• Aucun résultat trouvé

QUANTITATIVE X-RAY MICROANALYSIS OF BIOLOGICAL CRYOSECTIONS DEPENDS ON ICE CRYSTAL DAMAGE

N/A
N/A
Protected

Academic year: 2021

Partager "QUANTITATIVE X-RAY MICROANALYSIS OF BIOLOGICAL CRYOSECTIONS DEPENDS ON ICE CRYSTAL DAMAGE"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223768

https://hal.archives-ouvertes.fr/jpa-00223768

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QUANTITATIVE X-RAY MICROANALYSIS OF BIOLOGICAL CRYOSECTIONS DEPENDS ON ICE

CRYSTAL DAMAGE

K. Zierold

To cite this version:

K. Zierold. QUANTITATIVE X-RAY MICROANALYSIS OF BIOLOGICAL CRYOSECTIONS DE- PENDS ON ICE CRYSTAL DAMAGE. Journal de Physique Colloques, 1984, 45 (C2), pp.C2-447- C2-450. �10.1051/jphyscol:19842101�. �jpa-00223768�

(2)

30URNAL DE PHYSIQUE

Colloque C2, supplément au n°2, Tome 45, février 1984 page C 2 - W

QUANTITATIVE X-RAY MICROANALYSIS OF BIOLOGICAL CRYOSECTIONS DEPENDS ON ICE CRYSTAL DAMAGE

K. Zierold

Max-Planck-Institut fur Systemphysiologie, Rheinlanddamm 201, 4600 Dortmund, F.R.G.

Résumé - A l'aide de la microanalyse par rayons X sur des cryo- coupes d'épaisseur de 100 nm de standards gélatine-glycérol et de foie de rat on constate que le rapport pic sur fond (p/b) décroît avec l'augmentation de la taille des cristaux de glace.

Abstract - It is shown by X-ray microanalysis of 100 nm thick cryosections from glycerol-gelatine standards and rat liver that the measured peak-to-background ratio (p/b) decreases with increasing ice crystal size.

INTRODUCTION

X-ray microanalysis of freeze-dried cryosections is used to measure the distribution of elements in different compartments of biological cells and tissues (1-5). Ice crystal damage of the ultrastructure due to insufficient freezing velocity is a well known preparation artefact of this method (6). However, the displacement of elements, particular- ly of diffusible ions as sodium, chlorine, potassium and calcium, is assumed to take place in dimensions not larger than one ice crystal diameter. Therefore X-ray microanalysis by scanning an electron beam in an area larger than a few ice crystal diameters in size was expect- ed to be independent on freezing damage. The experiments described in the following contradict to this assumption.

MATERIALS AND METHODS

The cooling chain preparation method as described previously (7, 8) is used for the preparation of the cryosections. Two kinds of speci- men were studied:

1. Droplets of 20?o glycerol-gelatine and 80% electrolyte solution of known composition, e.g. KC1 varying in concentration between 3.1 and 200 mMol/liter. These specimens were used as standards for quantitative X,-ray microanalysis (9).

2. Freshly excised pieces of rat liver, about 1 mm in diameter.

100 nm thick cryosections, prepared by means of the Reichert FC4 cryoultramicrotome were transferred to the electron microscope under cold nitrogen gas atmosphere. Freeze-drying of the sections was enabled by evacuating the cryotransfer chamber and loosening the cold contact to the grid holder. X-ray microanalysis was performed in a Siemens Elmiskop ST 100 F, a scanning transmission electron micros- cope (STEM) with a field emission gun, operated at 100 kV, by means of an energy dispersive SiLi-detector (nuclear semiconductor) and a multichannel analyzer (Link Systems). The scanning area is varied from 278 nm x 444 nm to 6940 nm x 11100 nm, analysis time was 100 s.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19842101

(3)

C2-448 J O U R N A L D E PHYSIQUE

T h e s e c t i o n s w e r e k e p t a t 1 3 8 K i n t h e e l e c t r o n m i c r o s c o p e . F o r t h e e v a l u a t i o n o f t h e X - r a y p e a k s p / b - v a l u e s w e r e c a l c u l a t e d b y d i v i d i n g t h e p e a k h e i g h t ( p ) t h r o u g h t h e m e a n X - r a y i n t e n s i t y b e t w e e n 4 . 5 a n d 5 . 5 keV ( b ) .

RESULTS

F i g . 1 s h o w s a c r y o s e c t i o n o f g l y c e r o l - g e l a t i n e m i x e d w i t h 2 0 0 m M o l / l KC1 w i t h t h e m e a n i c e c r y s t a l d i a m e t e r l e s s t h a n 5 0 nm. A c o r r e s p o n d - i n g X - r a y s p e c t r u m i s a d d e d ( F i g . 2 ) . F i g . 3 w a s o b t a i n e d a f t e r s l o w e r f r e e z i n g t h e s a m e s p e c i m e n t y p e a s i n F i g . 1 . T h e m e a n i c e c r y s t a l d i a m e t e r i s c a . l / u m . F i g . 4 s h o w s t h e c o r r e s p o n d i n g X - r a y s p e c t r u m . p / b - v a l u e s f o r s u l f u r a n d p o t a s s i u m , d e r i v e d f r o m X - r a y s p e c t r a o f c r y o s e c t i o n s o f g l y c e r o l - g e l a t i n e m i x e d w i t h KC1 a r e s k e t c h e d i n F i g . 5 a n d 6 , r e s p e c t i v e l y . T h e m a i n r e s u l t i s t h a t t h e p / b - v a l u e d e c r e a s e s w i t h i n c r e a s i n g i c e c r y s t a l d i a m e t e r . T h i s h o l d s f o r d i f f u s i b l e i o n s ( e . g . p o t a s s i u m ) a s w e l l a s f o r b o u n d e l e m e n t s ( e . g . s u l f u r ) . S i m i l a r r e s u l t s a r e o b t a i n e d i n b i o l o g i c a l s p e c i m e n s . F i g . 7 s h o w s r a t l i v e r w i t h i n t e r m e d i a t e i c e c r y s t a l s i z e . T h e p / b - v a l u e o f p h o s p h o r u s d e p e n d i n g o n t h e i c e c r y s t a l s i z e i n t h e c y t o p l a s m a n d t h e n u c l e u s i s d r a w n i n F i g . 8.

F i g . 1

-

C r y o s e c t i o n s o f g l y c e r o l - g e l a t i n e m i x e d w i t h 2 0 0 m M o l / l K C 1 , m e a n i c e c r y s t a l s i z e 1 5 0 nm, b a r = 2 5 0 nm.

F i g . 2 - X - r a y s p e c t r u m o f t h e c r y o s e c t i o n i n F i g . 1 . S c a n n i n g a r e a = 6 9 4 nm x 1 1 1 0 nm.

F i g . 3

-

C r y o s e c t i o n o f g l y c e r o l - g e l a t i n e s o l u t i o n m i x e d w i t h 2 0 0 m M o l / l KC1, m e a n i c e c r y s t a l s i z e c a . l / u m , b a r = 2 . 5 /um.

F i g . 4 - X - r a y s p e c t r u m o f t h e c r y o s e c t i o n i n F i g . 3 . S c a n n i n g a r e a = 6.941um x I l . l / u m .

(4)

sulfur in glycerol-gelotine potossium in glycerol gelotime

mixed with mixed with

200 mMolll KC1 *-• 200 mMolll KC1

.-.

6.25 mMolll KC1 - - - - - a 100 mMolll KC1

.-

-

- -.

10 6.25 mMolll KC1

..

. . . .

..

ice . . .

.

. . . .

.

. . . . mehh'iii?'~rystol

diometer (nmf 1 diameter (nm)

F i g . 5 - p / b o f s u l f u r v e r s u s m e a n i c e c r y s t a l d i a m e t e r . S.E.M. o f m e a s u r e d p o i n t s = + 8 % .

F i g . 6 - p / b o f p o T a s s i u m v e r s u s m e a n i c e c r y s t a l d i a m e t e r . S.E.M. o f m e a s u r e d p o i n t s = 2 107;.

phosphorus in rot liver cytoplasm .-a

\

nucleus

.-

- -

-.

L meon ice crystal diometer fnm)

I

50 100 200 300 LOO

F i g . 7 - C r y o s e c t i o n o f r a t l i v e r o f i n t e r m e d i a t e i c e c r y s t a l s i z e . C = c y t o p l a s m ; N = n u c l e u s ; b a r = l / u m .

F i g . 8 - p / b o f p h o s p h o r u s i n t h e c y t o p l a s m a n d n u c l e u s o f r a t l i v e r , d e p e n d e n t o n t h e m e a n i c e c r y s t a l s i z e . S.E.M. o f m e a s u r e d p o i n t s = + 10:;.

-

DISCUSSION

T h e s e r e s u l t s c o u l d b e e x p l a i n e d a s f o l l o w s : I n b i o l o g i c a l m a t e r i a l o f l o w d e n s i t y a 1 0 0 k e V - e l e c t r o n h a s a m e a n f r e e p a t h o f a b o u t 1 0 0 nm.

T h e m e a n d i s t a n c e b e t w e e n c h a r a c t e r i s t i c a t o m s h o m o g e n e o u s l y d i s t r i - b u t e d w i t h a v o l u m e d e n s i t y o f 1 0 0 m M o l / l = 6 2 0 0 0 a t o m s i n a c u b e o f 1 0 0 nm l e n g t h o f s i d e i s a b o u t 2 . 5 nm. P r o j e c t e d t o t h e s e c t i o n s u r f a c e t h e i n t e r a t o m i c d i s t a n c e a s s e e n f r o m t h e i m p i n g i n g e l e c t r o n s i s 0 . 4 nm. A f t e r p r e c i p i t a t i o n o f i c e c r y s t a l s d u r i n g c r y o f i x a t i o n t h e d e n s i t y o f t h e r e m a i n i n g m a t e r i a l a c c u m u l a t e d b e t w e e n t h e i c e c r y s t a l s i s e n h a n c e d , a n d t h e i n t e r a t o m i c d i s t a n c e b e t w e e n t h e c h a r a c t e r i s t i c a t o m s i s r e d u c e d a s s c h e m a t i c a l l y d r a w n i n F i g . 9 . R e l a t i v e l y s m a l l i c e c r y s t a l s a s s k e t c h e d i n F i g . 9 b r e s u l t i n s m a l l i o n d i s p l a c e m e n t s ,

(5)

C2-450 JOURNAL DE PHYSIQUE

w h e r e a s l a r g e r i c e c r y s t a l s c o m p r e s s t h e i o n s i n m a t e r i a l w a l l s o f e n h a n c e d d e n s i t y ( F i g . 9 c ) . A s a c o n s e q u e n c e e l e c t r o n s h i t t i n g h o l e s l e f t a f t e r i c e s u b l i m a t i o n p e n e t r a t e t h e s e c t i o n w i t h o u t i n t e r a c t i o n w i t h t h e s p e c i m e n . E l e c t r o n s h i t t i n g t h e m a t e r i a l w a l l s a r e s c a t t e r e d p r e f e r a b l y b y t h e a t o m s i n t h e u p p e r p a r t o f t h e s e c t i o n , a n d t h e e x c i t a t i o n p r o b a b i l i t y o f t h e a t o m s b e l o w i s r e d u c e d . T h i s e f f e c t r e s u l t s i n r e d u c e d p / b - v a l u e s d e p e n d i n g o n t h e i c e c r y s t a l s i z e .

9

a o o F i g . 9 - S c h e m a t i c d r a w i n g o f i o n d i s - o o p l a c e m e n t s i n c r y o s e c t i o n s d u e t o i c e

0 0

0 O c r y s t a l g r o w t h a s s e e n f r o m t h e s i d e . o C i r c l e s = i o n s , h a t c h e d a r e a s = i c e

c r y s t a l s . a ) T h e i o n d i s t r i b u t i o n i s a s s u m e d t o b e s t a t i s t i c a l l y h o m o g e n e o u s

b i n a s e c t i o n w i t h o u t i c e c r y s t a l s .

b ) S m a l l i c e c r y s t a l s c a u s e s m a l l i o n d i s p l a c e m e n t s . T h e i o n s a r e s t i l l homo- g e n e o u s l y d i s t r i b u t e d . c ) L a r g e i c e c r y s t a l s a c c u m u l a t e t h e i o n s i n n a r r o w m a t e r i a l w a l l s . T h e i o n d i s t r i b u t i o n b e c o m e s i n h o m o g e n e o u s .

C

REFERENCES

1 . SOMLYO A . V . , SHUMAN H . , SOMLYO A . P . , J . C e l l B i o l . 7 4 ( 1 9 7 7 ) 8 2 8 . 2 . DORGE A . , RICK R . , GEHRING K . , THURAU K . , P f l u g e r s ~ r c h .

373

( 1 9 7 8 )

8 5 .

3 . HAGLER H . K . , BURTON K.P., GREICO C.A., LOPEZ L . E . , BUJA L.M., S c a n - n i n g E l e c t r o n M i c r o s c o p y 1 9 8 0 / I I I ( 7 9 8 0 ) 4 9 3 .

4 . WENDT-GALLITELLI M.F.. WOLBURG H . . S c a n n i n g 2 E l e c t r o n M i c r o s c o ~ v . .

1 9 8 1 / I I ( 1 9 8 1 ) 4 5 5 .

5 . ZIEROLD K . . U l t r a m i c r o s c o o v 1 0 ( 1 9 8 2 ) 4 5 . 8 ,

6 . PLATTNER H : , BACHMANN L . , 1 n E d e v . c y t o l . 79 ( 1 9 8 2 ) 2 3 7 . 7 . ZIEROLD K . , J . M i c r o s c . 1 2 5 ( 1 9 8 2 ) 1 4 9 .

8 . ZIEROLD K . , S c a n n i n g ~ l e z o n M i c r o s c o p y 1 9 8 2 / I I I ( 1 9 8 2 ) 1 2 0 5 . 9 . ROOMANS G . , SEVEUS L.A., J . S u b m i c r . C y t o l . 9(1) ( 1 9 7 7 ) 3 1 .

Références

Documents relatifs

1 beads measuring 35-75 ym in 0 are shown in the SEM-mode as standards for bulk analysis, attached to a graphite plate with graphite glue (Leit C ).. The analysis of Co-loaded

Abatraot - The study of fine structure of emission X - ray spectra of iron and oxygen in combination with Auger electron spectra data refute the earlier suppositions about forming

spectrometry may be optimal for detecting very small aggregations of a single element, but X-ray microanalysis is likely to be the only means of elemental analysis of a

The Al KB band from the alloys is shifted to lower energy and become sharpen band with narrow width compared with that of pure A l , because the change in the local density of

A simple, yet demanding, series of tests can be built around analyses of a known pure sample; if the EDS system is programmed to assay elements which are known not to exist in

microanalysis which may be achieved by adjustment of the experimental variables. The purpose of this paper is to examine the influence of the experimentally adjustable variables

So it is possible to perform simultaneous bulk and surface analysis of such a samp1e;this has been done for a thin foil by using a partEcukar experimen- tal arrangement

Before this studies, ion analysis were performed for inorganic samples of known composition (MURASHIGE and SKOOG's medium powder) and organic samples of unknown composition