• Aucun résultat trouvé

On Total Edge Irregularity Strength for Hexagonal Cell Snake Graph and Related Graphs

N/A
N/A
Protected

Academic year: 2021

Partager "On Total Edge Irregularity Strength for Hexagonal Cell Snake Graph and Related Graphs"

Copied!
24
0
0

Texte intégral

(1)

HAL Id: hal-02907612

https://hal.archives-ouvertes.fr/hal-02907612

Preprint submitted on 27 Jul 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On Total Edge Irregularity Strength for Hexagonal Cell Snake Graph and Related Graphs

F. Salama, Al-Madinah Al-Munawwarah

To cite this version:

F. Salama, Al-Madinah Al-Munawwarah. On Total Edge Irregularity Strength for Hexagonal Cell Snake Graph and Related Graphs. 2020. �hal-02907612�

(2)

1

On Total Edge Irregularity Strength forHexagonal Cell Snake Graph and Related Graphs

F. Salama

Current Address: Mathematics Department, Faculty of Science, Taibah University Al-Madinah Al- Munawwarah, Saudi Arabia.

Permanent Address: Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt;

Email: fatma.salama@science.tanta.edu.eg

Abstract: A Graph labeling is one of the important mathematical discipline in graph theory where it serves many fields like computer science, coding theory, astronomy and physics. A labeling of edges and vertices of a simple graph 𝐺(𝑉, 𝐸) by a mapping 𝜃: 𝑉(𝐺) ∪ 𝐸(𝐺) → { 1,2,3, … , ħ} provided that any two different edges have distinct weights is called an edge I irregular I total ħ-labeling. If ħ is minimum and G admits an edge irregular total ħ -labelling ,then it is called the total edge irregularity strength (TEIS) , denoted by 𝑡𝑒𝑠(𝐺). In this paper, we defined which called hexagonal cell snake graph

𝐻𝐶𝑆𝑛 and a double hexagonal cell snake graph 𝐷(𝐻𝐶𝑆𝑛). Moreover, the exact value of TEIS for the new graphs are determined.

Keywords: Irregular labelling; Total edge irregularity I strength; Edge irregular total labeling ; Hexagonal cell snake graph.

2010 I Mathematics I subject I classification: I 05C78.

1. Introduction

Authors in [1] defined a notation of an edge iirregular itotal ħ-labeling Ŧ: 𝑉(𝐺) ∪ 𝐸(𝐺) → { 1,2,3, … , ħ} for an undirected, simple and connected graph 𝐺(𝑉, 𝐸) as a labeling of its edges and vertices provided that any two edges 𝑧𝑤 and 𝑧𝑤 in a graph 𝐺 have different weights, i.e.𝑤Ŧ(𝑧𝑤) ≠ 𝑤Ŧ(𝑧𝑤) where 𝑤Ŧ(𝑧𝑤) = Ŧ(𝑧𝑤) + Ŧ(𝑧) + Ŧ(𝑤). The total edge irregularity strength of a graph 𝐺 is a minimum ħ where G admits an edge irregular total ħ -labelling. Moreover, they deduced the following inequality that gives bounds of TEIS for any graph 𝐺 with maximum degree ∆𝐺

𝑡𝑒𝑠(𝐺) ≥ 𝑚𝑎𝑥 {⌈|𝐸(𝐺)|+2

3 ⌉ , ⌈∆𝐺+1

2 ⌉} (1).

Ivanĉo and Jendroî in [2] introduced the following conjecture Conjecture 1.If 𝐺 any graph different from 𝐾5,then

𝑡𝑒𝑠(𝐺) = 𝑚𝑎𝑥 {⌈∆𝐺 + 1

2 ⌉ , ⌈|𝐸(𝐺)| + 2

3 ⌉}.

(3)

2

The above conjecture has been verified for hexagonal grid graphs in Al-Mushayt et al. [3], for categorical product of two cycles in Ahmad et al. [4] for a polar grid graph in Salama [5], for a categorical product of cycle and path in Siddiqui [6], for several types of trees in Nurdin et al.[7], for series parallel graphs in Rajasingh and Arockiamary [8], for centralized uniform theta graphs in Putra and Susanti [9], for sunlet graph and the line of sunlet graph in Salama [10], for a wheel graph, a fan graph, a triangular Book graph and a friendship graph in Tilukay et al. [11], for Disjoint Union of Wheel Graphs in Jeyanthi [12]for subdivision of star in Hinding et al. [13], for cylindrical accordion graph and spiral accordion graph in Siddiqui et al. [14], for generalized prism in Bača and Siddiqui [15], for corona product of a path with certain graphs in Salman et al [16],for the categorical product of two paths 𝑃𝑛× 𝑃𝑚 in Ahmad and Bača [17],

In this paper, we defined which called hexagonal cell snake graph 𝐻𝐶𝑆𝑛 and a double hexagonal cell snake graph 𝐷(𝐻𝐶𝑆𝑛). Moreover, the exact value of TEIS for the new graphs are determined.

2. Main results:

In this section a new family of graphs is defined which called hexagonal cell snake graph as follows:

Definition1. If we replace every edge of a path 𝑃𝑛by a cycle graph 𝐶6 we obtain which called hexagonal cell snake graph denoted by𝐻𝐶𝑆𝑛 , see Figure (1).

Definition2. A double hexagonal cell snake graph 𝐷(𝐻𝐶𝑆𝑛) consists of two hexagonal cell snake graphs that have common path 𝑃𝑛, see Figure (2).

Definition3. An 𝑚-multiple hexagonal cell snake graph 𝑀(𝐻𝐶𝑆𝑛) consists of 𝑚 hexagonal cell snake graphs that have common path 𝑃𝑛.

𝑓1,11

𝑘1

𝑘2 𝑘3 𝑘4

𝑘𝑛

𝑘𝑛+1

Figure (2) A double hexagonal cell snake graph 𝐷(𝐻𝐶𝑆𝑛)

𝑘𝑦 𝑘𝑦+1

𝑓1,21 𝑓1,32 𝑓1,42 𝑓1,53 𝑓1,63 𝑓1,𝑥𝑦 𝑓1,𝑥+1𝑦 𝑓1,2𝑛−1𝑛 𝑓1,2𝑛𝑛

𝑔1,11 𝑔1,21 𝑔 𝑔1,42 𝑔1,53 𝑔1,63 𝑔1,𝑥𝑦 𝑔1,𝑥+1𝑦 𝑔1,2𝑛−1𝑛 𝑔1,2𝑛𝑛 𝑓2,11

𝑔2,11 𝑓2,21 𝑔2,21

𝑓2,32 𝑔2,32

𝑥2,42 𝑔2,42

𝑓2,53 𝑔2,53

𝑓2,63 𝑔2,63

𝑓2,2𝑛𝑛 𝑔2,2𝑛𝑛 𝑓2,2𝑛−1𝑛

𝑔2,2𝑛−1𝑛 𝑓2,𝑥𝑦

𝑔2,𝑥𝑦 𝑓2,𝑥+1𝑦 𝑔2,𝑥+1𝑦 𝑓11

𝑘1 𝑘2 𝑘3 𝑘4 𝑘𝑛 𝑘𝑛+1

Figure (1) Hexagonal cell snake graph 𝐻𝐶𝑆𝑛

𝑘𝑦 𝑘𝑦+1

𝑓21 𝑓32 𝑥42 𝑓53 𝑓63 𝑓𝑥𝑦 𝑓𝑥+1𝑦 𝑓2𝑛−1𝑛 𝑓2𝑛𝑛

𝑔11 𝑔21 𝑔32 𝑔42 𝑔53 𝑔63 𝑔𝑥𝑦 𝑔𝑥+1𝑦 𝑔2𝑛−1𝑛 𝑔2𝑛𝑛

(4)

3

In the following also, we determine the i exact i value of TEIS for hexagonal cell snake graph, double hexagonal cell snake graph and 𝑚-multiple hexagonal cell snake graph.

Therom1. Let 𝐻𝐶𝑆𝑛 be a hexagonal cell snake graph with 𝑛 ≥ 2 . Then 𝑡𝑒𝑠(𝐻𝐶𝑆𝑛) = 2𝑛 + 1.

Proof: As |𝐸(𝐻𝐶𝑆𝑛)| = 6𝑛 and (𝐻𝐶𝑆𝑛) = 4, I then (1) becomes 𝑡𝑒𝑠(𝐻𝐶𝑆𝑛)) ≥ 2𝑛 + 1.

To complete the proof we will show the existence of an edge irregular total ħ-labeling for 𝐻𝐶𝑆𝑛 with ħ = 2𝑛 + 1. Let ħ = 2𝑛 + 1 and Đ: 𝑉(𝐻𝐶𝑆𝑛) ∪ 𝐸(𝐻𝐶𝑆𝑛 ) → {1,2,3, … , ħ } be a total ħ -labeling which is defined in the following cases as:

Case 1: ħ ≡ 0(𝑚𝑜𝑑 3) ,1 ≤ 𝑥 ≤ 2𝑛 Đ is defined as:

Đ(𝑘𝑦) = {

1 𝑓𝑜𝑟 𝑦 = 1 3𝑦 − 3 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ3

ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 + 1 ,

Đ(𝑓𝑥𝑦) = {𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , Đ(𝑔𝑥𝑦) = {𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , Đ(𝑘𝑦𝑓𝑥𝑦) =

{

1 𝑓𝑜𝑟 𝑦 = 1 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 2ħ − 3 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

Đ(𝑘𝑦𝑔𝑥𝑦) = {

2 𝑓𝑜𝑟 𝑦 = 1 3 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 2ħ − 2 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 Đ(𝑓𝑥+1𝑦 𝑘𝑦+1) = { 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 2ħ + 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , Đ(𝑔𝑥+1𝑦 𝑘𝑦+1) = { 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 2ħ + 2 𝑓𝑜𝑟 ⌈ħ3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , Đ(𝑓𝑥𝑦𝑓𝑥+1𝑦 ) = { 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 2ħ − 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , Đ(𝑔𝑥𝑦𝑔𝑥+1𝑦 ) = {3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 2ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 .

It is plain that ħ is the greatest lable of vertices and edges. The weights of edges of 𝐻𝐶𝑆𝑛 are given by:

(5)

4 𝑤Đ(𝑘𝑦𝑓𝑥𝑦) =

{

3 𝑓𝑜𝑟 𝑦 = 1 4𝑦 + 𝑥 − 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 3 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤Đ(𝑘𝑦𝑔𝑥𝑦) = {

4 𝑓𝑜𝑟 𝑦 = 1 4𝑦 + 𝑥 − 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 2 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤Đ(𝑓𝑥+1𝑦 𝑘𝑦+1) = {4𝑦 + 𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑥 ≤ ⌈ħ

3⌉ 6𝑦 + 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝑤Đ(𝑔𝑥+1𝑦 𝑘𝑦+1) = {4𝑦 + 𝑥 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 + 2 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝑤Đ(𝑓𝑥𝑦𝑓𝑥+1𝑦 ) = {2𝑦 + 2𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝑤Đ(𝑔𝑥𝑦𝑔𝑥+1𝑦 ) = {

2𝑦 + 2𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 .

Obviously, the weights of edges are distinct. Hence, Đ is I an edge I irregular itotal ħ −labeling. Thus 𝑡𝑒𝑠(𝐻𝐶𝑆𝑛) = 2𝑛 + 1.

Case 2: ħ ≡ 1(𝑚𝑜𝑑 3) ,1 ≤ 𝑥 ≤ 2𝑛 Define Đ as:

Đ(𝑘𝑦) = {

1 𝑓𝑜𝑟 𝑦 = 1 3𝑦 − 3 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 + 1 ,

Đ(𝑓𝑥𝑦) = {𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 ħ 𝑓𝑜𝑟 ⌈ħ3⌉ ≤ 𝑦 ≤ 𝑛 , Đ(𝑔𝑥𝑦) = {𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , Đ(𝑘𝑦𝑓𝑥𝑦) =

{

1 𝑓𝑜𝑟 𝑦 = 1 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 6 ⌈ħ3⌉ + 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

Đ(𝑘𝑦𝑔𝑥𝑦) = {

2 𝑓𝑜𝑟 𝑦 = 1 3 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 6 ⌈ħ

3⌉ + 2 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛

(6)

5 Đ(𝑓𝑥+1𝑦 𝑘𝑦+1) = {2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 − 6 ⌈ħ

3⌉ + 5 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , Đ(𝑔𝑥+1𝑦 𝑘𝑦+1) = {3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 − 6 ⌈ħ

3⌉ + 6 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , Đ(𝑓𝑥𝑦𝑓𝑥+1𝑦 ) = {2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 − 6 ⌈ħ

3⌉ + 3 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , Đ(𝑔𝑥𝑦𝑔𝑥+1𝑦 ) = {

3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 − 6 ⌈ħ

3⌉ + 4 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 .

It is plain that ħ is the greatest label of vertices and edges. The weights of edges of 𝐻𝐶𝑆𝑛 are given by:

𝑤Đ(𝑘𝑦𝑓𝑥𝑦) = {

3 𝑓𝑜𝑟 𝑦 = 1 4𝑦 + 𝑥 − 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 3 ⌈ħ

3⌉ + ħ − 1 𝑓𝑜𝑟 𝑦 = ⌈ħ

3⌉ 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤Đ(𝑘𝑦𝑔𝑥𝑦) = {

4 𝑓𝑜𝑟 𝑦 = 1 4𝑦 + 𝑥 − 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 3 ⌈ħ

3⌉ + ħ 𝑓𝑜𝑟 𝑦 = ⌈ħ

3⌉ 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 2 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤Đ(𝑓𝑥+1𝑦 𝑘𝑦+1) = { 4𝑦 + 𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑥 ≤ ⌈ħ

3⌉ − 1 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 5 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤Đ(𝑔𝑥+1𝑦 𝑘𝑦+1) = { 4𝑦 + 𝑥 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 6 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤Đ(𝑓𝑥𝑦𝑓𝑥+1𝑦 ) = {2𝑦 + 2𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 3 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤Đ(𝑔𝑥𝑦𝑔𝑥+1𝑦 ) = {

2𝑦 + 2𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 4 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 .

Clearly, the weights of edges are distinct. Hence, Đ is I an edge I irregular itotal ħ −labeling. Thus 𝑡𝑒𝑠(𝐻𝐶𝑆𝑛) = 2𝑛 + 1.

Case 3: ħ ≡ 2(𝑚𝑜𝑑 3) ,1 ≤ 𝑥 ≤ 2𝑛 Define Đ as:

(7)

6 Đ(𝑘𝑦) =

{

1 𝑓𝑜𝑟 𝑦 = 1 3𝑦 − 3 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 + 1 ,

Đ(𝑓𝑥𝑦) =

{

𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ 3⌉ − 1 𝑥 + ⌈ħ

3⌉ − 1 𝑓𝑜𝑟 𝑥 ħ 𝑓𝑜𝑟 𝑥 + 1

} 𝑦 = ⌈ħ 3⌉ ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

Đ(𝑔𝑥𝑦) = {

𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ3⌉ − 1 𝑥 + ⌈ħ

3⌉ − 1 𝑓𝑜𝑟 𝑥

ħ 𝑓𝑜𝑟 𝑥 + 1} 𝑦 = ⌈ħ

3⌉ ħ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

Đ(𝑘𝑦𝑓𝑥𝑦) = {

1 𝑓𝑜𝑟 𝑦 = 1 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ3⌉ 6𝑦 − 6 ⌈ħ

3⌉ − 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

Đ(𝑘𝑦𝑔𝑥𝑦) = {

2 𝑓𝑜𝑟 𝑦 = 1 3 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 6 ⌈ħ

3⌉ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 Đ(𝑓𝑥+1𝑦 𝑘𝑦+1) = {2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 − 6 ⌈ħ

3⌉ + 3 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , Đ(𝑔𝑥+1𝑦 𝑘𝑦+1) = {3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 − 6 ⌈ħ

3⌉ + 4 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , Đ(𝑓𝑥𝑦𝑓𝑥+1𝑦 ) = { 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 6 ⌈ħ

3⌉ + 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , Đ(𝑔𝑥𝑦𝑔𝑥+1𝑦 ) = { 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 − 6 ⌈ħ

3⌉ + 2 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 .

It is plain that ħ is the greatest label of vertices and edges. The weights of edges of 𝐻𝐶𝑆𝑛 are given by:

𝑤Đ(𝑘𝑦𝑓𝑥𝑦) = {

3 𝑓𝑜𝑟 𝑦 = 1 4𝑦 + 𝑥 − 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ − 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

(8)

7 𝑤Đ(𝑘𝑦𝑔𝑥𝑦) =

{

4 𝑓𝑜𝑟 𝑦 = 1 4𝑦 + 𝑥 − 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

3⌉ 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤Đ(𝑓𝑥+1𝑦 𝑘𝑦+1) = {4𝑦 + 𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑥 ≤ ⌈ħ

3⌉ − 1 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 3 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤Đ(𝑔𝑥+1𝑦 𝑘𝑦+1) = {4𝑦 + 𝑥 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 4 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤Đ(𝑓𝑥𝑦𝑓𝑥+1𝑦 ) =

{

2𝑦 + 2𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ3⌉ − 1 𝑥 + ħ + ⌈ħ

3⌉ + 1 𝑓𝑜𝑟 𝑦 = ⌈ħ

3⌉ 6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 1 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤Đ(𝑔𝑥𝑦𝑔𝑥+1𝑦 ) = {

2𝑦 + 2𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 𝑥 + ħ + ⌈ħ

3⌉ + 1 𝑓𝑜𝑟 𝑦 = ⌈ħ

3⌉

6𝑦 + 2ħ − 6 ⌈ħ

3⌉ + 2 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 .

It is obvious that, the weights of edges are distinct. Thus Đ is I an edge I irregular itotal ħ −labeling.

Hence,

𝑡𝑒𝑠(𝐻𝐶𝑆𝑛) = 2𝑛 + 1.

Obviously, Figure (3) is an illustration of Theorem 1, where all edge vertex and vertex labels are at most ħ = 15 and any two different edges have distinct weights.

Therom2. For a double hexagonal cell snake graph 𝐷(𝐻𝐶𝑆𝑛) with integer 𝑛 ≤ 2. We have 𝑡𝑒𝑠(𝐷(𝐻𝐶𝑆𝑛)) = 4𝑛 + 1.

Proof: As |𝐸(𝐷(𝐻𝐶𝑆𝑛)| = 12𝑛 , and (𝐷(𝐻𝐶𝑆𝑛) = 8, then from inequality (1) we have 𝑡𝑒𝑠(𝐷(𝐻𝐶𝑆𝑛)) ≥ 4𝑛 + 1.

Now we prove equality by showing the existence of an edge irregular I total ħ −labeling for 𝐷(𝐻𝐶𝑆𝑛) with ħ = 4𝑛 + 1. Let ħ = 4𝑛 + 1 and 𝛾: 𝑉(𝐷(𝐻𝐶𝑆𝑛) ∪ 𝐸(𝐷(𝐻𝐶𝑆𝑛) → {1,2, … , ħ } be a I total ħ −labeling which is defined in the following cases as:

Case 1: ħ ≡ 0(𝑚𝑜𝑑 5) ,1 ≤ 𝑥 ≤ 2𝑛 𝛾 is defined as:

Figure (3) 𝑡𝑒𝑠(𝐻𝐶𝑆7) = 15, 𝑛 = 7 1

1 3 6 9

14

2 4 5 7 8 10 11 13 15

1 2 4 5 7 8 11 13

12 15 15 15

15 15 15

15 15

14 15 15

10

13 14 11

12 9 10 1

2 2

3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 4

5

6 7 8

2 2 2 2

2 2 2 2 2 2 2 2 2

(9)

8 𝛾(𝑘𝑦) =

{

1 𝑓𝑜𝑟 𝑦 = 1 5𝑦 − 5 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 + 1 ,

𝛾(𝑓1,𝑥𝑦) = {2𝑥 + 𝑦 − 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔1,𝑥𝑦 ) = {2𝑥 + 𝑦 − 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥𝑦) = {

2𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔2,𝑥𝑦 ) = {

2𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑓1,𝑥𝑦) = {

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 9 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑓2,𝑥𝑦 ) = {

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 7 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑔1,𝑥𝑦 ) = {

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 8 𝑓𝑜𝑟 ⌈ħ5⌉ + 1 ≤ 𝑦 ≤ 𝑛

,

𝛾(𝑘𝑦𝑔2,𝑥𝑦 ) = {

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 6 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 𝛾(𝑓1,𝑥+1𝑦 𝑘𝑦+1) = {2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 1 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥+1𝑦 𝑘𝑦+1) = {

2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ + 1 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

(10)

9 𝛾(𝑔1,𝑥+1𝑦 𝑘𝑦+1) = {

2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔2,𝑥+1𝑦 𝑘𝑦+1) = {

2𝑦 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ + 2 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 𝛾(𝑓1,𝑥𝑦𝑓1,𝑥+1𝑦 ) = {2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 12𝑦 − 2ħ − 5 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥𝑦𝑓2,𝑥+1𝑦 ) = {

2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 12𝑦 − 2ħ − 3 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔1,𝑥𝑦 𝑔1,𝑥+1𝑦 ) = {2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 12𝑦 − 2ħ − 4 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔2,𝑥𝑦 𝑔2,𝑥+1𝑦 ) = {2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ 12𝑦 − 2ħ − 2 𝑓𝑜𝑟 ⌈ħ

3⌉ + 1 ≤ 𝑦 ≤ 𝑛 .

From the above equations we say that ħ is the maximum label of vertices and edges. The weights of edges of 𝐷(𝐻𝐶𝑆𝑛)are given by:

𝑤𝛾(𝑘𝑦𝑓1,𝑥𝑦) = {

3 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 7 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 9 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑔1,𝑥𝑦 ) = {

4 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 6 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 8 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑓2,𝑥𝑦) = {

5 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 5 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 7 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑔2,𝑥𝑦 ) = {

6 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 4 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ5⌉ 12𝑦 − 6 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑓1,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 1 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑔1,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

(11)

10 𝑤𝛾(𝑓2,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 + 1 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑔2,𝑥+1𝑦 𝑘𝑦+1) = {

8𝑦 + 2𝑥 + 4 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 + 2 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑓1,𝑥𝑦𝑓1,𝑥+1𝑦 ) = {4𝑦 + 4𝑥 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 5 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑓2,𝑥𝑦𝑓2,𝑥+1𝑦 ) = {4𝑦 + 4𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 3 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑔1,𝑥𝑦 𝑔1,𝑥+1𝑦 ) = {

4𝑦 + 4𝑥 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 4 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑔2,𝑥𝑦 𝑔2,𝑥+1𝑦 ) = {

4𝑦 + 4𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛

clearly, the edges weights are distinct. Thus 𝛾 is I an edge I irregular itotal ħ −labeling. Hence, 𝑡𝑒𝑠(𝐷(𝐻𝐶𝑆𝑛)) = 4𝑛 + 1.

Case 2: ħ ≡ 1(𝑚𝑜𝑑 5) ,1 ≤ 𝑥 ≤ 2𝑛 𝛾 is defined as:

𝛾(𝑘𝑦) = {

1 𝑓𝑜𝑟 𝑦 = 1 5𝑦 − 5 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ5⌉ + 1 ≤ 𝑦 ≤ 𝑛 + 1

,

𝛾(𝑓1,𝑥𝑦) = {2𝑥 + 𝑦 − 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔1,𝑥𝑦 ) = {2𝑥 + 𝑦 − 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1

ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥𝑦) = {

2𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔2,𝑥𝑦 ) = {

2𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 ,

(12)

11 𝛾(𝑘𝑦𝑓1,𝑥𝑦) =

{

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 9 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑓2,𝑥𝑦 ) =

{

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 2 ⌈ħ

5⌉ + 2 𝑓𝑜𝑟 𝑦 = ⌈ħ 5⌉

12𝑦 − 2ħ − 7 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑔1,𝑥𝑦 ) = {

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 8 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑔2,𝑥𝑦 ) =

{

3 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 2 ⌈ħ

5⌉ + 3 𝑓𝑜𝑟 𝑦 = ⌈ħ 5⌉

12𝑦 − 2ħ − 6 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 𝛾(𝑓1,𝑥+1𝑦 𝑘𝑦+1) = {2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ − 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥+1𝑦 𝑘𝑦+1) = {

2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ + 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔1,𝑥+1𝑦 𝑘𝑦+1) = {

2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔2,𝑥+1𝑦 𝑘𝑦+1) = {

2𝑦 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ + 2 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 𝛾(𝑓1,𝑥𝑦𝑓1,𝑥+1𝑦 ) = {2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ3⌉ − 1

12𝑦 − 2ħ − 5 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥𝑦𝑓2,𝑥+1𝑦 ) = {

2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 12𝑦 − 2ħ − 3 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 ,

(13)

12 𝛾(𝑔1,𝑥𝑦 𝑔1,𝑥+1𝑦 ) = {2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 12𝑦 − 2ħ − 4 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔2,𝑥𝑦 𝑔2,𝑥+1𝑦 ) = {2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

3⌉ − 1 12𝑦 − 2ħ − 2 𝑓𝑜𝑟 ⌈ħ

3⌉ ≤ 𝑦 ≤ 𝑛 .

From the above equations we say that ħ is the maximum label of vertices and edges. The weights of edges of 𝐷(𝐻𝐶𝑆𝑛)are given by:

𝑤𝛾(𝑘𝑦𝑓1,𝑥𝑦) = {

3 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 7 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 7 ⌈ħ

5⌉ + ħ − 5 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 9 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑓2,𝑥𝑦) = {

5 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 5 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 7 ⌈ħ

5⌉ + ħ − 3 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 7 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑔1,𝑥𝑦 ) = {

4 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 6 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 7 ⌈ħ

5⌉ + ħ − 4 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 8 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑔2,𝑥𝑦 ) = {

6 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 4 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 7 ⌈ħ

5⌉ + ħ − 2 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 6 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑓1,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑔1,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑓2,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 + 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑔2,𝑥+1𝑦 𝑘𝑦+1) = {

8𝑦 + 2𝑥 + 4 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 + 2 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 ,

(14)

13 𝑤𝛾(𝑓1,𝑥𝑦𝑓1,𝑥+1𝑦 ) = {4𝑦 + 4𝑥 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 5 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑓2,𝑥𝑦𝑓2,𝑥+1𝑦 ) = {4𝑦 + 4𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 3 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑔1,𝑥𝑦 𝑔1,𝑥+1𝑦 ) = {

4𝑦 + 4𝑥 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 4 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑔2,𝑥𝑦 𝑔2,𝑥+1𝑦 ) = {

4𝑦 + 4𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 .

clearly, the edges weights are distinct. Thus 𝛾 is I an edge I irregular itotal ħ −labeling. Hence, 𝑡𝑒𝑠(𝐻𝐶𝑆𝑛) = 4𝑛 + 1.

Case 3: ħ ≡ 2(𝑚𝑜𝑑 5) ,1 ≤ 𝑥 ≤ 2𝑛 𝛾 is defined as:

𝛾(𝑘𝑦) = {

1 𝑓𝑜𝑟 𝑦 = 1 5𝑦 − 5 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ5⌉ + 1 ≤ 𝑦 ≤ 𝑛 + 1

,

𝛾(𝑓1,𝑥𝑦) = {

2𝑥 + 𝑦 − 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 2𝑥 + ⌈ħ

5⌉ − 2 𝑓𝑜𝑟 𝑥

ħ 𝑓𝑜𝑟 𝑥 + 1 } 𝑦 = ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔1,𝑥𝑦 ) = {

2𝑥 + 𝑦 − 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 2𝑥 + ⌈ħ

5⌉ − 2 𝑓𝑜𝑟 𝑥

ħ 𝑓𝑜𝑟 𝑥 + 1 } 𝑦 = ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑓2,𝑥𝑦) = {2𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔2,𝑥𝑦 ) = {

2𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 𝛾(𝑘𝑦𝑓1,𝑥𝑦) =

{

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 9 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

(15)

14 𝛾(𝑘𝑦𝑓2,𝑥𝑦 ) =

{

2 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 7 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑔1,𝑥𝑦 ) = {

2 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 8 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑔2,𝑥𝑦 ) = {

3 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 6 𝑓𝑜𝑟 ⌈ħ5⌉ + 1 ≤ 𝑦 ≤ 𝑛

,

𝛾(𝑓1,𝑥+1𝑦 𝑘𝑦+1) = {2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ − 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥+1𝑦 𝑘𝑦+1) = {2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ + 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔1,𝑥+1𝑦 𝑘𝑦+1) = {2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔2,𝑥+1𝑦 𝑘𝑦+1) = { 2𝑦 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ + 2 𝑓𝑜𝑟 ⌈ħ5⌉ ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑓1,𝑥𝑦𝑓1,𝑥+1𝑦 ) = {

2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 12 ⌈ħ

5⌉ − 2ħ − 4 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 2ħ − 5 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑓2,𝑥𝑦𝑓2,𝑥+1𝑦 ) = {2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ − 3 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔1,𝑥𝑦 𝑔1,𝑥+1𝑦 ) =

{

2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 12 ⌈ħ

5⌉ − 2ħ − 3 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 2ħ − 4 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔2,𝑥𝑦 𝑔2,𝑥+1𝑦 ) = {

2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ − 2 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 .

From the above equations we say that ħ is the maximum label of vertices and edges. The weights of edges of 𝐷(𝐻𝐶𝑆𝑛)are given by:

(16)

15 𝑤𝛾(𝑘𝑦𝑓1,𝑥𝑦) =

{

3 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 7 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 9 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑔1,𝑥𝑦 ) = {

4 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 6 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 8 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑓2,𝑥𝑦) = {

5 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 5 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 7 𝑓𝑜𝑟 ⌈ħ5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑘𝑦𝑔2,𝑥𝑦 ) = {

6 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 4 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 6 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑓1,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑔1,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑓2,𝑥+1𝑦 𝑘𝑦+1) = {8𝑦 + 2𝑥 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 + 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝑤𝛾(𝑔2,𝑥+1𝑦 𝑘𝑦+1) = {

8𝑦 + 2𝑥 + 4 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 + 2 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑓1,𝑥𝑦𝑓1,𝑥+1𝑦 ) = {

4𝑦 + 4𝑥 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 2𝑥 + 13 ⌈ħ

5⌉ − ħ − 6 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 5 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑓2,𝑥𝑦𝑓2,𝑥+1𝑦 ) = {4𝑦 + 4𝑥 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 3 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝑤𝛾(𝑔1,𝑥𝑦 𝑔1,𝑥+1𝑦 ) = {

4𝑦 + 4𝑥 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ 5⌉ − 1 2𝑥 + 13 ⌈ħ

5⌉ − ħ − 5 𝑓𝑜𝑟 𝑦 = ⌈ħ 5⌉ 12𝑦 − 4 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

(17)

16 𝑤𝛾(𝑔2,𝑥𝑦 𝑔2,𝑥+1𝑦 ) = {

4𝑦 + 4𝑥 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 .

clearly, the edges weights are distinct. Thus 𝛾 is I an edge I irregular itotal ħ −labeling. Hence, 𝑡𝑒𝑠(𝐷(𝐻𝐶𝑆𝑛)) = 4𝑛 + 1.

Case 4: ħ ≡ 3(𝑚𝑜𝑑 5) ,1 ≤ 𝑥 ≤ 2𝑛 𝛾 is defined as:

𝛾(𝑘𝑦) = {

1 𝑓𝑜𝑟 𝑦 = 1 5𝑦 − 5 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 + 1 ,

𝛾(𝑓1,𝑥𝑦) = {

2𝑥 + 𝑦 − 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 2𝑥 + ⌈ħ

5⌉ − 2 𝑓𝑜𝑟 𝑥

ħ 𝑓𝑜𝑟 𝑥 + 1 } 𝑦 = ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔1,𝑥𝑦 ) = {

2𝑥 + 𝑦 − 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 2𝑥 + ⌈ħ

5⌉ − 2 𝑓𝑜𝑟 𝑥

ħ 𝑓𝑜𝑟 𝑥 + 1 } 𝑦 = ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑓2,𝑥𝑦) = {

2𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 2𝑥 + ⌈ħ

5⌉ − 1 𝑓𝑜𝑟 𝑥

ħ 𝑓𝑜𝑟 𝑥 + 1 } 𝑦 = ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔2,𝑥𝑦 ) = {

2𝑥 + 𝑦 − 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 2𝑥 + ⌈ħ

5⌉ − 1 𝑓𝑜𝑟 𝑥

ħ 𝑓𝑜𝑟 𝑥 + 1 } 𝑦 = ⌈ħ

5⌉ ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑓1,𝑥𝑦) = {

1 𝑓𝑜𝑟 𝑦 = 1 2𝑦 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 9 𝑓𝑜𝑟 ⌈ħ5⌉ + 1 ≤ 𝑦 ≤ 𝑛

,

𝛾(𝑘𝑦𝑓2,𝑥𝑦 ) = {

2 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 7 𝑓𝑜𝑟 ⌈ħ5⌉ + 1 ≤ 𝑦 ≤ 𝑛

,

(18)

17 𝛾(𝑘𝑦𝑔1,𝑥𝑦 ) =

{

2 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 1 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 8 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑘𝑦𝑔2,𝑥𝑦 ) = {

3 𝑓𝑜𝑟 𝑦 = 1 2𝑦 + 2 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 6 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑓1,𝑥+1𝑦 𝑘𝑦+1) = {2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ − 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥+1𝑦 𝑘𝑦+1) = {2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ + 1 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔1,𝑥+1𝑦 𝑘𝑦+1) = {2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑔2,𝑥+1𝑦 𝑘𝑦+1) = { 2𝑦 + 3 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12𝑦 − 2ħ + 2 𝑓𝑜𝑟 ⌈ħ

5⌉ ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓1,𝑥𝑦𝑓1,𝑥+1𝑦 ) = { 2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 5 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 , 𝛾(𝑓2,𝑥𝑦𝑓2,𝑥+1𝑦 ) =

{

2𝑦 + 1 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ5⌉ − 1 12 ⌈ħ

5⌉ − 2ħ − 2 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 2ħ − 3 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔1,𝑥𝑦 𝑔1,𝑥+1𝑦 ) = { 2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 2ħ − 4 𝑓𝑜𝑟 ⌈ħ5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

𝛾(𝑔2,𝑥𝑦 𝑔2,𝑥+1𝑦 ) = {

2𝑦 + 2 𝑓𝑜𝑟 1 ≤ 𝑦 ≤ ⌈ħ

5⌉ − 1 12 ⌈ħ

5⌉ − 2ħ − 1 𝑓𝑜𝑟 𝑦 = ⌈ħ

5⌉ 12𝑦 − 2ħ − 2 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 .

From the above equations we say that ħ is the maximum label of vertices and edges. The weights of edges of 𝐷(𝐻𝐶𝑆𝑛)are given by:

𝑤𝛾(𝑘𝑦𝑓1,𝑥𝑦) = {

3 𝑓𝑜𝑟 𝑦 = 1 8𝑦 + 2𝑥 − 7 𝑓𝑜𝑟 2 ≤ 𝑦 ≤ ⌈ħ

5⌉ 12𝑦 − 9 𝑓𝑜𝑟 ⌈ħ

5⌉ + 1 ≤ 𝑦 ≤ 𝑛 ,

Références

Documents relatifs

Finally a simulation methodology to predict the impact of circuit aging on conducted susceptibility and emission is presented and applied to predict a PLL

Domain decomposition, coupling methods, optimized boundary con- ditions, Navier-Stokes equations, hydrostatic approximation, Schwarz alternating

By drastically reducing the number of nodes in the graph, these heuristics greatly increase the speed of graph cuts and reduce the memory usage.. Never- theless, the performances

In this programme, particular prominence is being given to coastal and estuarine areas, and there is special emphasis on monitoring the conservation status of critical marine

A more natural notion of rank-width based on countable cubic trees (we call it discrete rank-width) has a weaker type of compactness: the corresponding width is at most twice the

Selecting paths based on top-k shortest path ranking is a good strategy in general, but shortest paths may have several redundant resources (entities and properties).. There- fore,

For ex- ample, depending on the type of query, we may ask when a specific graph pattern occurred, when two nodes become reachable, or when their shortest path distance was equal to

While the Tikhonov-Morozov technique has been analyzed and reasonably successfully applied to inverse scattering problems (see Colton, Piana and Potthast, 1997, Collino, Fares