Z

R2

Z

R2

Z

R2

Z

R2

∇ x ˜ ψ(˜ x, v) ˜ · ∇e(˜ x − y) ˜ 1 {|˜ x− y|>|˜ ˜ v− w|/|ω ˜

c

|} f ˜ (t, y, ˜ w) ˜ ˜ f (t, x, ˜ v) d ˜ ˜ wd˜ yd˜ vd˜ x +

Z

R2

Z

R2

Z

R2

Z

R2

∇ v ˜ ψ(˜ x, v) ˜ · ∇e

˜ v − w ˜ ω c

1 {|˜ x−˜ y|<|˜ v− w|/|ω ˜

c

|} f ˜ (t, y, ˜ w) ˜ ˜ f (t, x, ˜ ˜ v) d ˜ wd˜ yd˜ vd˜ x.

La formule (20) r´ esulte en interchangeant (˜ x, ˜ v) contre (˜ y, w), combin´ ˜ e ` a Fubini.

(ii) Les conservations r´ esultent facilement, par (20) appliqu´ ee successivement aux fonctions 1, x, ˜ ˜ v, |˜ x| 2 , |˜ v| 2 .

Etant donn´ e que l’´ energie cin´ etique est conserv´ ee, et comme on s’attend ` a ce que l’´ energie globale soit conserv´ ee, nous devrions retrouver aussi la conservation de l’´ energie ´ electrique. Effectivement nous d´ emontrons

Proposition 3.2 Pour tout t ∈ R + nous avons d

dt 1 2

Z

R2

Z

R2

φ[ ˜ ˜ f (t)](˜ x, ˜ v) ˜ f (t, x, ˜ v) d˜ ˜ vd˜ x = 0.

Preuve. L’´ energie ´ electrique s’´ ecrit sous la forme 1

2 Z

R2

Z

R2

φ[ ˜ ˜ f (t)](˜ x, v) ˜ ˜ f (t, x, ˜ v) d˜ ˜ vd˜ x = 1 2

Z

R2

Z

R2

Z

R2

Z

R2

E(˜ x − y, ˜ v ˜ − w) ˜ ˜ f (t, x, ˜ v) ˜ ˜ f (t, y, ˜ w) d ˜ ˜ wd˜ yd˜ vd˜ x

(9)

et en utilisant la parit´ e de E(ξ, η) en les variables ξ et η, nous obtenons facilement, par Fubini, que d

dt 1 2

Z

R2

Z

R2

φ[ ˜ ˜ f (t)](˜ x, ˜ v) ˜ f (t, x, ˜ v) d˜ ˜ vd˜ x = Z

R2

Z

R2

φ[ ˜ ˜ f (t)](˜ x, v)∂ ˜ t f ˜ d˜ vd˜ x

= Z

R2

Z

R2

h ∇ x ˜ φ[ ˜ ˜ f (t)] · V[ ˜ f (t)] + ∇ v ˜ φ[ ˜ ˜ f (t)] · A[ ˜ f (t)] i

f ˜ d˜ vd˜ x = 0.

R´ ef´ erences

[1] M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot.

Anal., 61(2009) 91-123.

[2] M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations 249(2010) 1620-1663.

[3] M. Bostan, Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul. 8(2010) 1923-1957.

[4] M. Bostan, A. Finot, The effective Vlasov-Poisson system for the finite Larmor radius regime, en pr´ eparation.

[5] E. Fr´ enod, E. Sonnendr¨ ucker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field, Asymptotic Anal. 18(1998) 193-213.

[6] E. Fr´ enod, E. Sonnendr¨ ucker, The finite Larmor radius approximation, SIAM J. Math. Anal. 32(2001) 1227-1247.

[7] D. Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma, ESAIM : Math. Model. Numer. Anal.

46(2012) 1929-947.

8

Références

Documents relatifs

The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity..

In the long time asymptotic limit, the motion can be split in two parts : one stationary flow along the lines of the magnetic field and the guiding center motion in the orthogonal

A particle method for Vlasov-Poisson system with a strong magnetic field The numerical resolution of the Vlasov equation and related models is usually performed by

In section 2, we prove that in the long time asymptotics, the density of particles satisfying the Vlasov–Poisson–Boltzmann equation converges to a Maxwellian with zero bulk

Abstract: We study here the finite Larmor radius regime for the Vlasov-Poisson equations with strong external magnetic field.. The derivation of the limit model follows by

Recently, the global existence and uniqueness of smooth solutions have been obtained for the relativistic version of the VMFP system, in the specific one and one half

Nevertheless, the fast time variable persists in the limit model, and the computation of the velocity and acceleration vector fields of the limit Vlasov equation requires the

The Cauchy problem for the MRVM system is for small data uniformly well-posed for a long time in the sense of Definition