• Aucun résultat trouvé

THERMOELECTRIC POWER OF CONCENTRATED PdH

N/A
N/A
Protected

Academic year: 2021

Partager "THERMOELECTRIC POWER OF CONCENTRATED PdH"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217614

https://hal.archives-ouvertes.fr/jpa-00217614

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

THERMOELECTRIC POWER OF CONCENTRATED

PdH

J. Kopp, D. Mclachlan, G. Vekinis

To cite this version:

(2)

JOURNAL DE PHYSIQUE Colloque C6, supplément au n° 8, Tome 39, août 1978, page C6-439

THERMOELECTRIC POWER OF CONCENTRATED PdH

J . Kopp, D.S. McLachlan and G. Vekinis

Department of Physios, University of the Witwatersrand Johannesburg, South Africa.

Résumé.- Le pouvoir thermoélectrique (PTE) de PdH a été mesuré entre 10 et 170 K pour les concen-trations comprises entre 0,915 et 0,996. Tous les échantillons présentent un PTE sans aucune trace de maximum caractéristique du "phonon-drag". La valeur du PTE diminue lorsque la concentration augmente ; ceci est attribué à l'accroissement correspondant de la branche optique du spectre de phonons.

Abstract.- The thermoelectric power of PdH was measured between 10 and 170 K for H concentrations between 0.915 and 0.996. All samples showed a positive thermopower with no hint of a phonon drag peak. The decrease with concentration is attributed to the rise of the optical phonon branch.

The thermoelectric power of pure Pd is nega-tive at room temperature, indicating a decreasing density of states at E„. For x = H/Pd <v 0.7, the thermopower increases monotonically as a function . of temperature between 30 and 110 K / ] / . When x -»• 1 we expect a pseudo-silver behaviour, with a posi-tive thermopower, in the same way that NiH behaves like pseudo-copper /2/.

We have measured the thermopower of very con-centrated PdH between 10 and 170 K. x varied from 0.915 to 0.996. The hydrides were prepared electro-lytically at -78°C, using the method described in /3/. The hydrogen content was determined from the resistivity, using the data of /3/ and /4/. The thermopower was measured by establishing a tempera-ture gradient across a Pd - PdH thermocouple. A Au + 0.06 % Fe versus chromel thermocouple measured the temperature difference. The bottom end of both thermocouples was held at a fixed temperature, which was a liquid helium bath (4 K) for measurements in the range 10-80 K and a liquid nitrogen bath (77 K) for the range 80-170 K. The thermal voltage was fit-ted to a fourth-order polynomial, which was diffe-rentiated to obtain the Pb-PdH thermopower. The ab-solute value of the PdH thermopower was then obtai-ned by subtracting the published values for Pb /5/. Overall accuracy is estimated at ± 0.2 yV/K. The results are shown in figure 1.

The most noticeable feature is the total absence of a phonon-drag hump, which is still

visi-ble for x <\i 0.7 at about 20 K /!/. It may be pre-sent, although very small, below 10 K, since Flet-cher et al. found a small effect at 8 K for x = 0.J7 /6/. 5|- X=09I5 4- yr x.0990 / ^ x=0 996 °0 50 100 150 200 I (K)

Fig. 1 : The observed thermoelectric power of PdH .

The thermopower at 170 K varied between 3 and 5 W / K , which is much higher than that for sil-ver ("<> 1 VIV/K) . In NiH the value is estimated to be ^ 1 . 3 yV/K 111, which is very close to copper. It is interesting to speculate why these two hydrides should behave so differently. It may be noted that PdH has a low-lying optical phonon band / 4 / , while NiH has not /8/. PdH is a superconductor, while NiH is probably not 18/. This is most probably due to the much higher value of the Einstein temperatu-re for NiH (^ 1200 K /8/ against ^ 600 K for PdH / 4 / ) . The matter bears further investigation.

At temperatures above 100 K the thermopower of PdH is positive and increases with H concentra-tion in the range 0.1 < x < 0.7 /l/. It is thus of interest to note that in the range 0.9 < x'< 1 the thermopower decreases with H concentration. This is attributed to the rise of the optical phonon resis-tivity.

The theoretical electron diffusion thermo-power of a metal can be written as /9/

(3)

st,

=

so

[a

Rn a ( ~ ) / a Rn E]

(a)

E~

where So = a 2 k 2 ~ / 3 e EF

= 12.45 x T/EF V/K

where EF i s i n eV. Taking T = 170 K and EF = 5 . 5 eV ( t h e f r e e e l e c t r o n v a l u e c o r r e s p o n d i n g t o s i l v e r ) , we have So = -0.76 pV/K. The f r e e e l e c t r o n model h a s been used t o d e r i v e t h i s . However, f r m super- c o n d u c t i n g c r i t i c a l f i e l d measurements / l o / i t ap- p e a r s t h a t t h e s p e c i f i c h e a t c o n s t a n t y i s r o u g l y d o u b l e t h a t o f t h e f r e e e l e c t r o n v a l u e . T h i s c o u l d d o u b l e So t o -1.5 pV/K. Hence En 0 ( E ) / a Rn E] % -3. Now EF Rn a ( E ) = Rn T(E) + Rn v(E)

+

Rn A(E) where T i s t h e r e l a x a t i o n time, v t h e Fermi v e l o c i - t y and A t h e a r e a of t h e Fermi s u r f a c e . I f t h e l a t - t e r t o u c h e s t h e zone boundary, we e x p e c t A(E) t o be a s l o w l y d e c r e a s i n g f u n c t i o n of E , a s i n t h e c a s e of s i l v e r . I t i s more d i f f i c u l t t o s e e how T de- c r e a s e s s u f f i c i e n t l y f a s t w i t h e n e r g y t o g i v e t h e r e q u i r e d v a l u e o f -3.

The observed thermopower i s g i v e n by t h e Nordheim-Gorter r u l e a s

s

=

c

si

pi/ cpi

where Si i s t h e t h e o r e t i c a l c o n t r i b u t i o n from pro- c e s s , which y i e l d s r e s i s t i v i t y pi. S i n c e t h e obser- ved thermopower d e c r e a s e s as x i n c r e a s e s (and t h e o p t i c a l r e s i s t i v i t y i n c r e a s e s / I ) / ) we assume t h a t t h e r e i s no c o n t r i b u t i o n t o S from t h e o p t i c a l band i . e . Sop 2 0, s o t h a t

($1

where S i s g i v e n by

(a)

above. The P ' s p l o t t e d by

a c

Chiu and Devine / I ] / a t T = 210 K a r e t a b u l a t e d

below : Assuming l i n e a r i n t e r p o l a t i o n , we o b t a i n t h e f o l l o - wing f a b l e f o r o u r r e s u l t s : x Pac'(pac+pop) S(170 K)(pV/K) 0.915 0.47 4.9 0.990 0.41 4.0 0.996 0.40 3.7 R e f e r e n c e s

/ I / S c h i n d l e r , A . I . , Smith, R.J. and Kammar, E.W., 10 t h I n t . Conf. on R e f r i g e r a t i o n (Copenhagen) (1959) 74.

/ 2 / Lewis, F.A., The Palladium-Hydrogen System, 1967.

/ 3 / Burger, J . P . , McLachlan, D.S., M a i l f e r t , R. and S o u f f r a c h e , B., S o l i d S t a t e Commun

11

(1975) 277.

/ 4 / McLachlan, D.S.,Mailfert, R., Burger, J.P. and S o u f f r a c h e , B., S o l i d S t a t e Commun

17

(1975) 281.

/ 5 / C h r i s t i a n , J . W . , J a n , J . P . , P e a r s o n , W.B. and Templeton, I . M . , P r o c . Roy. Soc.

3

(1958) *. n

/ 6 / F l e t c h e r , R., Ho, N.S. and Manchester, F.D., J. Phys. C

1

(1970) 59.

/ 7 / Skoskiewicz, T., Phys. S t a t . S o l . ( a )

5

(1971) 29.

/ 8 / McLachlan, D.S., Papadopoulos, I. and Doyle, T.B., t o b e p r e s e n t e d a t LT 15 (1978).

/ 9 / Bernard, R.D., T h e r m o e l e c t r i c i t y , London 1972. 1101 McLachlan, D.S., Doyle, T.B. and Burger, J.P.,

J. Low Temp. Phys.

26

(1977) 589.

/ 1 1 / Chiu, J.C.H. and Devine, R.A.B., S o l i d S t a t e Commun

2

(1 977) 631.

Références

Documents relatifs

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion