• Aucun résultat trouvé

Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2 as cathode materials for Ni–metal hydride batteries

N/A
N/A
Protected

Academic year: 2021

Partager "Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2 as cathode materials for Ni–metal hydride batteries"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Journal of Power Sources, 196, pp. 7797-7805, 2011-05-18

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.jpowsour.2011.05.013

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Comparative structural and electrochemical study of high density

spherical and non-spherical Ni(OH)2 as cathode materials for Ni–metal

hydride batteries

Shangguan, Enbo; Chang, Zhaorong; Tang, Hongwei; Yuan, Xiao-Zi; Wang,

Haijiang

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=dcf463f0-2b8a-4995-983f-cbfea1ed3ea4

https://publications-cnrc.canada.ca/fra/voir/objet/?id=dcf463f0-2b8a-4995-983f-cbfea1ed3ea4

(2)

ContentslistsavailableatScienceDirect

Journal

of

Power

Sources

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Comparative

structural

and

electrochemical

study

of

high

density

spherical

and

non-spherical

Ni(OH)

2

as

cathode

materials

for

Ni–metal

hydride

batteries

Enbo

Shangguan

a

,

Zhaorong

Chang

a,b,∗

,

Hongwei

Tang

a

,

Xiao-Zi

Yuan

b

,

Haijiang

Wang

b

aCollegeofChemistryandEnvironmentalScience,HenanNormalUniversity,Xinxiang453007,PRChina bInstituteforFuelCellInnovation,NationalResearchCouncilofCanada,Vancouver,BC,CanadaV6T1W5

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13January2011

Receivedinrevisedform9April2011 Accepted10May2011

Available online 18 May 2011

Keywords:

Nickelhydroxide High-density

Nickel–metalhydridebatteries High-ratedischarge

Cathodematerials

a

b

s

t

r

a

c

t

Inthispaperwecomparethebehaviorofnon-sphericalandspherical␤-Ni(OH)2ascathodematerialsfor Ni–MHbatteriesinanattempttoexploretheeffectofmicrostructureandsurfacepropertiesof␤-Ni(OH)2 ontheirelectrochemicalperformances.Non-spherical␤-Ni(OH)2powderswithahigh-densityare syn-thesizedusingasimplepolyacrylamide(PAM)assistedtwo-stepdryingmethod.X-raydiffraction(XRD), infraredspectroscopy(IR),scanningelectronmicroscopy(SEM),thermogravimetric/differentialthermal analysis(TG–DTA),Brunauer–Emmett–Teller(BET)testing,laserparticlesizeanalysis,andtap-density testingareusedtocharacterizethephysicalpropertiesofthesynthesizedproducts.Electrochemical characterization,includingcyclicvoltammetry(CV),electrochemicalimpedancespectroscopy(EIS),and acharge/dischargetest,isalsoperformed.Theresultsshowthatthenon-spherical␤-Ni(OH)2 mate-rialsexhibitanirregulartabularshapeandadensesolidstructure,whichcontainsmanyoverlapped sheetnanocrystallinegrains,andhaveahighdensityofstructuraldisorderandalargespecificsurface area.Comparedwiththespherical␤-Ni(OH)2,thenon-spherical␤-Ni(OH)2materialshaveanenhanced dischargecapacity,higherdischargepotentialplateauandsuperiorcyclestability.Thisperformance improvementcanbeattributabletoahigherprotondiffusioncoefficient(4.26×10−9cm2s−1),better reactionreversibility,andlowerelectrochemicalimpedanceofthesynthesizedmaterial.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

As a result of excellent electrochemical properties, nickel hydroxide(Ni(OH)2)hasbeenintensivelystudiedandwidelyused

asacathodematerialinallnickel-basedalkalinesecondarycells

[1–5].Generally,thereexisttwonickelhydroxidepolymorphs: ␣-phaseNi(OH)2 and␤-phaseNi(OH)2,which canbetransformed

into␥-phaseNiOOHand␤-phaseNiOOH,respectively,afterafull charging[5].Although␣-Ni(OH)2hasahighertheoretical

electro-chemicalcapacity,itisveryunstableinastrongalkalinemedium andeasilytransformsto␤-phaseafterafewcycles.Moreover, ␣-Ni(OH)2exhibitsalowertapdensity(<1.7gcm−3),whichgreatly

limitsitspracticaluse.Thehighertapdensitycanenhancethe addi-tionamountofpositivematerialandpromotethespecificenergy density ofNi–MH batteries further. Owingtoitshigh tap den-sity(2.1–2.2gcm−3)andexcellentelectrochemicalperformance,

spherical␤-Ni(OH)2 hasbeenwidelyusedasacathodematerial

incommercialNi–MHbatteries [6,7]. However,thepreparation

∗ Correspondingauthorat:CollegeofChemistryandEnvironmentalScience, HenanNormalUniversity,Xinxiang453007,PRChina.Tel.:+863733326335; fax:+863733326336.

E-mailaddress:czr 56@163.com(Z.Chang).

proceduresforsphericalparticlesarerathercomplexandthe pre-cipitatednickelhydroxiderequiresagingforalongtimetoobtain the desired product, which result in the high production cost. Besides,theeffectiveelectrodecapacityofthespherical␤-Ni(OH)2

samplestillhasroomtoimproveascomparedwiththetheoretical value(289mAhg−1).

It is well established that the physical properties of nickel hydroxide,suchasitsmorphology,particle-sizedistribution, tap-density, and specific surface area, chemical composition, are strongly related to performance of the positive electrodes for its practical application in Ni–MH batteries [8–10]. Given the importanceof nickelhydroxide tothebattery industry, consid-erable effort has been devoted to improving the performance of thepositive electrodes,including: enhancing thestability of the␣-phase[11],cationicsubstitution[7],additives[12],surface modification[2,13]andnanosizedmaterials[5,14–16].Itisnoticed thatextensiveresearchesareconductedonthepreparationand electrochemicalperformanceofnano-Ni(OH)2incertain

applica-tions[14–20].Thedischargecapacityofnano-Ni(OH)2electrodes

preparedbyultrasonicchemistry,hardtemplatemethodandother commonmethodscanreachashighas250–270mAhg−1.

How-ever,nano-Ni(OH)2canhardlymeettherequirementsofindustrial

massproduction[21].Especially,thenano-particlesalwaysexhibit alowertapdensity(<1.0gcm−3)[14],whichwillresultinalow

0378-7753/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved.

(3)

7798 E.Shangguanetal./JournalofPowerSources196 (2011) 7797–7805

Table1

ThechemicalcompositionsandphysicalpropertiesofNi(OH)2samplesA(non-spherical)andB(spherical).

Sample Chemicalcomposition(wt.%) BETsurface

area(m2g−1) Mean diameter(␮m) Tap-density (gcm−3) Ni Co Zn A(non-spherical) 57.68 1.54 3.13 75.62 27.20 2.22 B(spherical) 57.95 1.51 3.09 10.15 9.34 2.20

volumetricspecificcapacity,thusseriouslylimitingtheenergy den-sityofNi–MHbatteries.

Recently, a polyacrylamide (PAM) assisted two-step drying methodhasbeenreportedasasimplermethodtosynthesizehigh densitynon-sphericalNi(OH)2 powders[22].Theproceduresfor non-sphericalpowdersaremuchsimplerthanthoseforspherical powders,moreeconomicalwithnohydroxide-formingstep,and moreenvironmentallyfriendlywithnoammoniuminvolved.The Ni(OH)2powderspreparedbythenewmethodhasdemonstrated

notonlyahightapdensity,butalsoexcellentelectrochemical per-formance.Buttillnow,non-sphericalNi(OH)2 hasattractedlittle

attentionasrawmaterialforthepositiveelectrodeincommercial batteriesbecausenon-sphericalpowdersalwaysshowalower tap-density(1.5–1.8gcm−3)[8,23].Moststudiesaboutnon-spherical

Ni(OH)2intheliteraturemainlyfocusedoneithertheproperties

ofNi(OH)2electrodesforrechargeableCd–NiandNi–MHbatteries

orthecrystalchemistryofNi(OH)2[24–27].Inthepreviouswork

[22],wehavestudiedtheeffectoftap-densityonthe electrochemi-calperformanceofnon-sphericalNi(OH)2electrodes.Nevertheless,

itisnecessarytocomparenon-sphericalNi(OH)2withcommercial

sphericalNi(OH)2 productandimprovetheperformanceof

non-sphericalNi(OH)2beforethematerialcanbeusedincommercial

cells.Hence,thegoalofthisworkistofurtherinvestigatethe struc-turalandelectrochemicalperformance ofnon-spherical,Coand ZndopedNi(OH)2preparedbythepolyacrylamide(PAM)assisted

two-stepdryingmethodincomparisonwithsphericalcommercial Ni(OH)2productwithafocusonexploringtheeffectof

microstruc-tureandsurfacepropertiesof␤-Ni(OH)2withahightapdensityon

theirelectrochemicalperformances.

On the basis of our previouswork [22], highdensity, non-spherical, Co and Zn doped ␤-Ni(OH)2 was prepared by the

polyacrylamide (PAM) assisted two-step drying method. This studyfocusesonthecomparisonofstructuralandelectrochemical performancebetweenas-preparednon-spherical␤-Ni(OH)2 and

commercialspherical␤-Ni(OH)2ascathodematerialsforNi–MH

batteries.Effectsofthemicrostructureandsurfacepropertiesof theprepared␤-Ni(OH)2 onitselectrochemicalperformance are

discussedindetail.

2. Experimental

2.1. SynthesisofNi(OH)2powders

Synthesisof non-sphericalNi(OH)2 powderswascarried out

bythepolyacrylamide(PAM)assistedtwo-stepdryingmethodas describedpreviously[22].StoichiometricamountsofNiSO4·6H2O,

CoSO4·7H2O,ZnSO4·7H2O(molar ratioofNi:Co:Znis 100:2.5:5)

were dissolved in distilled water to create a concentration of 1.7molL−1.Theaqueous solutionwasprecipitatedby adding a

NaOHsolutionof4molL−1withcontinuousstirringat50C.The

co-precipitationmixtureswerestirredcontinuouslyafterthe reac-tionceased,andthencoagulatedbyaddingPAM(10mlPAM(0.6%) per200mlsolution),filtrated(underapressureof20MPa),dried (at120◦Cfor2h),ground,washed,anddried(at120Cfor2h)to

obtainthefinalproduct.

Thespherical␤-Ni(OH)2usedinthisworkisacommercial

prod-uct(HenanKelongCo.,Ltd.,China)co-precipitatedwith1.5wt.%Co and3wt.%Zn.

2.2. CharacterizationofNi(OH)2

ThecrystallinestructurecharacterizationofNi(OH)2powders

wasperformedontheX-rayDiffractometer(D8X)withCuK␣ asirradiation,utilizing aworkvoltageof 40kV,a workcurrent of40mA,a scanningspeedof0.026◦s−1 anda steptimeof 3s.

Thescanningrangewasbetween15◦ and70.Thesample

mor-phologieswereobservedusinganSEM(SEM-6701F,JEOL,Japan) withaworkvoltageof15.00kV,andtheFouriertransforminfrared (FTIR) spectra of prepared samples was recorded by a Fourier infraredspectrometer(FIRS; Bio-Rad FTS-40,US) usingthe KBr pellet method. Thermogravimetric/differential thermal analysis (TG/DTA)wascarriedoutusingaShimadzuDT-40thermal ana-lyzer (Japan). The measurement was performed in an air flow using ␣-Al2O3 asthe reference material. To determinethe tap

densityofthesample,aJZ-1tap-densitytester(ChenduPowder TestEquipmentCo.,Ltd.,China)wasused.Themeasurementerror waslessthan1%.Thespecificsurfaceareawasevaluatedbythe BET nitrogen adsorption methodusing a 3H-2000 surface area analyzer(China).Theparticlesizedistributionofthepowder sam-pleswasobtainedusinganOMECLS-POP(III)particlesizeanalyzer (China).

2.3. Preparationofnickelelectrodesandelectrochemical measurements

Porousfoamednickelwascutinto2cm×2cmtouseas sub-strate material. The pasted nickel electrodes were prepared as follows: 80wt.% nickel hydroxide, 5wt.% CoO, 10wt.%Ni pow-derweremixedthoroughlywithacertainamountof5wt.%PTFE solutiontoobtainahomogeneousslurrypossessingadequate rhe-ologicalproperties.Theslurrywaspouredintoafoamnickelsheet and dried at 80◦C for 5h. Subsequently, thepasted electrodes

werepressedat20MPafor3mintoassuregoodelectricalcontact betweenthefoamnickelandtheactivematerial.

Electrochemicaltestswereperformedinathree-compartment electrolysiscellatambienttemperature.Twonickelribboncounter electrodeswereplacedinthesidechambersandtheworking elec-trodewaspositionedinthecenter.Thegeometricalsurfaceareaof thenickelelectrodewas0.25cm2.Theelectrolytewasasolutionof

6MKOH+15gL−1 LiOH.AHg/HgOreferenceelectrodewasused

viaaluggincapillarywiththesamealkalinesolutionusedinthe workingcell.CVandEISwereconductedonaSolartronSI1260 impedanceanalyzerwitha1287potentiostatinterface.TheCVtest scanratewasbetween1mVs−1and8mVs−1andthecell

poten-tialrangedfrom0.0Vto0.8V.ForEIS,theimpedancespectrawere recordedata5mVperturbationamplitudewithasweepfrequency rangeof10kHz–1mHz.

Testcells wereassembled usingthepreparednickel hydrox-ideelectrodeasthecathode,ahydrogenstoragealloyelectrode as the anode, and polypropylene to separate the cathode and anode.Theelectrolytewasasolutionof6MKOH+15gL−1LiOH.

(4)

Fig.1.SEMimagesofnon-sphericalNi(OH)2(a,c,e)andsphericalNi(OH)2(b,d,f)atdifferentmagnifications.

Charge/discharge measurements were conducted using a Land CT2001Abatteryperformancetestinginstrument(WuhanJinnuo ElectronicsCo.,Ltd.,China).Foractivation,fivechargedischarge cyclesat0.1Cwereperformed,andthebatteriesweredischarged to1.0V.Thebatterieswerethenchargedata0.2Cratefor6hand separatelydischargedatrespective0.2,1,2,and5Cdischarge cur-rentrates.Thecut-offvoltagesweresetas0.9V.Inthesubsequent charge/dischargecyclingtests,thebatterieswerechargedata1C ratefor 1.2h,restedfor10min,andthen dischargedat1Crate toalimitedvoltageof1.0V.Thedischargecapacityofthenickel hydroxideinthepositiveelectrodewasbasedontheamountof activematerial(Ni(OH)2)withouttakingintoaccounttheadditives

intheelectrode.

3. Resultsanddiscussion 3.1. CharacterizationofNi(OH)2 3.1.1. Physicalproperties

Criticalphysicalpropertiesofnickelhydroxidepowder, includ-ingtapdensity,particleshape,particlesize,chemicalcomposition, strongly affect the performance of the positive electrodes. The chemicalcompositionsandphysicalpropertiesofNi(OH)2samples

A(non-spherical)andB(spherical)arepresentedinTable1. Thecobaltandthezinccontentsarealmostthesameinboth samples.Thetap-densitiesofsamplesAandBareashighas2.22 and2.20gcm−3,respectively.Itisworthnotingthatinorderto

Table2

FWHM,d-valuesin(001),(100),(101)diffractionlinesofNi(OH)2samplesA(non-spherical)andB(spherical).

Sample (001) (100) (101)

FWHM0 0 1(◦) d0 0 1(nm) FWHM1 0 0(◦) d1 0 0(nm) FWHM1 0 1(◦) d1 0 1(nm)

A(non-spherical) 0.970 0.46866 0.638 0.27059 1.057 0.23411

(5)

7800 E.Shangguanetal./JournalofPowerSources196 (2011) 7797–7805

Fig.2. Schematicillustrationofthesynthesisprocessof(a)non-sphericalNi(OH)2and(b)sphericalNi(OH)2.

exploretheeffectsofmicrostructureandsurfacepropertiesof ␤-Ni(OH)2onitselectrochemicalperformances,wechoosethe non-sphericalsamplewithatapdensityashighasthesphericaloneto avoidtheeffectoftapdensity,whichisnotjustaparticularcase. ThemeandiametersofsamplesAandBare27.20and9.34␮m, andBETsurfaceareasare75.62and10.15m2g−1,respectively.It isnoticedthatalthoughbothsampleshavealmostthesamehigh density,thespecificsurfaceareaofnon-sphericalpowdersisseven timeslargerthanthatofthesphericalsamples,whichshouldbe attributedtotheirregularparticleshape[8].Thehigherspecific surfaceareacanprovideahighdensityofactivesitesandthereby promotesintimateinteractionbetweentheactivematerialandthe surroundingelectrolyte.

3.1.2. SEM

Fig.1(a–f) displays SEM photographs of spherical and non-spherical Ni(OH)2 materials at different magnifications. The

powdersinFig.1a,candearesampleA(non-sphericalNi(OH)2),

andthepowdersinFig.1b,dandfaresampleB(sphericalNi(OH)2).

FromFig.1aandc,itisobservedthatsampleAappearstobe aggre-gatesofirregulartabularshapes,similartotheballmilledpowders. Theirregularshapesmayresultfromgrinding, whichleadstoa higherspecificsurfaceareaandmorestructuraldisorder,asshown inTables1and2.Thehighermagnification(30,000×)presented inFig.1e,showsthateachnon-sphericalparticlecontainsmany overlappedsheetnanocrystallinegrains,whichresultinadense solidstructure.So,Itisbelievedthatthehightap-densityof non-sphericalNi(OH)2isattributabletothedensesolidstructure.

Fig.3.XRDpatternsof(a)non-sphericalNi(OH)2and(b)sphericalNi(OH)2.

AscanbeseeninFig.1bandd,sampleBiscomposedof well-dispersedhomogeneoussphericalparticles.Eachsphericalparticle containsalargeamountofcuneiformorclaviformnanoparticlesof 50–100nminwidthand100–500nminlength.AsshowninFig.1f, thesenanocrystallitesareintercrossedandoverlapped,resulting inaradialnetworkmicrostructurewithalargenumberofpores

[28].Whenthepowdersaremixedwiththeelectrolytethesepores helptheelectrolytetosoakintotheinterspacesanddirectlycontact thecrystallinegrains,whichimprovestheelectrochemical perfor-manceofnickelhydroxide.Thus,itisconcludedthatsamplesAand Bwithhighdensityexhibitdifferentmicrostructuresandsurface propertiesduetodifferentproductionprocesses,whichmayresult indifferentelectrochemicalperformances.

Fig.2 representsa schematic diagram for theproduction of non-spherical Ni(OH)2 using the PAMassisted two-step drying

methodandspherical Ni(OH)2 preparedby theaforementioned

“controlledcrystallization”method.Experimentsduringthe syn-thesisofthenon-sphericalNi(OH)2haverevealedthattheeffectof

thecoagulatingagent(PAM)ontap-density,morphology,and sur-facepropertiesofthenon-sphericalNi(OH)2issignificant.Addition

ofanappropriateamountofPAMintotheNi(OH)2suspensioncan

greatlyacceleratefiltrationrateandreducethemoisturecontentin thepresscake,whichresultsinagglomerationsofcolloidparticles

[22].Coagulationfurtherincreasesthestructure’sdensity,asthe agglomerationssqueezeoutwater.Duetothisdensestructure,the Ni(OH)2particlesarepronetogrowandcrystallizeinthe

subse-quentdryingprocess,andthetap-densityoftheNi(OH)2thereby

remarkablyincreases.

(6)

Fig.5. TGandDTAcurvesfor(a)non-sphericalNi(OH)2and(b)sphericalNi(OH)2.

AsshowninFig.2b,theproductionprocessofsphericalNi(OH)2

isdifferentfromthatofnon-sphericalpowders,whichinvolvesa fewsteps:nucleationtoformtinyparticles,growthoftiny par-ticlestoformsheetsorplates,andself-assemblyandgrowthto formradialnetworkstructure[28].Althoughthesphericalshape canresultinhigh-density,thecrystalgrowthprocessforspherical particlesrequiresalongtime,thequalityoftheproductcannotbe guaranteedeasilyandtheproductioncostishigh.Consequently, theproceduresfornon-sphericalNi(OH)2powdersaremuch

sim-plerandmoreeconomicalbecausethereisnohydroxide-forming step,andaremoreenvironmentallyfriendlybecauseno ammo-niumisinvolved.

3.1.3. XRD

TheXRDpatternsofNi(OH)2samplesA(non-spherical)andB

(spherical)arepresentedinFig.3.TheXRDpatternsshowthatthese twosamplesexhibitthe␤-Ni(OH)2 phasecharacteristicswitha

brucite-typestructureandahexagonalunit,comparedwiththe standard(JCPDScardNo.14-0117).Nocharacteristicpeaks

corre-Table3

ResultsofweightlossmeasurementsforNi(OH)2samplesA(non-spherical)andB

(spherical). Weightloss region(◦C) Reasonof weightloss Sample A (non-spherical) B (spherical) 20–200 Dehydration 1.22% 0.96% 200–350 Dehydroxylation 17.15% 17.28% 350–600 Removalof intercalatedanions 0.53% 0.29%

Fig. 6.Cyclic voltammograms of(a)non-spherical Ni(OH)2 and (b) spherical

Ni(OH)2atvariousscanrates.(c)Linearrelationshipbetweenthecathodicpeak

cur-rent(Ip)andsquarerootofscanratefor(a)non-sphericalNi(OH)2and(b)spherical

Ni(OH)2.

spondingtootherphasesareobserved,butthewidthofthepeaksis different.Thebroadeningofsomediffractionpeaks[e.g.(001)and (hk0)]in␤-Ni(OH)2XRDpatternsisdirectlyrelatedtothe crystal-litesize[29].Thecrystallitesizeperpendiculartovariousdiffraction planescanbeestimatedfromtheXRDlinesusingtheScherrer for-mula[30,31].TheFWHMsandthed-valuesoftherespectivesample inthe(001),(100),and(101)diffractionlinesarelistedinTable2.

(7)

7802 E.Shangguanetal./JournalofPowerSources196 (2011) 7797–7805

Fig.7. Nyquistplotsof(a)non-sphericalNi(OH)2and(b)sphericalNi(OH)2.

AspresentedinTable2,theFWHMsofthe(001)and(100) diffrac-tionlinesofsampleAarelargerthanthoseofsampleB,indicating thatthecrystallitesizeofsampleAissmallerthanthatof sam-pleB.However,thisresultisnotinaccordancewiththeparticle sizeresultsshowninTable1,whichmayresultfromthedifferent particleshapes.

It shouldbe noticedthat abnormal broadening of the(10l) reflectionlines(l =/ 0)cannotbeattributedtothecrystallitesize alone.Structuraldisorderplaysanimportantroleinthis broaden-ing[32,33].StructuraldisorderinNi(OH)2canprovideaneasier

pathforthediffusionofprotonswithintheNiOlayersandcanhelp lowerthefreeenergybyincreasingtheentropy,whichcaninturn increasetheelectrochemicalreactionrate[10,12].Previousreports haveindicatedthatthepeak(10l)wasespeciallybroadwhenthe nickelhydroxidewasmoreactive[34,35].Itisobviousthatsample AshowsabroaderFWHMofthe(101)diffractionlineof1.057, whereasthevalueforsphericalsampleBis0.782,indicatingthat non-sphericalpowderspossessahigherdensityofstructural disor-derandabetterelectrochemicalactivityinspiteofitslargerparticle size.

3.1.4. IRspectra

Fig.4presentstheinfraredspectraoftheas-preparedsamples A(non-spherical)andB(spherical).BothIRspectrashowsimilar characteristics.Thestrong,sharpbandcenteredat3640cm−1

cor-respondstothe



O–Hvibration,whichistypicalfor␤-Ni(OH)2[36].

Thebroadbandat 3300cm−1 is characteristic ofthestretching

vibrationofthehydroxylgroupextensivelyhydrogenbondedto watermoleculesandthebandat1650cm−1 correspondstothe

bendingvibration ofwatermolecules[37].Thecouplebandsat about1470cm−1and1380cm−1inbothIRspectracanbeassigned

to



c ovibrationoftheadsorbedCO2moleculesduetotheopen

systemusedforsynthesis[38].Thebandatabout1125cm−1

cor-respondstothevibrationofSO42− [39].Atlow wavenumbers,

thebandsat460cm−1and520cm−1areassignedtothebending

vibrationof



Ni–Oandstretchingvibrationof



Ni–OH,respectively

[40].Notably,forsampleA,thetypicalIRspectracharacteristicof PAMarenotfound,indicatingthatPAMhavebeenremovedinthe

Fig.8.Schematicdrawingofproton/electrondiffusionin(a)non-sphericalNi(OH)2

and(b)sphericalNi(OH)2.

washinganddryingprocessanddonotaffectthequalitiesofthe products.

3.1.5. TG–DTA

TheTGandDTAcurvesforNi(OH)2samplesA(non-spherical)

andB(spherical)areshowninFig.5withdetaileddatalistedin

Table3.BothsamplesA andBshowthree weightlossregions. The first region is below 200◦C, where the adsorbed water is

removed.Thesecondisbetween200◦Cand350C,wherethe

sam-pledecomposestoNiO.Thepracticalweightlosscorrespondingto thisreaction,whichcanbeestimatedfromthesecondweightloss stepontheTGcurves,is17.15%and17.29%forsamplesAandB, respectively.Thethirdis between350◦C and600C,wherethe

Table4

ParametersfromCVandEISmeasurementsfornon-sphericalandsphericalparticlesofNi(OH)2pasteelectrode.

Sample Ea(mV) Ec(mV) Ea,c(mV) EOER(mV) EOER−Ea(mV) EOER−Ec(mV) Rc(cm2) W(cm2) CPE(Fcm2)

A(non-spherical) 266 465 199 622 356 157 0.1428 0.4237 0.002767

(8)

Fig.9. Dischargecurvesoftheelectrodespreparedwith(a)non-sphericalNi(OH)2

and(b)sphericalNi(OH)2atdifferentcurrentrates.

intercalatedanionsareremoved.Theweightlossdueto intercala-tionofanionswasobservedtobe0.53%forsampleA,and0.29%for sampleB.

InFig.5,itcanbeseenthatthetemperaturescorresponding tothedecompositionreactionpeaksontheDTAcurvesgradually decline,withreadingsof267.76and259.97◦CforsamplesAand

B,respectively.Thisindicatesthatthesynthesizednon-spherical Ni(OH)2 powdersarethermallymorestablethanspherical

pow-ders, asreflected inthelower decompositionreaction rateand higherdecompositiontemperature.Non-sphericalNi(OH)2

pow-dershaveahigherthermalstabilitythansphericalpowdersdueto thedensesolidstructureandlargeparticlesize,althoughtheyhave thesametap-density.

3.2. Electrochemicalinvestigationofˇ-Ni(OH)2 3.2.1. Cyclicvoltammetry

Fig.6illustratestypicalCVcurvesforsamplesA(non-spherical) andB(spherical)atvariousscan ratesand 25◦C. Obviously,for

bothnickelelectrodes,oneanodicnickelhydroxideoxidationpeak andonecathodicoxyhydroxidereductionpeakareobservableon theCVcurves.TocomparetheCVcharacteristicsofnon-spherical andsphericalparticles,theresultsofCVmeasurementsatascan rateof1mVs−1aretabulatedinTable4.Thepotentialdifference

(Ea,c)betweentheanodic(Ea)andcathodic(Ec)peakpotentials

istakenasanestimateofreversibilityoftheredoxreaction:the higherthereversibility,thesmallerEa,c is[41,42].TheEa,cof

Fig.10.Cyclicperformanceoftheelectrodespreparedwith(a)non-spherical Ni(OH)2and(b)sphericalNi(OH)2ata1Ccharge/dischargerate.

non-sphericalNi(OH)2ismuchsmallerthanthatofsphericalone,

indicatingbetterreversibilityoftheelectrochemicalredoxreaction inthenon-sphericalparticles,thusmoreactivematerialcanbe uti-lizedduringthecharge/dischargeprocess,whichisprovenbythe charge/dischargeresultsshowninFig.9.Thechargeprocessofthe Ni(OH)2 electrodeusuallyoccursincompetitionwithanoxygen

evolutionreaction(OER),whichlimitstheelectrochemical perfor-manceofthenickelhydroxideelectrodes.AsshowninTable4,the potentialdifferencebetweentheoxygenevolutionpotentialand theoxidationpotential(EOER−Ec)forthenon-sphericalsampleis

largerthanthatforsphericalone.Thelargevalueallowsthe non-sphericalsampletobechargedfullybeforeoxygenevolution,which canefficientlyrestraintheoxygenevolutionreactionandimprove thechargeefficiency[42,43].

Asisknown,theelectrochemicalreactionprocessofanickel hydroxideelectrodeislimitedbytheprotondiffusionthroughthe lattice[5,44].Therefore,itisofgreatimportancetostudythenickel electrode’sprotondiffusioncoefficient.Theprotondiffusion coeffi-cientoftheNi(OH)2electrodewasestimatedbasedontheCVtests.

Fig.6cshowstherelationshipbetweenthecathodicpeakcurrent (ip)andthesquarerootofthescanrate(1/2)forbothnickel

elec-trodes.Thegoodlinearrelationshipbetweenipand1/2suggests

thattheoxidationofnickelhydroxideisdiffusionlimited.Incase ofsemi-infinitediffusion,thepeakcurrentimaybeexpressedby theRandles–Sevcikequation.At25◦C,thepeakcurrent,ip,inthe

cyclicvoltammogramcanbeexpressedas

ip=2.69×105×n3/2×A×D1/2×C0×1/2 (1) wherenistheelectronnumberofthereaction(≈1for␤-Ni(OH)2),

Aisthegeometricalsurfaceareaoftheelectrodeincm2,Disthe

diffusioncoefficientofH+incm2s−1,

v

isthescanningrateinVs−1,

andC0istheinitialconcentrationofthereactantinmolcm−3.For

anNi(OH)2electrode,

C0= 

M (2)

whereandMare,respectively,thedensityandthemolarmass (92.7gmol−1)ofNi(OH)2.Usingthisequationandtheslopeofthe

fittedlineinFig.6c,theprotondiffusioncoefficientforsampleAis calculatedtobe4.26× 10−9cm2s−1,whichislargerthanforsample

B(3.13×10−9cm2s−1).

3.2.2. Electrochemicalimpedancespectroscopy(EIS)

Fig.7presentstheelectrochemicalimpedancespectrafor elec-trodesAandBatasteadystate.ItcanbeseenthattheNyquist

(9)

7804 E.Shangguanetal./JournalofPowerSources196 (2011) 7797–7805

plotsofbothelectrodesdisplayasemicircleresultingfromcharge transferresistanceinthehigh-frequencyregion,andasloperelated toWarburg impedance in thelow-frequency region[45,46]. In general,theslopeinthelow-frequencyregionisregardedasthe Warburgslope,anempiricalparameterrelatedqualitativelyrather thanquantitativelytothediffusionresistance[45].Ahighslope signifiesaslowrateofdiffusion,andalowslopearapidrateof diffusion.Thecharacteristicsoftheelectrochemicalsystemcanbe representedbytheelectricalequivalentcircuitshownintheinset ofFig.7,whereRsisthetotalresistanceofthesolution,CPEisthe

constantphaseelementrelatedtothedoublelayercapacity,Rcis

thecharge-transferresistanceoftheelectrode,andWisthe gener-alizedfiniteWarburgimpedance(ZW)ofthesolidphasediffusion

[5].Thesimulatedvaluesoftheelementsbasedontheequivalent circuitarelistedinTable4,whereitcanbeseenthattheRcandW

valuesofelectrodeA(Fig.7a)aremarkedlylowerthanthoseof elec-trodeB(Fig.7b),whichimpliesthattheelectrochemicalreactionon electrodeAproceedsmoreeasilythanonelectrodeB.Nevertheless, theCPEvaluesofnon-sphericalparticlesarehigherthan spheri-calparticles,whichmaybeduetothefactthattheas-prepared non-sphericalNi(OH)2hasalargereffectiveactivesurfaceareafor

theelectrochemicalreactions.Thus,itprovesthatnon-spherical particleshavealowerresistancetocharge-transferandaremore efficientforprotondiffusioncomparedwithsphericalparticles dur-ingtheelectrochemicalreactions,andagreeswiththeresultsfrom CVmeasurements.

The highproton diffusion coefficientand low charge trans-ferresistanceofnon-sphericalNi(OH)2isattributabletoitshigh

structuraldisorderdensity, highspecificsurface areaand com-pact structure. First, thehigh densityof structural disorder for nickel hydroxide powder facilitates the solid-state proton dif-fusion in the Ni(OH)2 lattice and helps diminishconcentration

polarizationoftheprotonsduringthecharge/dischargeprocess, leadingtoabettercharge/dischargecyclingbehavior[47].Second, largespecificsurfaceareaofnon-sphericalNi(OH)2 canprovide

agoodinterconnectivitynetworkbetweentheNi(OH)2particles,

andmorechancesfortheparticlestocontacttheelectrolyte solu-tion,therefore, protondiffusionisenhanced, whichwillinturn acceleratetheelectrodereaction.Lastbutnotleast,thehigh pro-tondiffusioncoefficientofnon-sphericalNi(OH)2mayberelatedto

thedifferentproton/electrondiffusionroutesincomparisonwith sphericalNi(OH)2particles.Aschematicdrawingtoillustratethe

proton/electrondiffusionroutesin(a)non-sphericalNi(OH)2and

(b)sphericalNi(OH)2[48]ispresentedinFig.8.

ForsphericalNi(OH)2,Gilleetal.[48]reportedthatduringthe

charge/dischargeprocess,althoughthediffusionrouteis geometri-callynottheshortestway,theproton/electronpairstendtotravel alongthegrainboundaries,surfacesorotherareasofhighatomicor latticedisorderduetodislocationsorstackingfaultsintheactive materialofNi(OH)2/NiOOH,wherethediffusionvelocityof

pro-tonsisassumedtobehigherthanthatintheperfectlattice.For non-sphericalNi(OH)2,webelievethattheprotondiffusionroute

isgeometricallyshorterbecauseoftheirregularparticleshapeand thedensesolidstructure,andtheprotondiffusionvelocityislarger duetothehighdensityofstructuraldisorderintheactive mate-rialofNi(OH)2/NiOOH,which resultsin ahighprotondiffusion

coefficient.

3.2.3. Charge/dischargetests

Fig.9showsthedischargecurvesofnickelelectrodesA (non-spherical)andB(spherical)atratesof0.2,1,2,and5C,respectively. Obviously,sampleAexhibitsalargerdischargecapacityandhigher dischargepotentialplateauthansampleBatthesamedischarge rate(0.2C,1C,2Cand5C).Forexample,atarateof0.2C,the dis-chargecapacityofsampleAis276.1mAhg−1incomparisonwith

259.3mAhg−1forsampleB.Asthedischargerateincreasesfrom

0.2to5C,thedischargecapacityofsampleAdecreasesfrom276.1 to196.8mAhg−1,showingthatatsuchahighdischargerate71%of

capacityisretained.Further,ata5Crate,thedischargecapacityof sampleAis196.8mAhg−1,whereasthevalueforsampleBisonly

174.6mAhg−1,indicatingthatthehigh-rateperformanceof

non-sphericalNi(OH)2ismuchbetterthanthatofsphericalNi(OH)2.

ThecyclicperformanceofnickelelectrodesA(non-spherical) andB(spherical)ata1CrateisillustratedinFig.10.Duringthe processofthecharge/dischargecycles,electrodeAshowsahigher specificcapacityandbettercyclingstability.Duringthecycling,the specificdischargecapacityofelectrodeAincreases,whichreaches a maximum value after 152 cyclesand then slowly decreases, whereas the specificdischarge capacity of electrode B remains constant up tothe maximum tested cycle (300th cycle). Espe-cially,thereisahighercapacity(11.5%morethancorresponding spherical-Ni(OH)2)fornon-sphericalparticlesinallcycles.

In summary, theoverall electrochemicalperformance ofthe non-spherical, Coand Zndoped Ni(OH)2 prepared by thenew

methodisobviouslysuperiortothecommercialsphericalNi(OH)2.

Thiselectrochemicalperformanceimprovementisattributableto thecompactsolid microstructure,highstructuraldisorder den-sity,largespecificsurfaceareaofthenon-sphericalNi(OH)2,thus

resultinginabetterreactionreversibility,higherprotondiffusion coefficient,andlowerelectrochemicalimpedanceofthematerial, asindicatedbyCVandEIS.

4. Conclusions

Thispaperdescribestheeffectofthemicrostructureand sur-face properties of Ni(OH)2 onits electrochemical performance.

Non-spherical,CoandZndopedNi(OH)2 withahightap-density

wassynthesized bythe PAMassisted two-step drying method. Compared withcommercial sphericalNi(OH)2, theas-prepared

Ni(OH)2 particlesexhibitanirregulartabularshape andadense

solidmicrostructure,whichcontainsmanyoverlappedsheetnano crystallinegrains,andhaveahighdensityofstructuraldisorder anda largespecificsurfacearea. Theas-preparednon-spherical samplesexhibitexcellentelectrochemicalperformance,whichis markedlysuperiortothespherical␤-Ni(OH)2,suchasbetter

reac-tionreversibility,higherprotondiffusioncoefficient,lowercharge transferresistance,higherspecificcapacity,andbettercyclic sta-bility.Themeasuredvalueoftheprotondiffusioncoefficientfor thenon-spherical␤-Ni(OH)2 is4.26×10−9cm2s−1,andthe

dis-chargecapacity ofthesample reaches276mAhg−1 at0.2C and

about196mAhg−1 at5C.Therefore,itisbelievedthat the

non-spherical␤-Ni(OH)2synthesizedbythenewmethodisapromising

positiveelectrodeactivematerialforNi–MHbatteries. Acknowledgements

ThisworkisfinanciallysupportedbytheNaturalScience Foun-dationofChinaunderapprovalNo.21071046,andHenanProvincial Department of Science and Technology’s Key Research Project underapprovalNo.080102270013.

References

[1]K.Watanabe,M.Koseki,N.Kumagai,J.PowerSources58(1996)23. [2]Z.R.Chang,H.W.Tang,J.G.Chen,Chem.Commun.1(1999)513. [3]U.Kohler,C.Antonius,P.B.Uerlein,J.PowerSources127(2004)45. [4]T.N.Ramesh,P.VishnuKamath,J.PowerSources156(2006)655. [5]M.A.Kiani,M.F.Mousavi,S.Ghasemi,J.PowerSources195(2010)5794. [6] Z.R.Chang,G.A.Li,Y.J.Zhao,J.G.Chen,Y.C.Ding,J.PowerSources74(1998)

252.

[7]W.G.Zhang,W.Q.Jiang,L.M.Yu,Z.Z.Fu,W.Xia,M.L.Yang,Int.J.Hydrogen Energy34(2009)473.

[8] D.E.Reisner,A.J.Salkind,P.R.Strutt,T.D.Xiao,J.PowerSources65(1997)231. [9]J.Chen,D.H.Bradhurst,S.Dou,H.Liu,J.Electrochem.Soc.146(1999)3606.

(10)

[10]W.K.Zhang,X.H.Xia,H.Huanga,Y.P.Gan,J.B.Wu,J.P.Tu,J.PowerSources184 (2008)646.

[11]G.Soler-Illia,M.Jobbágy,A.Regazzoni,M.Blesa,Chem.Mater.11(1999)3140. [12]J.Li,R.Li,J.M.Wu,H.Su,J.PowerSources79(1999)86.

[13]S.A.Cheng,W.H.Leng,J.Q.Zhang,C.N.Cao,J.PowerSources101(2001)248. [14]X.J.Han,P.Xu,C.Q.Xu,L.Zhao,Z.B.Mo,T.Liu,Electrochim.Acta50(2005)2763. [15]H.Zhou,Z.Zhou,SolidStateIonics176(2005)1909.

[16] L.Cao,F.Xu,Y.Y.Liang,H.L.Li,Adv.Mater.16(2004)1853.

[17]J.Chen,N.Kuriyama,H.Yuan,H.T.Takeshita,T.Sakai,J.Am.Chem.Soc.123 (2001)11813.

[18]P.Jeevanandam,Y.Koltypin,A.Gedanken,NanoLett.1(2001)263. [19] X.H.Liu,L.Yu,J.PowerSources128(2004)326.

[20]X.M.He,J.J.Li,H.W.Cheng,C.Y.Jiang,C.R.Wan,J.PowerSources152(2005) 285.

[21]J.Q.Pan,Y.Z.Sun,Z.H.Wang,P.Y.Wan,Y.S.Yang,M.H.Fan,J.PowerSources188 (2009)308.

[22]E.B.Shangguan,Z.R.Chang,H.W.Tang,X.Z.Yuan,H.J.Wang,Int.J.Hydrogen Energy35(2010)9716.

[23]R.Acharya,T.Subbaiah,S.Anand,R.P.Das,J.PowerSources109(2002)494. [24] P.Oliva,J.Leonardi,J.F.Laurent,C.Delmas,J.J.Braconnier,M.Figlarz,F.Fievet,

A.deGuibert,J.PowerSources8(1982)229.

[25]C.Tessier,C.Faure,L.G.Demourgues,C.Denage,G.Nabias,C.Delmas,J. Elec-trochem.Soc.149(2002)1136.

[26]S.Deabate,F.Henn,Electrochim.Acta50(2005)2823. [27]T.N.Ramesh,J.AlloysCompd.478(2009)12.

[28]M.X.Peng,X.Q.Shen,J.Cent.SouthUniv.Technol.03(2007)0310. [29]L.Indira,M.Dixit,P.V.Kamath,J.PowerSources52(1994)93.

[30]K.Watanabe,N.Kumagai,J.PowerSources76(1998)167.

[31]T.N.Ramesh,R.S.Jayashree,P.VishnuKamathz,J.Electrochem.Soc.150(2003) 520.

[32]M.C.Bernard,R.Cortes,M.Keddam,H.Takenouti,P.Bernard,S.Senyarich,J. PowerSources63(1996)247.

[33]S.Deabate,F.Fourgeot,F.Henn,J.PowerSources87(2000)125. [34]C.Delmas,C.Tessier,J.Mater.Chem.7(1997)1439.

[35] K.Watanabe,T.Kikuoka,N.Kumagai,J.Appl.Electrochem.25(1995)219. [36]L.Demourgues-Guerlou,C.Delmas,J.PowerSources45(1993)281. [37] Y.L.Zhao,J.M.Wang,H.Chen,T.Pan,J.Q.Zhang,C.N.Cao,Int.J.HydrogenEnergy

29(2004)889.

[38] C.Faure,Y.Borthomieu,C.Delmas,M.Fouassier,J.PowerSources36(1991) 113.

[39] N.V.Kosova,E.T.Devyatkina,V.V.Kaichev,J.PowerSources174(2007)735. [40]F.Portemer,A.Delahaye-Vidal,M.Figlarz,J.Electrochem.Soc.139(1992)671. [41] B.Liu,H.T.Yuan,Y.S.Zhang,Z.X.Zhou,D.Y.Song,J.PowerSources79(1999)

277.

[42] G.X.Yuan,K.L.Huang,S.Q.Liu,Y.J.Li,H.Y.Wang,J.PowerSources195(2010) 5094.

[43] W.H.Zhu,J.J.Ke,H.M.Yu,D.J.Zhang,J.PowerSources56(1995)75. [44] A.H.Zimmerman,P.K.Effa,J.Electrochem.Soc.131(1984)709. [45]M.A.Reid,P.L.Loyselle,J.PowerSources36(1991)285.

[46]X.Y.Wang,J.Yan,H.T.Yuan,Y.S.Zhang,D.Y.Song,Int.J.HydrogenEnergy24 (1999)973.

[47]Q.S.Song,C.H.Chiu,S.L.I.Chan,Electrochim.Acta51(2006)6548.

[48]G.Gille,S.Albrecht,J.Meese-Marktscheffel,A.Olbrich,F.Schrumpf,SolidState Ionics148(2002)269.

Figure

Fig. 1. SEM images of non-spherical Ni(OH) 2 (a, c, e) and spherical Ni(OH) 2 (b, d, f) at different magnifications.
Fig. 2 represents a schematic diagram for the production of non-spherical Ni(OH) 2 using the PAM assisted two-step drying method and spherical Ni(OH) 2 prepared by the aforementioned
Fig. 5. TG and DTA curves for (a) non-spherical Ni(OH) 2 and (b) spherical Ni(OH) 2 . As shown in Fig
Fig. 4 presents the infrared spectra of the as-prepared samples A (non-spherical) and B (spherical)
+2

Références

Documents relatifs

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

The structure of these frost flowers is similar to that of a dendrite of atmospheric dendritic crystals [e.g., Wergin et al., 1996; Cabanes et al., 2002; Libbrecht and Rasmussen,

The improved 0D model of a sealed Ni-MH cell/battery presented in this paper shows a good agreement with mea- surements performed for low rate solicitations on a single cell but

Magnetic properties of NiAs-type transition metal compounds, such as MnAs, MnSb, and CoAs, were in- vestigated from the view-point of itinerant electrons by taking account of

From this l, there is a polyhedral metric in F such that the restriction of the metric to each triangle is isometric to a triangle in E 2 (resp. Inversive distance circle packings.

Particles make significant modifications to the flow, yet suspensions are mostly described by qualitative criteria (homogeneous, stationary bed), although many other factors such

5 ème conférence internationale des énergies renouvelables ( CIER 17 ) période du 20 au 22 décembre 2017 a Souse, Tunisie.. Electrochemical, Structural, and optical properties of

Moreover, contrary to pure silicon, Si-coated composites have a plate-like morphology in which the surface-modified silicon particles are surrounded by a nanostructured, Ni 3 Sn