• Aucun résultat trouvé

QUANTITATIVE MICROANALYSIS OF CALCIUM SUBCELLULAR COMPARTMENTS IN RESIN-EMBEDDED TISSUE SECTIONS (X-RAY WAVELENGTH DISPERSIVE SPECTROMETRY)

N/A
N/A
Protected

Academic year: 2021

Partager "QUANTITATIVE MICROANALYSIS OF CALCIUM SUBCELLULAR COMPARTMENTS IN RESIN-EMBEDDED TISSUE SECTIONS (X-RAY WAVELENGTH DISPERSIVE SPECTROMETRY)"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00223771

https://hal.archives-ouvertes.fr/jpa-00223771

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QUANTITATIVE MICROANALYSIS OF CALCIUM SUBCELLULAR COMPARTMENTS IN

RESIN-EMBEDDED TISSUE SECTIONS (X-RAY WAVELENGTH DISPERSIVE SPECTROMETRY)

G. Nicaise, J. Amsellem, S. Blaineau, F. Hemming

To cite this version:

G. Nicaise, J. Amsellem, S. Blaineau, F. Hemming. QUANTITATIVE MICROANALYSIS OF CAL-

CIUM SUBCELLULAR COMPARTMENTS IN RESIN-EMBEDDED TISSUE SECTIONS (X-RAY

WAVELENGTH DISPERSIVE SPECTROMETRY). Journal de Physique Colloques, 1984, 45 (C2),

pp.C2-461-C2-462. �10.1051/jphyscol:19842104�. �jpa-00223771�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, supplément au n°2, Tome 45, février 1984 page C2-461

QUANTITATIVE MICROANALYSIS OF CALCIUM SUBCELLULAR COMPARTMENTS IN RESIN-EMBEDDED TISSUE SECTIONS (x~RAY WAVELENGTH DISPERSIVE SPECTROMETRY)

G. Nicaise, J . Amsellem, S. Blaineau and F. Hemming

Laboratoire d'Uistologie et Biologie Tissulaire, Universite Claude Bernard, 69622 Villeurbanne, France

Résumé - Une méthode de microanalyse quantitative est mise au point et utili- sée pour déterminer le contenu cal ci que de granules intracellulaires d'un diamètre moyen de 0,4 ym. L'analyse est faite en spectrométrie à dispersion de longueur d'on- de après congélation rapide, cryosubstitution et inclusion dans l'épon.

A b s t r a c t - A method o f q u a n t i t a t i v e microanalysis i s described and used t o determine the calcium content o f i n t r a c e l l u l a r g r a n u l e s , 0.4 ym i n average diameter.

The analysis i s made by wavelength d i s p e r s i v e spectrometry a f t e r q u i c k - f r e e z i n g , f r e e z e - s u b s t i t u t i o n and embedding i n epon.

I - SPECIMEN PREPARATION

A good localization ofdiffusible elements can be obtained by analytical electron mi- croscopy of unfixed frozen tissue sections /1,2/, but cryosections are difficult to prepare and give a relatively poor image. There is increasing evidence that it is possible to preserve the physiological distribution of important elements like cal- cium (Ca) through freeze substitution and embedding in resins /3,4,5,6/.

In the present study, pieces of Mytiius retractor muscle were shock-frozen by slam- ming on a helium-cooled copper block /4,7/ or by dipping into freon 22 cooled by liquid nitrogen, then substituted in ethanol, acetone or tetrahydrofuran (3 days at - 85°C) in presence of 10 mM oxalic acid and calcium free molecular sieve (3A PR0LA- B0); after progressive warming, the tissues were embedded in epon. Sections (=150 nm thick) were floated onto either distilled water or glycerol (dehydrated by molecular sieve) and collected on aluminium grids without supporting film. In our case /as in 5/ the ahydrous sectioning recommended by Ornberg and Reese / 4 / was probably not needed. Control blocks were made with conventional glutaraldehyde fixation, followed by dehydration and embedding in epon.

II - STANDARDS

For epoxy embedded tissues, an indirect peripheral standard can be made by adding a sulphur-containing molecule to the resin HI ; we used epon with Thiokol LP3 (CIBA- GEIGY), and the final sulphur (S) concentration (Cs) of the standard (= 5 %) was controlled by destructive chemical analysis (in the "Service Central d'Analyse du CNRS de Vernaison").' The relative efficiency, k, of the analyser for Ca and S was measured with CaS04 crystallized on a formwar coated grid /see 8/.In our conditions k = Ica-As/I,s-ACa = 1.04 (I± specific X-ray intensity, A = atomic weight), Ca being analyzed with a crystal spectrometer (WDS) and S with an energy dispersive detector (EDS). For each analyzed spot, the Ca concentration ,n , , /,, ., N

_ Cs (P-b)c a/(W-Wo) CC a x - — — (P, b, W and WQ are defined next p.) k ( P - b )s/ ( W - W o ) Some data were also obtained with a Ca standard made by mixing a macrocyclic poly- ether complex with araldite /see 8/ ; but the Ca concentration of this standard was at best 0.12 %, and more usually 0.02 %, which gives imprecise measurements. We did not try the calcium naphtenate standard / 9 / , which could be better/see also 14/.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19842104

(3)

C2-462 JOURNAL DE PHYSIQUE

I 1 1

-

ANALYSIS

We used a CAFIEBAX-TEM a n a l y t i c a l e l e c t r o n microscope, equipped w i t h an o b l i q u e c r y s - t a l spectrometer and an energy d i s p e r s i v e d e t e c t o r TRACOR TN 2000. The a c c e l e r a t i n g v o l t a g e was s e t a t 40 o r 45 kV, and t h e probe c u r r e n t ( r e g u l a t e d ) a t a 90 nA. F o r each analyzed spot, t h e s i g n a l was expressed by I = (P-b)/(W-W,) (peak minus back- ground o v e r t h e w h i t e count o f t h e s e c t i o n minus t h e w h i t e count i n a nearby h o l e o f t h e g r i d /see

l o / .

The Ca Ka peak was measured w i t h a PET c r y s t a l a t s i n 8 = 0.3838, and t h e background a t s i n 8 = 0.400 d u r i n g 40 sec each, f o r each analyzed s p o t ; t h e w h i t e count, W, was t h e i n t e g r a l o f t h e energy d i s p e r s i v e spectrum between 4.5 and 6.0 keV. I f t h e l i q u i d n i t r o g e n t r a p i s used, t h e v a l u e o f W i s v e r y s t a b l e f o r a g i v e n area, b u t i t i n c r e a s e s by 4 % e v e r y 100 sec i f l i q u i d n i t r o g e n i s o m i t t e d . No mass l o s s was d e t e c t e d i n t h e t i m e s c a l e o f o u r analyses.

A t t e n u a t i o n ("shadowing") o r e x a g g e r a t i o n ( n o i s e ) o f t h e s i g n a l were found when ap- p r o a c h i n g t h e g r i d bars, even when t h e s e c t i o n was on t h e s u p e r i o r s i d e o f t h e g r i d ; shadowing and n o i s e were a l s o found toward t h e g r i d p e r i p h e r y , w i t h b o t h EDS and WDS /see

l o / .

P a r t i a l improvement c o u l d be o b t a i n e d w i t h an o r i g i n a l g r a p h i t e - a l u m i n i u m g r i d h o l d e r . As a r u l e , t h e measurements were o n l y t a k e n on t h e 16 most c e n t r a l ho- l e s o f t h e 200 mesh aluminium g r i d , and more t h a n 10 um away f r o m t h e g r i d bars.

I n these c o n d i t i o n s , we can q u a n t i f y 5 mM Ca p e r kg o f epon /11/, w i t h good s a f e t y (P = 2b), w i t h o u t making assumptions on peak d e c o n v o l u t i o n s .

I V

-

RESULTS

The a n t e r i o r byssus r e t r a c t o r muscle o f M y t i l u s i s a v e r y s i m p l e and w e l l ordered t i s s u e , and t h e c e l l components a r e r e l a t i v e l y easy t o i d e n t i f y i n u n s t a i n e d l o n g i - t u d i n a l s e c t i o n s . The g l i o - i n t e r s t i t i a l granules,a presumed Ca s t o r e /12/ a r e o v a l , w i t h a s m a l l diameter o f 0.2 pm and a l a r g e diameter o f 0.7 vm, which i s c l o s e t o t h e s i z e of t h e beam i n o u r c o n d i t i o n s o f a n a l y s i s ( p r e f e r e n t i a l l y u s i n g a small aper- t u r e o f t h e Wehnelt). A f t e r c r y o s u b s t i t u t i o n , t h e m y o f i l a m e n t areas c o n t a i n 10 t o 20 mmol Ca/kg o f epoxy embedded t i s s u e /11/, v a l u e s v e r y c l o s e t o t h a t o b t a i n e d a f t e r g l u t a r a l d e h y d e f i x a t i o n , and which compare w e l l w i t h t h e l i t e r a t u r e d a t a o b t a i n e d b y d e s t r u c t i v e chemical a n a l y s i s /see 13/. The g l i o - i n t e r s t i t i a l g r a n u l e s g i v e s i m i l a r r e s u l t s a f t e r aldehyde f i x a t i o n , b u t w i t h t h e c r y o t e c h n i q u e s t h e i r Ca c o n t e n t i s always s u p e r i o r (up t o 180 mmol/kg) and more v a r i a b l e .

T h i s w o r k was c a r r i e d o u t i n the C e n t r e d e ~ i c r o s c o p i e E l e c t r o n i q u e A p p l i q u k e l a b i o l o g i e e t l a ~ d o l o g i e ( U n i v e r s i t d C l a u d e B e r n a r d

-

L y o n I), w i t h the h e l p o f f u n d s f r o m t h e C.N.R.S. ( L . A . 040 244) a n d t h e D.G.R.S.T. (A.C.C. 78 7 0873, A . S . 79 7 281) 1

-

DORGE A., RICK R., GEHRING K., MASON J., THURAU K., J. M i c r . B i o l . C e l l .

22

(1975) 205.

2

-

SOMLYO A.V., SHUMAN H., SOMLYO A.P., J. C e l l B i o l

. 74

(1977) 828.

3

-

GEYER G., HALBHUBER K.J., BENSER A., Acta histochem. 48 (1974) 257.

4

-

ORNBERG R.L., REESE T.S., Feder. Proc.

39

(1980) 280271 5

-

NEUMANN D., JANOSSY A.G.S., J. Microscopy 120 (1981) 73.

6

-

HARVEY D.M.R., J . Microscopy 127 (1982) 2 0 r

7

-

JESSEN H., PETERS P.D., HALL

m.,

J . C e l l S c i .

3

(1974) 359.

8

-

CHANDLER J.A., J . Microscopy 106 (1976) 291.

9

-

ORNBERG R., REESE T., i n " M i c F r o b e A n a l y s i s o f B i o l o g i c a l Systems" (1981) Academic Press, N.Y., 213.

10- HALL T.A., ANDERSON H.C., APPLETON T., J. Microscopy 99 (1973) 177.

11- lmmol/kg o f epoxy embedded t i s s u e = 5.3 mmol/kg d r y w z g h t , 1.2 mmol/kg of wet t i s s u e and 1.5 mmol/l o f c e l l H20 (assuming 78 % o f w a t e r i n t h e t i s s u e ) . 12- HEMMING F.J., NICAISE G., B r a i n Res.

245

(1982) 127.

13- RUEGG J.C., P h y s i o l . Rev.

2

(1971) 201.

14- DE BRUIJN W.C., i n "Scanning e l e c t r o n microscopy" (1981)

11,

357.

Références

Documents relatifs

1 beads measuring 35-75 ym in 0 are shown in the SEM-mode as standards for bulk analysis, attached to a graphite plate with graphite glue (Leit C ).. The analysis of Co-loaded

O for secondary X-ray production (fluorescence): the generated primary intensity, I , the X-ray yield, w , X-ray mass absorption coefficients, and emergence angle..

Abstract - It is shown by X-ray microanalysis of 100 nm thick cryosections from glycerol-gelatine standards and rat liver that the measured peak-to-background ratio (p/b)

spectrometry may be optimal for detecting very small aggregations of a single element, but X-ray microanalysis is likely to be the only means of elemental analysis of a

The laser probe mass spectrograph (L.P.M.S. 11) is able to analyse directly micro-volumes of insolator or, conductor, minerals or organical samples. his method permits to study

microanalysis which may be achieved by adjustment of the experimental variables. The purpose of this paper is to examine the influence of the experimentally adjustable variables

So it is possible to perform simultaneous bulk and surface analysis of such a samp1e;this has been done for a thin foil by using a partEcukar experimen- tal arrangement

Before this studies, ion analysis were performed for inorganic samples of known composition (MURASHIGE and SKOOG's medium powder) and organic samples of unknown composition