• Aucun résultat trouvé

Algebraic and geometric characterizations of a class of planar quartic curves with rational offsets

N/A
N/A
Protected

Academic year: 2022

Partager "Algebraic and geometric characterizations of a class of planar quartic curves with rational offsets"

Copied!
15
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Algebraic and geometric characterizations of a class of planar quartic curves with rational offsets

Kai Hormann

a

,

b

,∗ , Jianmin Zheng

b

aUniversitàdellaSvizzeraitaliana,Lugano,Switzerland bNanyangTechnologicalUniversity,Singapore

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Availableonline6May2020

Keywords:

QuarticBéziercurves Offsetcurves Pythagoreanhodograph

Planar polynomial curves have rational offset curves, if they are either Pythagorean- hodograph(PH)orindirectPythagorean-hodograph(iPH)curves.Inthispaper,wederive an algebraic and two geometric characterizations for planar quartic iPH curves. The characterizationsaregivenintermsofquantitiesrelatedtotheBéziercontrolpolygonof thecurve,andnaturallyextendtoquarticandcubicPHandquadraticiPHcurves.

©2020ElsevierB.V.Allrightsreserved.

1. Introduction

Letr

(

t

) = (

x

(

t

),

y

(

t

))

be aparametric curve intheplane.The offsetcurveto ratsome (signed)distanced

R canbe writtenasrd

(

t

) =

r

(

t

) +

dn

(

t

)

,wheren

(

t

) = (

y

(

t

),

x

(

t

))/ σ (

t

)

istheunitnormal ofthecurve r

(

t

)

and

σ (

t

) =

r

(

t

) =

x

(

t

)

2

+

y

(

t

)

2 isits speed.Offset curvesariseina varietyofapplications,includingCNC machining,railwaydesign,and shapeblending (TillerandHanson,1984;Pham,1992;Maekawa,1999),butduetothesquarerootinthedefinitionof

σ (

t

)

, theyareusuallynotrationalandcanthusnotberepresentedexactlyincommonCADsystems (FaroukiandSakkalis,1990;

Farouki,1992).Therefore,researchonconditionsforpolynomialcurvestohaverationaloffsetsandmethodsforconstructing suchcurveshasattractedalotofattention (FaroukiandSakkalis,1990;Farouki,1992;Lü,1994,1995),andthetheoretical analysisoftherationalityofgeneralizedoffsetstoirreduciblehypersurfaceswas studied,too (Arrondoetal.,1997; Sendra andSendra,2000).

Especiallyincomputer-aidedgeometricdesignandmanufacturing (Farinetal.,2002),planarpolynomialcurvesareoften expressedintheBézierformasr

: [

0

,

1

] →

R2,

r

(

t

) =

n

i=0

piBni

(

t

),

(1)

where Bni

(

t

) =

n

i

(

1

t

)

niti aretheBernsteinbasispolynomialsofdegreen

Nand p0

, . . . ,

pn

R2 arethecontrolpoints.

Connecting the control points forms the controlpolygon that provides an intuitive approximation anddescription of the curve.Asubsetofthesecurveshasexactlyrepresentablerationaloffsetcurves.

ThefirstclassofpolynomialcurveswithrationaloffsetsarePythagorean-hodograph(PH)curves,whichwereintroduced by Farouki and Sakkalis (1990). For these curves, the speed

σ (

t

)

is a polynomial, so that the two components of the curve’sfirstparametric derivativeorhodographr

(

t

) = (

x

(

t

),

y

(

t

))

and

σ (

t

)

forma polynomialPythagoreantriple,that is,

*

Correspondingauthorat:UniversitàdellaSvizzeraitaliana,Lugano,Switzerland.

E-mailaddresses:kai.hormann@usi.ch(K. Hormann),ASJMZheng@ntu.edu.sg(J. Zheng).

https://doi.org/10.1016/j.cagd.2020.101873 0167-8396/©2020ElsevierB.V.Allrightsreserved.

(2)

Fig. 1.ExamplesofC1Hermiteinterpolants(top),theirspeeds(middle),andcurvatures(bottom).Notethattheprescribedtangentsarescaledbyafactor of1/5 tobetterfittheimages.

x

(

t

)

2

+

y

(

t

)

2

= σ (

t

)

2.PHcurvesandtheirapplicationshavebeenstudiedintensively,andwerefertheinterestedreaderto thebookbyFarouki(2008) andthereferencestherein.

The second classof polynomialcurves thathaverational offsetswithrespectto aproperly chosen reparameterization was discoveredbyLü(1994,1995).Forsucha(non-PH)offset-rationalorindirectPythagorean-hodograph(iPH)curve (Luet al., 2016), thereexistsasuitablerationalquadraticparametertransformationt

: [

0

,

1

] → [

0

,

1

]

witht

(

0

) =

0,t

(

1

) =

1,and t

(

s

) >

0 fors

∈ [

0

,

1

]

,suchthatthespeed

σ ˜ (

s

)

ofthereparameterized curver

˜ (

s

) =

r

(

t

(

s

))

andthetwocomponentsx

˜

(

s

)

and

˜

y

(

s

)

ofitsfirstderivativeformarationalPythagoreantriple (Lü,1995;Luetal.,2016).

In thispaper,we studya class ofquarticiPHcurves,which hasbeenshowntobe capableof interpolatingfirst-order Hermite datawith up to four differentsolutions (Lü, 1995), akin to quinticPH curves (Farouki,1992; Farouki andNeff, 1995);seeFig.1.Wefocusonproperlyparameterizedcurves,forwhichtheparametervaluetandthecurvepointr

(

t

)

arein one-to-onecorrespondenceforallt

R,exceptforparametervaluescorrespondingtoself-intersectionsofr(Farouki,2008).

Foran improperly parameterizedpolynomialorrationalcurve,it isalwayspossible tomakeitproperlyparameterized by reparameterization (Sederberg,1984,1986). Following Farouki(1994),weusethecomplexrepresentationofplanar Bézier curves toanalyse thestructure ofthesequarticiPH curvesandderivea simplealgebraic characterization, giveninterms of thecomplexformof thecontrol edgevectors(see Section 3),which turnsout tobe usefulfortheconstruction ofC1 Hermiteinterpolants(seeSection3.4).Wetheninvestigatetwogeometriccharacterizations,wheretheconditionsarestated intermsofquantitiesrelatedtothecontrolpolygon,whichcanbeusedtoparameterizethisclassofquarticiPHcurvesin anintuitiveway(seeSection4).

1.1. Relatedwork

Variousgeometricandalgebraiccharacterizationsoflowerdegreecurveswithrationaloffsetshavebeenderived,usually intermsofquantitiesrelatedtotheirBéziercontrolpolygons,withmostworkfocussingonPHcurves.

We knowthatacubic curveisaPHcurve, ifandonlyifthetwointeriorangles

θ

1 and

θ

2 betweenadjacentedges of theBéziercontrolpolygon(seeFig.2)arethesameandthelengths Ei

=

ei

ofthecontroledgevectorsei

=

pi+1

pi are in geometricprogression, that is, E1

= √

E0E2 (FaroukiandSakkalis, 1990), whichis equivalentto thecondition that the triangles

[

p0

,

p1

,

p2

]

and

[

p1

,

p2

,

p3

]

aresimilar (Pelosietal.,2007).Interpretingtheedgevectorsei ascomplexnumbers,

(3)

Fig. 2.Notation for the characterization of cubic (left) and quartic (right) PH curves in Bézier form.

thesegeometric conditionscanbe combinedtothe singlecomplex constrainte21

=

e0e2 (Farouki,1994),andwe derivea similaralgebraicconditionforquarticiPHcurvesinSection3.

Accordingto theanalysisin Wang andFang(2009),a quarticcurve isa PHcurve, ifthereexists a line,which passes through p2 andintersectswiththelines p0p1andp3p4 ats1ands2,respectively,suchthattheangles

(

p1

s1

,

p2

s1

)

and (p2

s2

,

p3

s2

)

are equal (see Fig. 2) and the lengths Fi

=

fi of the vectors f0

=

s1

p1, f1

=

p2

s1, f2

=

s2

p2, f3

=

p3

s2,togetherwiththelengthsE0 andE3satisfythethreeconstraintsE0F2

=

3F0F1,E3F1

=

3F2F3, andF1F2

=

4F0F3.InSection4,weshowthatageneralizedversionoftheseconditionscharacterizesquarticiPHcurves.

Furtherinvestigationshaverevealedanadditionalcondition foraquarticPHcurvetohavemonotoniccurvature (Zheng andWang,2018), algebraic (Farouki,1994) andgeometric (Fangand Wang,2018) characterizations ofquintic PHcurves, threemethodsforidentifyingsexticPHcurves (Wangetal.,2017),aswellasgeometricpropertiesforPHcurvesofdegree seven (Lietal.,2019;Zhengetal.,2016).

1.2. Contributions

MuchlessisknownforiPHcurves,apartfromthefactthat quadraticcurvesareiPH,butnotPHcurves,aslongasthe controlpoints p0,p1, p2 arenotcollinear (FaroukiandSederberg, 1995; Lü,1995),andanin-depthanalysisofgeometric conditionsforproperlyparameterizedcubiciPHcurves (Luetal.,2016).Tothebestofourknowledge,thispaperisthefirst totake acloserlookatquarticiPHcurvesandtoderivealgebraic aswell asgeometric characterizationsforanimportant subsetofthesecurves.

2. Preliminaries

FortheanalysisofPHandiPHcurves,ithasturnedouttobeusefultoexploitthecomplexrepresentationofR2(Farouki, 1994).Wefollowthisapproachandthroughoutthispaperidentifytheplanarpoint

(

x

,

y

)

R2 withthecomplexnumber x

+

iy

Candlikewiseforvectorsandplanarcurves.Thestarting pointofourinvestigationsisanecessaryandsufficient conditionthatwasdiscoveredbyLü(1995).

Theorem1.Aproperlyparameterizedpolynomialcurver

(

t

)

hasrationaloffsets,ifandonlyifitshodographcanbewritteninthe complexformas

r

(

t

) =

p

(

t

)(

1

+

kt

)

w

(

t

)

2

,

(2)

wherep

(

t

)

isarealpolynomial,kisacomplexconstant,andw

(

t

) =

x

(

t

) +

iy

(

t

)

isacomplexpolynomialwithx

(

t

)

andy

(

t

)

relatively prime.

Withoutlossofgenerality,wecanassumetheleadingcoefficientofp

(

t

)

in (2) tobeequalto1,sinceallothercasescan bereducedtothissituationbymultiplying w

(

t

)

withthesquarerootofthisleadingcoefficient.Moreover,thecurver

(

t

)

is aPHcurve,ifIm

(

k

) =

0,andaniPHcurve,otherwise.

In thispaper, we focus onquartic iPH curves.For thesecurves, we havedeg

(

1

+

kt

) =

1 and consequently deg

(

r

) =

deg

(

r

) +

1

=

deg

(

p

) +

2deg

(

w

) +

2

=

4,andwedistinguishthefollowingcases:

ClassI:deg

(

p

) =

2 anddeg

(

w

) =

0.

Inthiscase,wecanrewritethehodographin (2) as r

(

t

) =

(

t

a

)

2

+

b

(

1

+

kt

)

w (3)

(4)

for some a

,

b

R andk

,

w

C with Im

(

k

) =

0 and w

=

0. Thesecurves havea linearly varying normal (Ahn and Hoffmann,2011),andwefurtherrecognizethreesub-cases:

– ClassI.0:b

>

0.Thesecurvesareregular.

– ClassI.1:b

=

0.Thesecurvesaresingular,buttangentcontinuousatt

=

a.

– ClassI.2:b

<

0.Thesecurveshavetwocuspsatt

=

a

± √

b.

ClassII:deg

(

p

) =

0 anddeg

(

w

) =

1.

Inthiscase,wecanrewritethehodographin (2) as

r

(

t

) = (

1

+

kt

)(

w0

(

1

t

) +

w1t

)

2 (4)

forsomek

,

w0

,

w1

CwithIm

(

k

) =

0,w0

=

0,w1

=

0,andIm

(

w1

/

w0

) =

0.Thesecurvesareregular.

Inparticular,weareinterestedinclassIIquarticiPHcurves,sincetheycanbeusedforsolvingtheC1 Hermiteinterpo- lationproblem (Lü,1995),butwewillseethatclassI.1quarticiPHcurves,quarticandcubicPHcurves,andquadraticiPH curvesplayaroleinthiscontext,too(seeSection3.4).

3. Algebraicconsiderations 3.1. ClassIIquarticiPHcurves

Ourfirst observation, whichwas alsomentionedin Lü(1995), butwithoutfurtherexplanation,is thatthere existsan alternativerepresentationforthehodographofclassIIquarticiPHcurves.

Corollary1.Aproperlyparameterizedquarticcurver

(

t

)

isaniPHcurveofclassII,ifandonlyifitshodographcanbewritteninthe complexformas

r

(

t

) =

u0

(

1

t

) +

u1 a2t

((

1

t

) +

at

)

2

,

(5)

whereu0

,

u1

,

a

Cwithu0

=

0,u1

=

0,Im

(

a

) =

0,andIm

(

a2u0

/

u1

) =

0.

Proof. Ifr

(

t

)

isgivenasin (4),thenwecanrewriteitasin (5) bylettingu0

=

w20,u1

= (

1

+

k

)

w21,a

=

w1

/

w0.Viceversa, wecanconvertahodographfromtheformin (5) totheformin (4) bylettingk

=

u1

/(

u0a2

)

1, w0

= ± √

u0,w1

=

w0a.

Notethattheadditionalconditionsonk,w0,w1 in (4) andonu0,u1,ain (5) implyeachother.

InordertoderiveanalgebraiccharacterizationofclassIIquarticiPHcurvesintermsofthecontroledges ei

=

pi+1

pi fromtheirBézierrepresentation,werecallthatthehodographofaquarticcurver

(

t

)

canbewritten,bydifferentiatingits Bézierrepresentationin (1),as

r

(

t

) =

4

e0B30

(

t

) +

e1B31

(

t

) +

e2B32

(

t

) +

e3B33

(

t

)

.

(6)

Comparingthetwoexpressionsofr

(

t

)

in (5) and (6) fort

=

0 andt

=

1,weobservethat e0

=

1

4u0

,

e3

=

1

4u1

,

(7)

and,bysimilarlycomparingtheirderivatives,thatis,thetwoformsofr

(

t

)

thattheyinduce, e1

=

2

3ae0

+

1

3a2e3

,

e2

=

1

3a2e0

+

2

3a1e3

.

(8)

Moreover,weneedtointroducetheconceptofnon-degenerateBéziercontrolpolygons.

Definition1.We saythat theBézier control polygonofa quarticcurve r

(

t

)

isnon-degenerate,ifandonly ifthefirstand last controledgedonotvanishandthecontrolpointsarenotcollinear,thatis,e0

=

0,e3

=

0,andIm

(

ei

/

e0

) =

0 forsome i

∈ {

1

,

2

,

3

}

.

Thiskindofnon-degeneracyrulesoutcurvesthataresingularateithert

=

0 ort

=

1 andthosethatdescribea(possibly improperlyparameterized)straightline.Wearenowreadytopresentourmainresult.

Theorem2.Aproperlyparameterizedquarticcurver

(

t

)

isaniPHcurveofclassII,ifandonlyifitsBéziercontrolpolygonisnon- degenerateanditscontroledgessatisfy

(5)

(

e0e3

e1e2

)

2

=

4

(

e0e2

e21

)(

e1e3

e22

)

(9) andeither

e0e3

=

e1e2 (10)

or Im

2 e1e3

e22 e0e3

e1e2

=

0 and Im

4

e

1e3

e22 e0e3

e1e2

2

e0

e3

=

0

.

(11)

Proof. Letusstartby assuming that r

(

t

)

isa properlyparameterized class II quarticiPH curve. Toshow that theBézier controlpolygonofr

(

t

)

isnon-degenerate,wefirstrecallfromCorollary1thatu0

=

0,u1

=

0,andIm

(

a

) =

0,hencea

=

0.It thenfollowsfrom (7) thate0

=

0 ande3

=

0.Now assumethatall ei areparallel,thatis,ei

= λ

ie0fori

=

1

,

2

,

3 andsome

λ

1

, λ

2

, λ

3

R

\ {

0

}

.By (8),wethenhave

λ

2

=

a

(

2

λ

1

a

)

and

λ

3

=

a2

(

3

λ

1

2a

)

.SinceIm

(

a

(

2

λ

1

a

)) =

2Im

(

a

)(λ

1

Re

(

a

))

andIm

(

a

) =

0,we concludethat

λ

1

=

Re

(

a

)

,because

λ

2 wouldotherwise notbe a realnumber. Withthis, however,we findthat Im

(

a2

(

3

λ

1

2a

)) =

2Im

(

a

)

3

=

0, whichcontradicts the assumptionthat

λ

3

R.We now proceedto prove the algebraicconditions.Itfollowsfrom (8) that

e0e3

e1e2

= −

2

9a

(

ae0

a2e3

)

2

,

(12a)

e0e2

e21

= −

1

9

(

ae0

a2e3

)

2

,

(12b)

e1e3

e22

= −

1

9

(

a2e0

a1e3

)

2

,

(12c)

whichimmediatelyimplies (9).By (12a),condition (10) isequivalenttoa3e0

=

e3,becausea

=

0,andusing (8),weseethat moregenerallyei

=

aei1

=

aie0 fori

=

1

,

2

,

3 in thisspecialcase, whichmeans thatthe controledges are ingeometric progression,justlikethecontroledgesofacubicPHcurve.Otherwise,e0e3

=

e1e2,anditfollowsfrom (12a) and (12c) that

2 e1e3

e22 e0e3

e1e2

=

a

.

By (7),wefurtherfindthate0

/

e3

=

u0

/

u1,andtheconditionsin (11) thenfollowfromCorollary1,whichguaranteesthat Im

(

a

) =

0 andIm

(

a2u0

/

u1

) =

0.

Letusnow assume that r

(

t

)

isa properly parameterizedquartic curve witha non-degenerate Béziercontrol polygon andcontroledgesei thatsatisfyconditions (9) and (10).Then,eithere0e2

=

e21 ore1e3

=

e22,butasbothidentitiesactually implyeach other,by (9) and underthenon-degeneracyassumption ofthecontrol polygon,whichguarantees e0

=

0 and e3

=

0,we can safely assume both ofthem to be true.Consequently, e2

=

e21

/

e0 ande3

=

e31

/

e20, whichmeans that the control edges are in geometric progression, and it is not hard to verify that both conditions in (8) hold fora

=

e1

/

e0. Consequently,andinview of (7), wecan writethehodographofr

(

t

)

asin (5) with u0

=

4e0

=

0 andu1

=

4e3

=

0,and itactually simplifiesto r

(

t

) =

u0

((

1

t

) +

at

)

3 inthiscase.Toshow that Im

(

a

) =

0,let usassumethe opposite,that is, Im

(

e1

/

e0

) =

0.Wethen haveIm

(

e2

/

e0

) =

Im

(

a2

) =

0 andIm

(

e3

/

e0

) =

Im

(

a3

) =

0,thus contradictingtheassumptionthat theei arenotallparalleltoeachother.Therefore,Im

(

a

) =

0,whichalsoimpliesIm

(

a2u0

/

u1

) =

Im

(

a1

) =

0.

Finally,letusassumethat (11) holdsinsteadof (10),andnotethate0e3

=

e1e2,by (9),impliese0e2

=

e21.Letting a1

=

e0e3

e1e2

2

(

e0e2

e21

) ,

a2

=

2

(

e1e3

e22

)

e0e3

e1e2

,

itthenfollowsfrom (9) thata1

=

a2,anditcanfurtherbeverifiedthat 4a21e1

= (

e0e3

e1e2

)

2

(

e0e2

e21

)

2

e1

=

e20e1e23

2e0e21e2e3

+

e31e22

(

e0e2

e21

)

2

,

2a21a2e0

= (

e0e3

e1e2

)(

e1e3

e22

) (

e0e2

e21

)

2

e0

=

e20e1e23

e20e22e3

e0e21e2e3

+

e0e1e32

(

e0e2

e21

)

2

,

a1a2e1

= (

e0e2

e21

)(

e1e3

e22

) (

e0e2

e21

)

2

e1

=

e0e21e2e3

e0e1e32

e41e3

+

e31e22

) (

e0e2

e21

)

2

.

Therefore, 4a21e1

=

2a21a2e0

+

a1a2e1

+

e3,and we concludethat the condition for e1 in (8) holds fora

=

a1

=

a2.The conditionfore2 canbecheckedsimilarly.Asinthepreviouscase,we canthenwritethehodographofr

(

t

)

asin (5) with u0

=

4e0

=

0 andu1

=

4e3

=

0,andtheconditionsIm

(

a

) =

0 andIm

(

a2u0

/

u1

) =

0 followdirectlyfrom (11).

(6)

Thekey ingredienttothecharacterizationofclassIIquarticiPHcurvesinTheorem2certainly iscondition (9),andwe will nowshow that thiscondition isalso validforotherquarticBézier curveswithrationaloffsets,whichare notiPH of classII.

3.2. CubicPHandquadraticiPHcurves

Ifr

(

t

)

isacubicBéziercurvewithcontroledgesd0,d1,d2,thenthecontroledgesafterdegreeelevationare e0

=

3

4d0

,

e1

=

1 4d0

+

1

2d1

,

e2

=

1 2d1

+

1

4d2

,

e3

=

3

4d2

,

(13)

andastraightforwardcalculationrevealsthat

(

e0e3

e1e2

)

2

4

(

e0e2

e21

)(

e1e3

e22

) =

3

64

(

d0d2

d21

)(

d0

2d1

+

d2

)

2

.

Therefore,condition (9) is true,ifd21

=

d0d2 ord1

=

12

(

d0

+

d2

)

,thatis,d1 mustbethegeometricorthearithmeticmean ofd0 andd2.Notethatthefirstcaseholds,ifr

(

t

)

isacubicPHcurve, whilethesecond caseoccurs,ifandonlyifr

(

t

)

is a degree-raisedquadratic curve.Thissuggeststhattheremightbe characterizationsofcubic PHandquadraticiPH curves that aresimilartotheoneinTheorem 2,butbeforewe gettotheadditionalalgebraicconditionsthatareneededforthis purpose,letusstatetheequivalentsofCorollary1.

Corollary2.Aproperlyparameterizedcubiccurver

(

t

)

isaPHcurve,ifandonlyifitshodographcanbewritteninthecomplexform asin(5)withu0

=

0,u1

=

0,Im

(

a

) =

0,anda2u0

=

u1.

Proof. Wefirstrecallfrom FaroukiandSakkalis(1990) thatthehodographofaproperlyparameterizedcubicPHcurvecan writtenasin (2) withk

=

0,deg

(

p

) =

0,anddeg

(

w

) =

1,thatis,as

r

(

t

) = (

w0

(

1

t

) +

w1t

)

2 (14)

forsome w0

,

w1

C with w0

=

0, w1

=

0,andIm

(

w1

/

w0

) =

0.Itfollowsdirectly,thatwecanthenrewrite r

(

t

)

inthe form (5) bylettingu0

=

w20,u1

=

w21,anda

=

w1

/

w0.Viceversa,ifr

(

t

)

isgivenasin (5),thenwegetbacktotheform in (14) byletting w0

= ± √

u0 and w1

=

w0a.Notethat theadditionalconditionson w0,w1 in (14) andon u0,u1,ain thestatementimplyeachother.

Corollary3.Aproperlyparameterizedquadraticcurver

(

t

)

isaniPHcurve,ifandonlyifitshodographcanbewritteninthecomplex formasin(5)withu0

=

0,u1

=

0,a

=

1,andIm

(

a2u0

/

u1

) =

Im

(

u0

/

u1

) =

0.

Proof. ProperlyparameterizedquadraticiPHcurveshaveahodographasin (2) withIm

(

k

) =

0,deg

(

p

) =

0,anddeg

(

w

) =

0, thatis, w

(

t

)

2

u0forsome u0

C withu0

=

0,whichcanberewrittenasin (5) bylettingu1

= (

1

+

k

)

u0

=

0 anda

=

1, andviceversa.

In view ofCorollaries 2and3,our previous discovery isactually not surprising, becausethe identitiesin (12), which imply (9),followonlyfromtherepresentationofthehodographin (5),butdonotdependonthespecificconditionsonu0, u1,anda.LetusnowpresenttheanaloguesofTheorem2.

Theorem3.Aproperlyparameterizedcubiccurver

(

t

)

isaPHcurve,ifandonlyifitsdegree-raised,quarticBéziercontrolpolygonis non-degenerateanditscontroledgessatisfy(9),e0e3

=

e1e2,and

Im

2 e1e3

e22 e0e3

e1e2

=

0 and 4

e

1e3

e22 e0e3

e1e2

2

e0

e3

=

1

.

(15)

Proof. Toprove the necessityofthe conditions,let usassume that r

(

t

)

isa cubic PHcurve witha hodographasstated in Corollary 2. The non-degeneracy of the degree-raised, quarticBézier control polygon then follows asin the proof of Theorem 2,becausewe still haveu0

=

0, u1

=

0,andIm

(

a

) =

0,andthevalidity of (9) wasderived above. Now,ife0e3 were equalto e1e2,then a3e0

/

e3

=

1,by (12a), butit alsofollowsfrom (7) and Corollary2 thata2e0

/

e3

=

a2u0

/

u1

=

1, whichimpliesa

=

1,thuscontradictingthefactthatIm

(

a

) =

0.ExpressingtheeiintermsofthecubicBéziercontroledges diasin (13) andsubstitutingd2

=

d21

/

d0,astraightforwardcalculationshowsthat

2 e1e3

e22 e0e3

e1e2

=

d1

d0

=

d2

d1

,

(16)

(7)

whichhasanon-vanishingimaginarypart,ifandonlyifalldi andthusalsoalleiareparallel,butwejustshowedthatthe lattercannot happen.Theremaining identity in (15) follows directlyfrom (16),because e0

/

e3

=

d0

/

d2.The sufficiencyof theconditionscanbeshownwiththesameargumentsasintheproofofTheorem2.

Theorem4.Aproperlyparameterizedquadraticcurver

(

t

)

isaniPHcurve,ifandonlyifitstwicedegree-raised,quarticBéziercontrol polygonisnon-degenerateanditscontroledgessatisfy(9),e0e3

=

e1e2,and

2 e1e3

e22

e0e3

e1e2

=

1 and Im

4

e

1e3

e22 e0e3

e1e2

2

e0

e3

=

Im

e0

e3

=

0

.

(17)

Proof. Letusfirstassumethatr

(

t

)

isaquadraticiPHcurvewithahodographasstatedinCorollary3andquadraticBézier controledgesc0,c1.Afterdegreeelevation,thecontroledgesofthequarticBéziercontrolpolygonare

e0

=

1

2c0

,

e1

=

1 3c0

+

1

6c1

,

e2

=

1 6c0

+

1

3c1

,

e3

=

1

2c1

.

(18)

Asbefore,itisclearthate0

=

0 ande3

=

0.Moreover,sinceIm

(

e0

/

e3

) =

Im

(

u0

/

u1

) =

0 by (7) andCorollary3,weconclude that atleast e0 ande3 are notparallel,hencethequarticcontrol polygonisnon-degenerate.We alreadydiscussedabove that (9) holds;toshowtheremainingconditions,weuse (18) toget

e0e3

e1e2

=

2

(

e0e2

e21

) =

2

(

e1e3

e22

) = −

1

18

(

c1

c0

)

2

andrecallIm

(

e0

/

e3

) =

Im

(

c0

/

c1

) =

0,whichimpliesc0

=

c1andfurthere0e3

=

e1e2,aswellas (17).Thesufficiencyofthe conditionscanagainbeshownwiththesameargumentsasintheproofofTheorem2.

3.3. QuarticPHandclassI.1quarticiPHcurves

LetusnowextendtheresultsabovetoquarticPHandclassI.1quarticiPHcurves.WefirstobservethatCorollary1can beextendedtobothkindsofcurves,ifweexcludetheoccurrenceofsingularitiesatt

=

0 andt

=

1.

Corollary4.Aproperlyparameterizedquarticcurver

(

t

)

isaPHcurvewithr

(

0

) =

0andr

(

1

) =

0,ifandonlyifitshodographcan bewritteninthecomplexformasin(5)withu0

=

0,u1

=

0,Im

(

a

) =

0,Im

(

a2u0

/

u1

) =

0,anda2u0

=

u1.

Proof. Wefirstrecall from FaroukiandSakkalis (1990) that thehodographofaproperly parameterizedquarticPHcurve canbewrittenasin (2) witheitherk

=

0,deg

(

p

) =

1 ork

=

0,Im

(

k

) =

0,deg

(

p

) =

0,anddeg

(

w

) =

1,thatis,as

r

(

t

) = (

t

a

)(

w0

(

1

t

) +

w1t

)

2 (19)

forsome a

R and w0

,

w1

C with w0

=

0, w1

=

0, andIm

(

w1

/

w0

) =

0.This representationshowsthat quartic PH curveshaveacusp att

=

a,hencea

∈ { /

0

,

1

}

,becauseoftherestrictions statedabove.Itthen followsthatwe canrewrite r

(

t

)

inthe form (5) by letting u0

= −

aw20, u1

= (

1

a

)

w21,anda

=

w1

/

w0. Viceversa,ifr

(

t

)

is givenasin (5), then we get back to the formin (19) byletting a

=

a2u0

/(

a2u0

u1

)

, w0

= ±

u1

a2u0

/

a, and w1

=

aw0. Notethat the additionalconditionsona,w0,w1 aboveandonu0,u1,ainthestatementimplyeachother.

Corollary5.Aproperlyparameterizedquarticcurver

(

t

)

isaniPHcurveofclassI.1withr

(

0

) =

0andr

(

1

) =

0,ifandonlyifits hodographcanbewritteninthecomplexformasin(5)withu0

=

0,u1

=

0,Im

(

a

) =

0,a

∈ { /

0

,

1

}

,andIm

(

a2u0

/

u1

) =

0.

Proof. Ifr

(

t

)

is given asin (3) with a

∈ { /

0

,

1

}

and b

=

0, then we can rewrite it as in (5) by letting u0

=

a2w, u1

= (

1

a

)

2

(

1

+

k

)

w, anda

= (

a

1

)/

a.Viceversa,wecan convertahodographfromthe formin (5) tothe formin (3) by lettinga

=

1

/(

1

a

)

,b

=

0,k

= (

u1

a2u0

)/(

a2u0

)

,andw

= (

1

a

)

2u0.Asinthepreviousproofs,theadditionalconditions implyeachother.

Asbefore,thesecorollariespavethewayforanalgebraiccharacterizationofthesekindofquarticcurvesintermsofthe Béziercontroledges.

Theorem5.Aproperlyparameterizedquarticcurver

(

t

)

isaPHcurvewithr

(

0

) =

0andr

(

1

) =

0,ifandonlyifitsBéziercontrol polygonisnon-degenerateanditscontroledgessatisfy(9),e0e3

=

e1e2,and

Im

2 e1e3

e22 e0e3

e1e2

=

0 and 4

e1e3

e22 e0e3

e1e2

2

e0

e3

∈ R \ {

1

} .

(20)

Références

Documents relatifs

We shall of course also be discussing the finite dimensional representations of Sp4(C). This space has a natural grading given by the usual degree. Consider the subalgebra of

Once the bitangents have been expressed in terms of theta constants thanks to Weber’s formula, an equation for the curve itself can be written by resorting to the Riemann model of

Thus, as far as manifolds of Calabi–Yau type obtained as generic complete intersections of dimension bigger than 4 in weighted projective spaces are concerned, in order to answer

For the doubling and addition steps in Miller’s algorithm for the computation of the Tate pairing, we obtain a theoretical gain up to 27% and 39%, depending on the embedding degree

elliptic curve, simplest quartic field, Mordell-Weil group, rank, infinite family, integral points.. This work was supported in part by French projects ANR-16-CE39-0012 “SafeTLS”

Using current implementations of the Kummer algorithm on fields whose ideal class groups are cyclic with order a power of 2, we are able to find defining polynomials for the

From this, it is possible to interpret Theorem 1.1 in the framework of the generalized Manin’s conjecture by Batyrev and Tschinkel [1], as was done in the work of de la Bret`

This approch is simple and different from ferrari’s method, in addition we can solve some algbraic equations with degree n by using the technics proposed in this