• Aucun résultat trouvé

Consistent analysis of one-nucleon spectroscopic factors involving weakly- and strongly-bound nucleons

N/A
N/A
Protected

Academic year: 2021

Partager "Consistent analysis of one-nucleon spectroscopic factors involving weakly- and strongly-bound nucleons"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: in2p3-01230204

http://hal.in2p3.fr/in2p3-01230204

Submitted on 12 Sep 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Consistent analysis of one-nucleon spectroscopic factors

involving weakly- and strongly-bound nucleons

J. Okolowicz, Y.H. Lam, M. Ploszajczak, A.O. Macchiavelli, N.A. Smirnova

To cite this version:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Consistent

analysis

of

one-nucleon

spectroscopic

factors

involving

weakly- and

strongly-bound

nucleons

J. Okołowicz

a

,

Y.H. Lam

b

,

M. Płoszajczak

c

,

,

A.O. Macchiavelli

d

,

N.A. Smirnova

e

aInstituteofNuclearPhysics,PolishAcademyofSciences,Radzikowskiego152,PL-31342Kraków,Poland

bKeyLaboratoryofHighPrecisionNuclearSpectroscopy,InstituteofModernPhysics,ChineseAcademyofSciences,Lanzhou730000,China cGrandAccélérateurNationald’IonsLourds(GANIL),CEA/DSMCNRS/IN2P3,BP55027,F-14076CaenCedex,France

dNuclearScienceDivision,LawrenceBerkeleyNationalLaboratory,Berkeley,CA 94720,USA

eCENBG(UMR5797UniversitéBordeaux1CNRS/IN2P3),CheminduSolarium,LeHautVigneau,BP 120,33175GradignanCedex,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received29July2015

Receivedinrevisedform30March2016 Accepted31March2016

Availableonline6April2016 Editor:J.-P.Blaizot

Thereisaconsiderableinterestinunderstandingthedependenceofone-nucleonremovalcrosssections onthe asymmetryofthe neutronSn and proton Sp separation energies,followingalarge amountof

experimental data and theoretical analysesina framework ofsudden and eikonal approximations of thereactiondynamics.Thesetheoreticalcalculationsinvolveboththesingle-particlecross sectionand the shell-modeldescriptionofthe projectileinitialstate andfinal statesofthe reactionresidues.The configuration mixing in shell-model description of nuclear states depends on the proximity of one-nucleondecaythreshold butdoesit dependsensitively onSnSp?To answerthisquestion, weuse

theshellmodelembeddedinthecontinuumtoinvestigatethedependenceofone-nucleonspectroscopic factors ontheasymmetry ofSn and Sp formirror nuclei24Si, 24Neand 28S,28Mgand foraseriesof

neonisotopes(20≤A≤28).

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Single-nucleonremovalreactions atintermediateenergies pro-videabasictooltoproduceexoticnucleiwithlargecross-sections. The interpretation of thesereactions aseffective direct reactions follows from the theoretical modelling which uses an approxi-mate description of the reaction dynamics (sudden and eikonal approximations)[1]andastandardshellmodeldescriptionofthe structure of the initial state of the projectile, the final states of the

(

A

1

)

-nucleon reaction residues, and the relevant overlap functions. Ina series ofpapers [2,3],it was found that the ratio

=

σ

exp

/

σ

th ofthe experimental andtheoretical inclusive

one-nucleon removal cross section for a large number of projectiles showsastrikingdependenceontheasymmetryoftheneutronand proton separation energies. Is this dependence telling us some-thingimportantaboutthecorrelationsintheprojectileinitialstate and/orfinalstatesofreactionresidues,orcoulditbeanartefactof thetheoreticalmodellingused?

A possible drawback of the theoretical modelling of the one-nucleonremoval reactions is that the descriptionof reaction

dy-*

Correspondingauthor.

E-mailaddress:ploszajczak@ganil.fr(M. Płoszajczak).

namics and shell model ingredients in this description are not consistently relatedone to another. Therefore, there is no a pri-ori certainty that these reactions can be considered as effective directreactions.Acomprehensivetheoreticaldescriptionina uni-fiedframework ofthecontinuum shellmodel(CSM)[4–6] orthe coupled-channelGamow shellmodel[7]ismuchtoocomplicated to be consideredasa realistic propositionin thenearfuture. On theother hand,single-nucleon removalreactionsasexperimental tools to study exotic nuclei are too important to abandon fur-ther discussion of

(

S

)

-dependence found, where



S equals Sn

Sp forone-neutron removaland Sn

Sp forone-proton

re-movalreactions. Recently, spectroscopicfactors forproton knock-outinclosed-shell14,16,22,24,28Owerecalculatedusingthecoupled clusterformalism[8]andfoundtodependstronglyon



S, inline with the observations in [2,3]. In contrast, the experimental re-sultsinRef.[9]usingtransferreactions inOxygenisotopes show, atbest,aweakdependenceon



S. Moreover,thestudyinRef.[10]

points tosomelimitationsoftheeikonal approximation.Herewe wouldlike toaddress thequestion of whetherthededuced ratio of the experimental and theoretical one-nucleon removal cross-sectionsisrelatedinanywayto the



S-dependence of theCSM spectroscopic factors? Hence, is thisratio probing the configura-tion mixing in SM states involved inthe single-nucleon removal reactions atintermediate energies orshould it be considered as

http://dx.doi.org/10.1016/j.physletb.2016.03.086

(3)

304 J. Okołowicz et al. / Physics Letters B 757 (2016) 303–306

an empirical normalization factorof the theoretical cross-section whendeterminingspectroscopicfactorsofexoticnuclei?Ofcourse, oneshouldkeepinmindthatthespectroscopicfactorsarenot ob-servables per se and assuch are not invariant under the unitary transformationoftheHamiltonian.However,inagivenmodel,the spectroscopic factors are importanttheoretical quantities and an investigationofthe



S-dependence ofthespectroscopicfactorsin aconsistenttheoreticalframeworkprovidedbytheCSMmayshed light onour understanding ofthe one-nucleon removalreactions atintermediateenergies.

The



S-dependence ofspectroscopicfactorsisexaminedin24Si and28S,andtheirmirror partners24Ne and28Mgusingtheshell

model embedded in the continuum (SMEC) [6] which isa mod-ern version of the CSM. The ratio Rσ , which was reported for

24Si and 28S both for neutron and proton removalreactions [3],

willserve asa referencein thisanalysis. Weinvestigate alsothe



S-dependence oftheratioofSMECandSMspectroscopicfactors RS F

=

SSMEC

/

SSM forachainofneonisotopesattheexperimental

separationenergies

S

nand

S

p. 2. Themodel

Inthe presentstudies,the scatteringenvironment isprovided by one-nucleondecaychannels. The Hilbertspaceis dividedinto twoorthogonalsubspaces

Q

0 and

Q

1 containing0and1particle

inthescatteringcontinuum,respectively.Anopenquantumsystem descriptionof

Q

0 spaceincludescouplingstotheenvironment of

decay channelsthrough the energy-dependenteffective Hamilto-nian[6,11]:

H

(

E

)

=

HQ0Q0

+

WQ0Q0

(

E

),

(1)

where

H

Q0Q0 denotesthestandardSMHamiltoniandescribingthe

internaldynamicsandWQ0Q0

(

E

)

:

WQ0Q0

(

E

)

=

HQ0Q1G(Q+)

1

(

E

)

HQ1Q0

,

(2)

istheenergy-dependentcontinuumcouplingterm,where

G

(Q+) 1

(

E

)

is the one-nucleon Green’s function and HQ0,Q1, HQ1Q0 are the

couplingtermsbetweenorthogonalsubspaces

Q

0 and

Q

1 [11]. E

intheabove equationsstandsforascatteringenergy.The energy scaleissettledbythelowestone-nucleonemissionthreshold.The channel stateinnucleus A is definedby thecouplingofone nu-cleon(protonorneutron)inthecontinuumtonucleus

(

A

1

)

ina givenSMstate.IntheSMEC calculation,weinclude18lowest de-cay channelsinthenucleus A: 9 forprotonsand9forneutrons. Thecouplingtothesechannelsgivesrisetothe mixingofall SM statesofthesametotalangularmomentumandparityinthe nu-cleus A and, hencechanges theground state (g.s.) spectroscopic factorwithrespecttoitsSMvalue.

TheSMECsolutions arefoundby solvingtheeigenproblemfor theHamiltonianEq.(1)inthebiorthogonalbasis.TheSMEC eigen-vectors



α are relatedtotheeigenstates



joftheSMHamiltonian

HQ0Q0 by a linear orthogonal transformation:



α

=



jbαj



j.

The expectation value of any operator O can

ˆ

be calculated as:

 ˆ

O



= 

α¯

| ˆ

O

|

α



. In case of the spectroscopic factor one has:

ˆ

O

=

a

|

t



t

|

a, where

|

t



isthe target stateof the

(

A

1

)

-system. a and aareannihilationandcreationoperatorsofanucleonina

givensingle-particle(s.p.)state.

3. TheHamiltonian

Fortheisospin-symmetricpartoftheSM Hamiltonian HQ0Q0 in the sd shell model space, we take the USD interaction [12]. The charge-dependent terms in the Hamiltonian comprise the two-body Coulomb interaction, acting between valence protons,

and isovectorsingle-particle energies [13] which account for the Coulomb effects inthe core. Both thesetermsare scaled propor-tionallyto

h

¯

ω

A[13],withh

¯

ω

Abeingparameterizedas

¯

hωA

=

45 A−1/3

25 A−2/3MeV

.

(3)

The terms HQ0,Q1, HQ1Q0 in the continuum-coupling term

Eq.(2)aregeneratedusingtheWigner–Bartlett(WB)interaction:

V12

=

V0



α

+ β

12



δ (r

1

r2

) ,

(4)

where

α

+ β =

1 and P σ12 isthespinexchangeoperator.Although theproduct

V

0

(

α

−β)

=

414 MeV fm3iskeptconstantinall

calcu-lations,themagnitudeofthecontinuumcouplingvariesdepending onspecificvaluesof

V

0,

α

,thestructureofthetarget wave

func-tion,andtheseparationenergies

S

p, Sn.

The radial s.p. wave functionsin

Q

0 andthe scatteringwave

functionsin

Q

1 aregenerated usingaWoods–Saxon(WS)

poten-tialwhichincludesspin–orbitandCoulomb parts.Theradiusand diffuseness of the WS potential are R0

=

1

.

27 A1/3fm and a

=

0

.

67 fm respectively. The spin–orbit potential is VSO

=

6

.

1 MeV,

andtheCoulombpartiscalculatedforauniformlychargedsphere with radius R0. The depth of the central part for protons

(neu-trons)is adjustedtoyield theenergyofthes.p.state involvedin the lowest one-proton (one-neutron) decaychannel equal to the one-proton (one-neutron)separationenergyintheg.s.ofthe nu-cleus A. The continuum-coupling termEq.(2)breaks the isospin conservationduetodifferentradialwavefunctionsforprotonsand neutrons,anddifferentseparationenergies

S

p, Sn.

4. Theresults

Weshalldiscussnowthedependenceofthespectroscopic fac-tors ontheasymmetry ofneutronandprotonseparationenergies and on the strength ofthe spin-exchange term which influences thestrengthofthe

T

=

0 proton–neutroncontinuumcoupling.

Fig. 1 showsthe



S dependence of theratio ofd5/2

spectro-scopic factors in SMEC andSM forthe g.s. of mirrornuclei: 24Si

(S(pex)

=

3

.

293 MeV and S( ex)

n

=

21 MeV) [14] and 24Ne (S( ex)

p

=

16

.

55 MeV and S(nex)

=

8

.

868 MeV) [14]. The curves RS F

(

S

)

for proton (neutron) spectroscopic factors are shown with the solid (dashed) lines as a function of Sn

Sp (Sn

Sp) on a

(

Sp

,

S

n

)

-lattice. The case



S

<

0 in RS F

(

S

)

for proton

(neu-tron)spectroscopicfactorscorrespondstotheremovalofa weakly-bound proton (neutron). The values of RS F at the experimental

separation energies S(pex) and Sn(ex) are denoted by filled circles.

Alongeachcurvefortheproton(neutron)spectroscopicfactor,

S

p

(Sn)changesand

S

n(Sp)remainsconstant.

Quantitativeeffectsofthecontinuumcouplingonspectroscopic factorsdependonthedistributionofthespectroscopicstrengthin the considered SM states [15]. For

α

=

1, the rearrangement of spectroscopicfactorsissmallifthespectroscopicstrengthis con-centrated ina single SM state. This is the casein both 24Siand 24Ne.Forexample,92.7%(91.9%)oftheproton(neutron)

d

5/2 SM

spectroscopicstrengthin24Siisintheg.s.andhence,theratio

R

S F

bothforprotonandneutrong.s.spectroscopicfactorsisalmost in-dependent of



S (see Fig. 1a). The slightbreakingofthe isospin symmetrybyboththecontinuumcouplingandtheCoulombterm in the SM interaction leads in this case to a weak dependence of RS F for the neutron spectroscopic factor (the dashed lines in

Fig. 1a)inthelimitofsmall Sn.

(4)

Fig. 1. TheratioofSMECandSMd5/2spectroscopicfactorsinmirrornuclei24Siand 24NeisplottedasafunctionoftheasymmetryS oftheneutronandproton

sepa-rationenergies.Proton(neutron)spectroscopicfactorsareshownbysolid(dashed) lines.S equalsSnSp(SnSp)fortheproton(neutron)spectroscopicfactors.

FilledcirclesdenotetheratiosRS F attheexperimentalvalueoftheasymmetry

pa-rameterS.(a)RS F(S)fortheg.s.of24Sifor

α

=1;(b)RS F(S)fortheg.s.of 24Sifor

α

=0.73;(c)R

S F(S)fortheg.s.of24Nefor

α

=0.73.Formoredetails,

seethedescriptioninthetext.

showa rearrangementofthe d5/2 neutron(proton)spectroscopic

strengthin theg.s. of24Si(24Ne) for

α

=

0

.

73. The



S-variation

oftheratioRS F inthiscaseremainshoweverrelativelysmalland

doesnot exceed10%. One should noticealso a significant break-ingofmirrorsymmetrybycomparing

R

S F

(

S

)

curvesforneutron

spectroscopicfactorsat small Sn in 24Si(dashed linesinFig. 1b)

andprotonspectroscopicfactorsatsmall

S

p in24Ne(solidlinesin

Fig. 1c).

Theratio

=

σ

exp

/

σ

th ofcross-sectionsforoneproton

(neu-tron)removal from24Si is

0

.

8

±

0

.

04 (

0

.

39

±

0

.

04) [2]. The corresponding ratio of SMEC and SM proton (neutron) spectro-scopicfactorsishoweveralmostconstantandequals0.987(0.981) for

α

=

1,and0.974(0.957)for

α

=

0

.

73.

Fig. 2showsthe



S dependence oftheratioofSMECandSM g.s. spectroscopicfactors formirrornuclei: 28S (S(ex)

p

=

2

.

49 MeV

and S(nex)

=

21

.

03 MeV) [14] and 28Mg (S(pex)

=

16

.

79 MeV and

S(nex)

=

8

.

503 MeV)[14].Proton(neutron)spectroscopicfactorsare

shownbysolid(dashed)lines.



S equals Sn

Sp (Sn

Sp)forthe

proton(neutron)spectroscopicfactors.

Inthesenuclei,thedistributionofSMspectroscopicstrengthis differentfromthatin24Siand24Ne.Only44% ofthe protons1/2

spectroscopicstrengthisintheg.s.of28S.Onthecontrary,97.6%of theneutron

d

5/2 spectroscopicstrengthisconcentratedintheg.s.

of28S.Consequently,evenintheabsenceofthe T

=

0 component inthecontinuumcouplinginteraction(

α

=

1),theratio

R

S F ofthe

protons1/2 spectroscopicstrengthsdependson Sp

Sn (seesolid

lines in Fig. 2a). This dependenceis further enhanced for

α

=

1 (see Fig. 2b). One should also noticestrong breaking of the mir-rorsymmetrybycomparingtheratioofproton

s

1/2 spectroscopic

strengthatsmall

S

p in28S(solidlinesinFig. 2b)andtheratioof

Fig. 2. TheratioofSMECandSMproton(neutron)s1/2spectroscopicfactorsand

neutron(proton)d5/2 spectroscopicfactorsinmirrornuclei28S(28Mg)isplotted

asafunctionoftheasymmetryS oftheneutronandprotonseparationenergies. (a) RS F(S)fortheg.s.of28Sfor

α

=1;(b) RS F(S)fortheg.s.of28Sifor

α

=

0.73;(c) RS F(S)fortheg.s.of28Mgfor

α

=0.73.Formoreinformation,seethe

captionofFig. 1andthedescriptioninthetext.

Fig. 3. The ratioofSMECand SM g.s.spectroscopicfactorsin thechain ofNe isotopes(20≤A≤28)isplottedasafunctionoftheasymmetryS oftheir experi-mentalneutronandprotonseparationenergiesfor

α

=0.73.S equalsS(pex)S

(ex)

n

(S(nex)S(pex))fortheproton(neutron)spectroscopicfactors.Theratiosofproton

(neutron)spectroscopicfactorsaredepictedwithsquares(triangles).Inagreement withtheexperimentalangularmomentumandparityofthenucleus(A−1),theg.s. protonspectroscopicfactorsared5/2forallconsideredisotopes,andneutron

spec-troscopicfactorsare(i)s1/2in20,26Ne,(ii)d3/2in22,28Ne,and(iii)d5/2in24Ne.For

moredetails,seethedescriptioninthetext.

neutron s1/2 spectroscopic strength atsmall Sn in 28Mg (dashed

linesinFig. 2c).Thiseffectisduetoanimportantdependenceof the

s-wave

continuumcouplingontheCoulombinteraction.

In28S,theratio Rσ of proton(neutron)removalcross-sections is

0

.

92

±

0

.

07 (

0

.

31

±

0

.

025)[2].Again,thecorrespondingratio ofSMEC andSM proton(neutron)spectroscopic factorsisalmost constant and equals 1.026 (1.0) for

α

=

1 and 0.848 (0.975) for

α

=

0

.

73.

Systematicsoftheratio RS F foreven-N Ne-isotopesisplotted

inFig. 3.Theconsideredisotopesare[14]:20Ne(S(ex)

p

=

12

.

84 MeV and S(nex)

=

16

.

865 MeV), 22Ne (S( ex) p

=

15

.

266 MeV and S( ex) n

=

10

.

364 MeV), 24Ne (S(ex)

(5)

306 J. Okołowicz et al. / Physics Letters B 757 (2016) 303–306

26Ne(S(ex)

p

=

18

.

17 MeV and Sn(ex)

=

5

.

53 MeV),and28Ne(S(pex)

=

20

.

63 MeV and S(nex)

=

3

.

82 MeV). RS F forproton(neutron)

spec-troscopicfactors areshownwithsquares(triangles)asafunction of Sn

Sp (Sn

Sp). One can see that the ratio of SMEC and

SMspectroscopicfactorsdoesnotexhibitanysystematictendency asafunction of



S. The fluctuationsof RS F are smallexceptfor

theneutronspectroscopicfactorin22Ne.Thisnucleusishowever an exception in the Ne-chain because the g.s. SM spectroscopic factor is much smaller than the spectroscopic factor in the first excitedstateandthereforeevenasmallspin(isospin)dependence oftheproton–neutroncontinuumcouplingand/orasmall isospin-symmetry breaking term in the Hamiltonian and the continuum coupling,producesignificantchangeofthespectroscopicfactor.

In conclusion, we have consistently evaluated the fraction of single-particlespectroscopicstrengthwhichisshiftedtohigher ex-citations as a result of the coupling to the proton and neutron decay channels. We have shown that the one-nucleon spectro-scopicfactorsinSMECareweaklycorrelatedwiththeasymmetry of neutron Sn and proton Sp separation energies. Strong mirror

symmetry breaking,found in the ratioof SMEC andSM spectro-scopic factors, appears mainly for small one-nucleon separation energies suggestingthe thresholdnature of thiseffect.Whatever theprecisereasonsforastrongdependenceoftheratioof experi-mentalandtheoreticalone-nucleonremovalcrosssectionsonthe asymmetryofneutronandprotonseparationenergiesare,the ex-planation ofthisdependencedoesnotreside inthe behaviour of theone-nucleonCSM(SMEC)spectroscopicfactorsasafunctionof



S.

Acknowledgements

Thisworkwassupported inpartby theFUSTIPEN(French-U.S. Theory Institute for Physics with Exotic Nuclei) under U.S. DOE

grantNo. DE-FG02-10ER41700,bytheCOPINandCOPIGAL French-Polish scientific exchange programs, by the U.S. DOE contract No. DE-AC02-05CH11231 (LBNL), Y.H.L. andN.A.S. appreciate the financialsupportfromtheMinistryofForeignAffairsand Interna-tionalDevelopmentofFranceintheframeworkofPHCXuGuangQi 2015 under project No. 34457VA. Y.H.L. gratefully acknowledges the financial supportsfrom theNationalNatural Science Founda-tionofChina(Nos.U1232208,U1432125),MinistryofScienceand Technology ofChina(TalentedYoungScientistProgram) andfrom the ChinaPostdoctoral ScienceFoundation (2014M562481).N.A.S. acknowledgesthefundingofCFT(IN2P3/CNRS,France),APthéorie 2014.

References

[1]P.G.Hansen,J.A.Tostevin,Annu.Rev.Nucl.Part.Sci.53(2003)219; J.A.Tostevin,Nucl.Phys.A682(2001)320c.

[2]A.Gade,etal.,Phys.Rev.Lett.93(2004)042501.

[3]A.Gade,etal.,Phys.Rev.C77(2008)044306.

[4]C.Mahaux,H.A.Weidenmüller,ShellModelApproach toNuclearReactions, North-Holland,Amsterdam,1969.

[5]H.W.Barz,I.Rotter,J.Höhn,Nucl.Phys.A275(1977)111; R.J.Philpott,Fizika9(1977)109.

[6]K.Bennaceur,F.Nowacki,J.Okołowicz,M.Płoszajczak,Nucl.Phys.A671(2000) 203.

[7]Y.Jaganathen,N.Michel,M.Płoszajczak,Phys.Rev.C89(2014)034624.

[8]Ø.Jensen,G.Hagen,M.Hjorth-Jensen,B.A.Brown,A.Gade,Phys.Rev.Lett.107 (2011)032501.

[9]F.Flavigny,etal.,Phys.Rev.Lett.110(2013)122503.

[10]C.Louchart,A.Obertelli,A.Boudart,F.Flavigny,Phys.Rev.83(2011)011601(R).

[11]J.Okołowicz,M.Płoszajczak,I.Rotter,Phys.Rep.374(2003)271.

[12]B.A.Brown,B.H.Wildenthal,Annu.Rev.Nucl.Part.Sci.38(1988)29.

[13]W.E.Ormand,B.A.Brown,Nucl.Phys.A440(1985)274.

[14]http://www.nndc.bnl.gov/nudat2/, NuDat2.6 database,NationalNuclearData Center,BrookhavenNationalLaboratory.

Références

Documents relatifs

Effective field theories of strong-interacting systems in nucleon scattering and heavy ; nucleons ; heavy mesons ; renormalization ; chiral symmetry Effective field theories (EFT)

In this thesis, we focus on two main consistency properties that a replicated database must fulfil from the application perspective: 1) state convergence: the concurrent execution

Ces expériences ont abouti au fait que les capacités d’adsorption des argiles traitées ont considérablement évalué de 33mg/g pour l’argile brute, 200mg/g pour

Les éoliennes à axe vertical ont été les premières structures développées pour produire de l’électricité paradoxalement en contradiction avec le traditionnel moulin à vent à

If the contribution of the nucleon anapole moment is put aside, the effect is much larger however, ranging from a factor 2 for the spin contribution to a factor 4 for the

The pres- ence of a high p t charged particle allows a scale to be identified which can be varied in a similar way as the scale in virtual photon interactions, and the effect on

(Color online) Comparison between the neutron- and proton-induced inelastic γ-production cross sections measured in the present work together with the corresponding talys

Progress has also been made experimentally in determining the three-body q's as well as the closely related distorted-wave-Born-approximation (DWBA) parameter D2. In