• Aucun résultat trouvé

Factor affecting the Young's modulus - porosity relation of hydrated portland cement compacts

N/A
N/A
Protected

Academic year: 2021

Partager "Factor affecting the Young's modulus - porosity relation of hydrated portland cement compacts"

Copied!
15
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Cement and Concrete Research, 2, July 4, pp. 375-386, 1972-07-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/0008-8846(72)90054-3

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Factor affecting the Young's modulus - porosity relation of hydrated

portland cement compacts

Feldman, R. F.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=dcead46b-67b4-48f2-9ec0-4e61722a2355 https://publications-cnrc.canada.ca/fra/voir/objet/?id=dcead46b-67b4-48f2-9ec0-4e61722a2355

(2)
(3)
(4)

CEMENT

and CONCRETE RESEARCH.

Vol

.

2 ,

p p . 375-386, 1972. Pergamon Press, Inc. Printed in the United S t a t e s .

FACTORS AFFECTING YOUNG'S MODULUS

-

POROSITY RELATION O F HYDRATED PORTLAND

CEMENT COMPACTS

R. F. F e l d m a n

Division of Building R e s e a r c h , National R e s e a r c h Council of Canada Ottawa 7 , Ontario, Canada

(Communicated by

P .

J .

Sereda)

ABSTRACT

Two s e r i e s of c o m p a c t s a r e studied, one d - d r i e d b e f o r e and one a f t e r compaction. M e a s u r e m e n t s of absolute density, helium flow c h a r a c t e r i s t i c s and YoungSs modulus indicate t h a t high p r e s s u r e s c a n f o r c e t h e l a y e r s of d - d r i e d m a t e r i a l c l o s e r t o - g e t h e r , giving a Young's modulus double t h a t displayed when no i n t e r l a y e r w a t e r i s p r e s e n t and identical t o t h a t when s p a c e s a r e occupied by w a t e r molecules. Water c a n r e - e n t e r between t h e l a y e r s , however, and on r e d r y i n g YoungDs modulus i s reduced by 50 p e r cent t o the n o r m a l value f o r t h e d - d r i e d m a t e r i a l . T h e i n t e r l a y e r w a t e r m u s t b e r e g a r d e d a s p a r t of t h e solid.

SOMMAIR,E

Deux s C r i e s d e c o m p a c t s sont e t u d i e e s , l'une I'd-dried" avant l e compactage et l f a u t r e a p r k s . L e s c a l c u l s d e densit6 absolue, l e s c a r a c t e r i s t i q u e s dfCcoulement

3

lfhkliurn e t l e Modulus Young indiquent que l e s h a u t e s p r e s s i o n s peuvent f o r c e r l e s couches d e m a t e r i a u x I'd-dried" e n s e m b l e donnant a i n s i un Modulus Young double d e c e l u i obtenu quand aucune eau e s t prCsente dans l e s e n t r e c o u c h e s et identique

3

c e l u i qui e s t obtenu quand l e s e s p a c e s sont occupes p a r d e s moli.cules d'eau. L f e a u peut r C - e n t r e r e n t r e l e s couches, cependant et s u r resCchage, l e Modulus Young e s t r e d u i t p a r 50 p. 100,

B

l a v a l e u r n o r m a l e , pour l e matCriau "d-dried". L'eau d'entrecouche peut d t r e c o n s i d e r e e c o m m e f a i s a n t p a r t i e du c o r p s solide.

(5)

MODULUS OF ELASTICITY, HYDRATED CEMENT, COMPACTS

Vol. 2, No. 4

Introduction

P o r o s i t y i s the m a j o r f a c t o r governing Youngys modulus of e l a s t i c i t y of porous bodies (1, 2), and p r e v i o u s w o r k on hydrated portland cement h a s shown that t h i s m a t e r i a l i s no exception (3, 4, 5). C u r v e s of p o r o s i t y v e r s u s Young's modulus f o r hydrated portland cement s p e c i m e n s p r e p a r e d by p a s t e hydration o r by compaction of bottle hydrated c e m e n t approximately coincide (5).

It h a s a l s o been shown ( 3 ) t h a t i t i s p o s s i b l e t o i n c r e a s e t h e Youngys modulus a t a given p o r o s i t y by allowing complete r e - e n t r a n c e of i n t e r l a y e r

water. It i s recognized

( 6 ,

7, 8 ) t h a t i n t e r l a y e r s p a c e h a s s p e c i a l p r o p e r t i e s ,

i n c o n t r a s t with other p o r e s , and a l e s s a r b i t r a r y definition of p o r o s i t y i s r e q u i r e d if it i s t o be u s e d i n c o r r e l a t i o n with o t h e r p r o p e r t i e s . Recently it h a s been d e m o n s t r a t e d (9) t h a t p o r o s i t y of hydrated portland cement c a n be m e a s u r e d by helium pycnometry and t h a t i n t e r l a y e r s p a c e c a n b e excluded by t h i s technique.

This work h a s involved a study of porosity: Young's modulus r e l a - tion of compacts using v a r i o u s techniques whereby t h e i n t e r l a y e r s p a c e configuration m a y b e modified; the widely u s e d exponential m a t h e m a t i c a l e x p r e s s i o n w a s applied in t h i s w o r k f o r c o r r e l a t i n g the data.

E x p e r i m e n t a l M a t e r i a l s

Hydrated cement w a s p r e p a r e d by hydrating a Type I cement in a

rotating bottle a t a w a t e r / c e m e n t r a t i o of 5. 0. Hydration was continued f o r

up t o 28 months and was found t o b e s e n s i b l y complete. When mixing w a s

completed the hydrated cement was f i l t e r e d , d r i e d a t 3270 '0 o v e r a

s a t u r a t e d solution of CaC1 and t h e n s c r e e n e d through a 100-mesh sieve.

2

T h e r e m a i n i n g f r a c t i o n ( m o s t l y C a ( 0 H ) c r y s t a l s ) was ground and r e m i x e d

2

with t h e sieved m a t e r i a l . Compaction

Two s e r i e s of s a m p l e s w e r e m a d e i n t h i s work:

S e r i e s A: Compacts w e r e m a d e f r o m t h e above powdered m a t e r i a l s , which had been d r i e d a t 85°C f o r t h r e e h o u r s in a vacuum c h a m b e r . This had

(6)

Vol.

2,

No. 4

MODULUS OF ELASTI CITY, HYDRATED CEMENT, COMPACTS

p r e v i o u s l y (7) been found t o approximate the d-dried condition. Compacts wer.e f a b r i c a t e d a t nine p r e s s u r e s : 285, 570, 1140, 2850, 4270, 5700, 8540,

2

11,400 and 14, 350 kg/cm i n a gloved box conditioned a t l e s s than 170 RJ3.

T h e s p e c i m e n s w e r e d i s c s 32mm i n d i a m e t e r and 1. 25mm thick. D e t a i l s of the 'compaction p r o c e d u r e h a v e been published e l s e w h e r e (3). Twelve c o m p a c t s w e r e f a b r i c a t e d a t e a c h p r e s s u r e except the two highest, w h e r e nine compacts w e r e f a b r i c a t e d . At a l a t e r d a t e but using t h e s a m e m a t e r i a l , a s i m i l a r s e r i e s w a s p r e p a r e d consisting of t e n c o m p a c t s e a c h a t 570, 5700

2 and 14, 350 kg/cm

.

S e r i e s B: A s e r i e s of compacts was p r e p a r e d a s above, with the hydrated cement d r i e d t o only t h e 3270 RH level. After compaction t h e s e s a m p l e s w e r e d r i e d by heating a t 8 5 ° C until t h e weight l o s s indicated that t h e s a m p l e s w e r e adequately d r i e d with r e s p e c t t o powdered m a t e r i a l . Again a t a l a t e r d a t e

-

and using the s a m e m a t e r i a l , a r e p e a t s e r i e s of 10 c o m p a c t s w a s m a d e a t

P o r o s i t y , Density and Helium Flow M e a s u r e m e n t s

Solid volume m e a s u r e m e n t s w e r e m a d e with a helium c o m p a r i s o n pycnometer and a r e d e s c r i b e d in d e t a i l e l s e w h e r e

(9).

P o r o s i t y w a s c a l - culated f r o m m e a s u r e m e n t of t h e e x t e r n a l g e o m e t r y and t h e solid volume; density was calculated f r o m solid volume and weight.

Helium flow m e a s u r e m e n t s a l s o d e s c r i b e d e l s e w h e r e (8) w e r e m a d e 2

on S e r i e s A s a m p l e s compacted a t 520, 5700 and 14,350 kg/cm

,

and on

L

S e r i e s B s a m p l e s compacted a t 5700 kg/cm

.

All density and helium flow m e a s u r e m e n t s w e r e m a d e a t t h e d - d r i e d condition.

Determination of Young's Modulus of E l a s t i c i t y

Apparatus w a s used that i s d e s c r i b e d e l s e w h e r e (3). The p r o c e d u r e involves t h e m e a s u r i n g of the deflection of a d i s c s p e c i m e n loaded a t i t s

c e n t r e and supported a t t h r e e points located a t the c i r c u m f e r e n c e of a c i r c l e 1 in. in d i a m e t e r . T h e a v e r a g e of five t e s t s w a s c o n s i d e r e d a s Young's modulus f o r any given s e t of conditions.

Rewetting and Sequence of E x p e r i m e n t s

(7)

V o l . 2, No. 4 MODULUS OF E L A S T I C I T Y , HYDRATED CEMENT, COMPACTS

After compaction, weight and g e o m e t r y w e r e m e a s u r e d in a gloved

dry-box and t h e s a m p l e s then t r a n s f e r r e d t o the helium pycnometer w h e r e t h e solid volume and helium flow w e r e m e a s u r e d . The s a m p l e s w e r e r e t u r n e d t o t h e dry-box and Young's modulus m e a s u r e m e n t s w e r e taken. At t h i s s t a g e t h e s a m p l e s w e r e placed in a d e s i c c a t o r maintained a t 10070

R H f o r one day, then i m m e r s e d in s a t u r a t e d C a ( 0 H ) solution f o r one month.

2

Subsequently, t h e s a m p l e s w e r e conditioned in a d e s i c c a t o r over t h e

a p p r o p r i a t e s a l t solution f o r 42% RH (3) f o r t h r e e months, when t h e Young's modulus was m e a s u r e d again. S a m p l e s compacted a t 5700 and 14, 350

2

kg/cm w e r e again d - d r i e d and Young's modulus w a s m e a s u r e d f o r t h e third t i m e . The rewetting p r o c e d u r e previously followed w a s repeated and

Young's modulus was m e a s u r e d f o r t h e fourth and l a s t t i m e a f t e r conditioning s a m p l e s t o 42% RH.

The solid volume, density, porosity, h e l i u m flow c h a r a c t e r i s t i c s and Young's modulus of the new S e r i e s A made a t a l a t e r dat,e w e r e

m e a s u r e d i m m e d i a t e l y following f a b r i c a t i o n of the s a m p l e s . No rewetting e x p e r i m e n t s w e r e p e r f o r m e d on t h e s e s a m p l e s .

S e r i e s B, d-dried a f t e r compaction

Solid volume, density, porosity, helium flow c h a r a c t e r i s t i c s and Young's modulus w e r e a l l m e a s u r e d a t the d-dry condition. The rewetting p r o c e d u r e was a l s o followed with t h i s s e r i e s , allowing one month of

exposure in s a t u r a t e d C a ( 0 H ) solution. Young's modulus m e a s u r e m e n t s 2

w e r e m a d e a f t e r s a m p l e s had been conditioned t o 4270 RH.

2

The s a m p l e s compacted a t 5700 kg/cm t h r e e y e a r s l a t e r w e r e only m e a s u r e d f o r Young's modulus a t the d - d r y condition.

R e s u l t s

P o r o s i t y

P o r o s i t y v e r s u s compaction p r e s s u r e s a r e plotted on Fig. 1 a s a semi-log relation. A s observed previously, compaction of m a t e r i a l con-

ditioned a t the higher humidity yields a lower porosity. P o r o s i t i e s a r e a s low a s 7'3% f o r S e r i e s B and 10. 5% f o r S e r i e s A

.

Values a r e tabulated on T a b l e s I and

11.

At low p r e s s u r e s , the p o r o s i t i e s f o r t h e two s y s t e m s a r e

(8)

V o l . 2, No. 4

MODULUS OF ELASTICITY, HYDRATED CEMENT, COMPACTS

quite s i m i l a r , but t h e difference widens a t higher p r e s s u r e s . Any i n t e r l a y e r s p a c e between t h e collapsed s h e e t s of s i l i c a t e s i s not included in t h i s

p o r o s i t y m e a s u r e m e n t , a point that will be elaborated l a t e r .

Density

Variation of density with compaction p r e s s u r e is shown on Fig. 2.

S e r i e s A shows a s t e a d y i n c r e a s e f r o m IZ. 274 a t 285 kg/cm2 t o 2. 395 gm/cc 2 a t 14, 350 kg/cm

.

The new S e r i e s A v a r i e s f r o m 2.293 t o 2. 408 gm/cc L f o r 570 t o 14,350 kg/cm

.

FIG, 1 FIG. 2

Compaction P r e s s u r e vs P o r o s i t y Density vs Compaction P r e s s u r e

The r e s u l t s f o r S e r i e s B show s o m e s c a t t e r a t t h e higher p r e s s u r e s ,

L

but t h e r e a p p e a r s t o b e l i t t l e i n c r e a s e in density beyond 4200 kg/cm

,

a 2

value between 2. 294 and 2. 312 a t 14, 350 kg/cm

.

Thus the s e r i e s in which compaction took p l a c e a f t e r drying shows a much h i g h e r absolute density than t h e s e r i e s d r i e d a f t e r compaction. T h e difference i s not l a r g e at lower p r e s s u r e s .

Helium Flow M e a s u r e m e n t s

The r e s u l t s f o r S e r i e s A

,

t h e new s e r i e s in t h e d-dried s t a t e , a r e p r e s e n t e d in Fig. 3. Helium flow d e c r e a s e s with p r e s s u r e of compaction.

(9)

V o l . 2,

No.

4

MODULUS OF E L A S T I C I T Y , HYDRATED CEMENT, COMPACTS

T A B L E I

YOUNG'S MODULUS DATA F O R S E R I E S A

C o m p a c t i o n

11

E ( d - d r i e d s t a t e ) x k g / c m 2 k g / c m 2 S a n ' 2 ) x 100 2 8 4 . 8 569. 6 5 6 9 . 6 1 1 3 9 . 2 E x 10" k g / c m 2 ( r e w e t t e d and r e t u r n e d t o 42% RH)

After about 15 hours the flow r a t e f o r the samples compacted a t 5700 and 14, 350 kg/cm2 i s of the s a m e o r d e r a s the leak r a t e of the apparatus.

Fig. 4 shows a d i r e c t comparison between the helium flow r a t e of two

x (') 2. 09 (') 2. 8 8 (') 4. 8 3 ( 2 ' 9. 43 ("13. 54 ("17. 49 ( 4 ) i 7 . 7 6 (2)25. 35 ("30. 7 3 ("34. 76 (4)35. 1 0 58. 96 53. 04 55. 27 46. 18 T A B L E 11

YOUNG'S MODULUS DATA F O R S E R I E S B

L

samples compacted a t 5700 kg/cm

,

one from S e r i e s A and one from S e r i e s

B; densities a r e 2. 374 and 2. 327 gm/cc, respectively. The flow r a t e for

S e r i e s B exceeds by f a r that for S e r i e s A.

C o m p a c t ~ o n P r e s s u r e k g / c m 2 2 8 4 . 8 5 6 9 . 6 1 1 3 9 . 2 2848 4272 5696 5696 8 5 4 4 11392 14346 o 0 . 28 0. 40 1. 0 5 1. 6 3 1. 52 0. 9 0 0 . 7 3 0. 9 9 0. 91 1 . 6 5 1. 27 l 2 12 10 12 2848 4272 5696 5696 8 5 4 4 11392 14346 14346 ( a / x ) x l o o 13. 33 1 3 . 8 9 2 1 . 6 9 1 7 . 2 9 1 1 . 2 3 5. 1 5 4 . 1 1 3. 91 2. 96 4 . 7 5 3. 62 4. 27 11) 10. 12 ( 3 ) 9. 44 ( ' ) 14. 42 ('I Id. 50 ( 3 ) 14. 8 1 ( I ' 1 7 . 2 6 (') 24. 48 (') 29. 1 4 (') 34. 0 0 ( 3 ) 1 7 . 6 8 3 2 . 6 3 d e t e r m i n a t i o n s * N u m b e r s r e p r e s e n t t h e o r d e r i n which d e t e r m i n a t i o n s w e r e m a d e . P o r o s i t y '70 58. 9 4 5 1 . 9 2 4 3 . 9 0 3 0 . 7 0 2 4 . 2 2 1 9 . 7 0 2 1 . 8 0 1 2 . 1 2 8. 92 7 . 1 2 1 . 7 2 (1)':' ( ' ) 2. 61 (') 2. 0 5 ( I ) 4. 33 " N u m b e r s r e p r e s e n t t h e o r d c r i n w h i c h 34. 6 4 2 7 . 9 0 23. 1 4 26. 59 17. 20 1 3 . 0 1 10. 39 1 2 . 6 8 1. 08 0 . 3 3 0. 92 0 . 7 8 1. 17 1 . 0 4 0. 49 0. 9 9 1. 11 1. 34 0. 8 6 1 . 8 1 w e r e m a d e . 12 I 2 I 2 1 0 12 9 9 10 No. of S a m p l e s 12 12 12 12 12 12 10 12 9 9 2 5 . 2 9 3. 2 6 9 . 7 4 5. 41 6. 32 7 . 0 2 2. 8 4 4. 04 3. 8 1 3 . 9 4 4. 8 6 5. 55 0 . 2 2 0 . 3 1 0 . 1 1 0. 28 1 2 . 7 9 1 1 . 8 8 5. 37 6. 46 E - x k g / c m 2 I d - d r i e d s t a t e ) i - X 1 . 2 6 ( I ) 3 . 3 3 ( ' ) 6. 36 (') 1 3 . 3 0 ( ' ) 17. 55 (') 19. 43 (') 20. 15 ( ' ) 17. 6 5 19. 8 2 1 9 . 9 2 0 0. 20 0. 25 0 . 38 0. 6 4 0. 87 0. 57 1. 27 0. 6 9 0 . 8 3 0 . 7 1 E x kg/cm' ( r e w e t t e d and r e t u r n e d t o 42% RH) (a/%) x 100 1 5 . 8 7 7. 51 5. 97 4. 8 1 4. 96 2. 93 6. 3 0 3. 90 4. 1 9 3. 5 4 - x 3. 10 5. 78 (') 8. 61 ("16. 0 4 ( 2 ) 2 ~ . 7 3 ("25. 69 ("33. 60 ( 2 ) 3 7 . 29 (2'39. 3 5 a 0. 28 0. 47 0. 56 0. 59 1. 0 5 1 . 30 1 . 3 4 1. 2 4 1 . 2 2 (a/%) x 100 9. 0 3 8 . 1 3 6 . 50 3. 6 8 5. 07 5. 06 3 . 9 9 3 . 3 3 3 . 1 0

(10)

Vol. 2, No. 4

381

MODULUS OF ELASTICITY, HYDRATED CEMENT, COMPACTS

FIG. 3

Helium Inflow for S e r i e s A

3 . 0 0 I I I I I I I

I

0 I I D 1 6 2 0 1 5 1 0 11 4 0

TIME, H O U l l

FIG. 4

Helium Inflow -Comparison Between S e r i e s A and B Young's Modulus FIG. 5 Young's Modulus vs P o r o s i t y for, S e r i e s A S e r i e s A

(11)

V o l . 2, N o .

4

MODULUS OF E L A S T I C I T Y , HYDRATED CEMENT, COMPACTS

p o r o s i t y relation i s r e p r e s e n t e d by t h e upper c u r v e on Fig. 5, a semi-log

plot. It i s l i n e a r f r o m 10 t o 3570 p o r o s i t y and i s s i m i l a r t o the c u r v e s r e p o r t e d by Soroka and S e r e d a (5). T h e c u r v e extrapolates t o 59 x 10 4

2

kg/cm at z e r o porosity; t h i s i s again s i m i l a r t o t h e value taken f r o m t h e r e s u l t s of Soroka and S e r e d a a t about 1070 porosity. (It h a s been shown that p o r o s i t y m e a s u r e m e n t on a d -dried s a m p l e , if done by w a t e r , includes i n t e r

-

l a y e r s p a c e a s porosity. Helium, on t h e o t h e r hand, can exclude t h e s e s p a c e s if t h e a p p r o p r i a t e p r o c e d u r e s a r e used (9). )

E a c h point on Fig. 5 includes Z f 2 levels (approximately 9570

confidence l i m i t s ) and

x

( t h e a r i t h m e t i c m e a n ) i s usually t h e a v e r a g e of twelve s a m p l e s . The number of s a m p l e s t e s t e d , t h e mean, t h e standard

deviation, and t h e coefficient of v a r i a t i o n a r e included in T a b l e I. Up t o 4670 p o r o s i t y the coefficient of v a r i a t i o n does not exceed

6.

570, but i t i s about 1270 f o r t h e l a s t two points, a t 55 and 5970 porosity, respectively. The points f o r t h e s a m p l e s that w e r e rewetted and d r i e d back t o 4270 '0 f a l l a l m o s t exactly on t h e f i r s t c u r v e but t h e coefficient of variation i s about 1270 and higher f o r 2870 p o r o s i t y and higher.

F o u r s e t s of compacts w e r e d-dried, giving a m a j o r reduction of Young's modulus a t lower p o r o s i t i e s . At 10. 3970, reduction was f r o m 34.76

4 4 2 4 2

x 10 t o 17. 68 x 10 kg/cm

,

and a t 23. 1470, f r o m 17. 5 t o 14.8 x 10 kg/cm. The s p r e a d d e m o n s t r a t e s a c l e a r s e p a r a t i o n of c u r v e s . T h e o t h e r two points,

a t approximately 35 and 46% p o r o s i t y , do not show significant deviation f r o m t h e previous c u r v e , but that a t 46 p e r cent p o r o s i t y shows a v e r y l a r g e coefficient of variation. The s a m p l e s a t 10. 39 and 23. 1470 p o r o s i t y w e r e rewetted and d r i e d back t o 4270 '0. The Young's modulus r e t u r n e d to coincide with t h e points on t h e upper c u r v e , with a low coefficient of variation. F o r example, t h e Young's modulus of the s a m p l e at 10. 3970

4 2

p o r o s i t y changed f r o m 17. 68 x 10 kg/cm i n the d - d r y condition t o 35. 10

4 2 4

x 10 kg/cm

.

T h e initial d - d r y condition was 34. 0 x 10 kg/cm2 and t h e

4 2

initial rewetted condition 34.76 x 10 kg/crn

.

The t h r e e new s e r i e s of s a m p l e s , a t approximately 55, 27 and 12.770

p o r o s i t y , fit closely t h e upper c u r v e for t h e f i r s t d - d r y condition. The coefficient of variation of t h e modulus of t h e s e s a m p l e s was r e l a t i v e l y low,

(12)

V o l . 2, No.

4

MODULUS OF ELASTICITY, HYDRATED CEMENT, COMPACTS

showing c l e a r l y that t h e s e c h a r a c t e r i s t i c s a r e quite reproducible. S e r i e s B

The Young's modulus-porosity r e l a t i o n f o r S e r i e s B i s p r e s e n t e d on

Fig.

6

and Table 11. The plot i s again a s e m i - l o g and t h e coefficients of

v a r i a t i o n a r e , in general, l e s s than 570 below 5570 porosity. T h e f i r s t d-dried condition i s r e p r e s e n t e d by the lower curve, which i s s i m i l a r t o t h e c u r v e for t h e second d-dried condition of S e r i e s A. Again, t h e r e i s l i t t l e i n c r e a s e in Youngas modulus f r o m 25 t o 770 porosity. A new s e r i e s r e p r e -

sented by one point a t about 2270 ~ o r o s i t y i l l u s t r a t e s f u r t h e r t h e r e p r o d u c i -

bility of t h e c u r v e s . After rewetting and drying t o 4270, Young's modulus i n c r e a s e s over t h e whole p o r o s i t y r a n g e well beyond t h e 9570 confidence l i m i t over m o s t of t h e range. T h e difference in t h e two c u r v e s i s l a r g e a t both ends of t h e p o r o s i t y s c a l e but with a lower coefficient of variation a t

t h e low porosity. The c u r v e f o r t h e rewetted s a m p l e s i s l i n e a r up t o about

4

40% porosity and when extrapolated t o z e r o gives a value of 55 x 10 kg/crn 2

4 2

f o r Young's modulus. T h i s i s s i m i l a r t o t h e value of 59 x 10 kg/cm f o r

t h e f i r s t d-dried and rewetted c u r v e s of S e r i e s A, and indeed t h e whole c u r v e i s s i m i l a r . T h e two c u r v e s a r e plotted together on Fig. 7.

0 1 0 2 0 3 0 4 0 5 0 60

9 6 , P O R O S I T Y

b . P O R O S I T Y

FIG.

6

FIG. 7

Young's Modulus vs P o r o s i t y Comparison of Young's Modulus

-

(13)

MODULUS OF E L A S T I C I T Y , HYDRATED CEMENT, COMPACTS

Discussion

V o l . 2,

No.

4

T h e s e r e s u l t s show v e r y c l e a r l y that the inclusion of i n t e r l a y e w a t e r molecules i n the s t r u c t u r e of the s i l i c a t e s i n c r e a s e s t h e Young's modulus, i n s o m e c a s e s by over 10070 ( s e e Fig. 6). T h i s h a s been shown

b e f o r e (3), but t h e coefficient of variation in t h e p r e s e n t work i s m u c h lower

than was previously observed. In addition, by compacting t h e m a t e r i a l a f t e r it h a s been d-dried it i s p o s s i b l e t o attain the s a m e high values f o r Young's modulus a s w e r e obtained with i n t e r l a y e r w a t e r p r e s e n t . T h i s o c c u r s a t t h e higher p r e s s u r e s of compaction. Fig. 7 shows t h e s e c u r v e s on the s a m e d i a g r a m . T h e c u r v e f o r S e r i e s A follows t h e c u r v e f o r S e r i e s B without i n t e r l a y e r w a t e r p r e s e n t a t low p r e s s u r e s a s well a s t h e c u r v e for S e r i e s B with i n t e r l a y e r w a t e r p r e s e n t a t high p r e s s u r e s . The

2

t r a n s i t i o n t a k e s p l a c e beyond 4200 kg/cm

.

The density values on Fig. 2

show that t h e r e i s no f u r t h e r i n c r e a s e i n density f o r S e r i e s B a f t e r 5600

2

kg/cm

,

and that t h e values f o r S e r i e s A continue t o i n c r e a s e . Helium

flow r e s u l t s show that a s the p r e s s u r e of compaction i s i n c r e a s e d i t i s m o r e difficult f o r helium t o p e n e t r a t e t h e s p a c e s . It s e e m s c l e a r that when compaction o c c u r s a t high p r e s s u r e s with i n t e r l a y e r w a t e r removed t h e l a y e r s a r e f o r c e d c l o s e r together than they a r e when i n t e r l a y e r w a t e r h a s not been removed. T h e high Younges modulus indicates that either s o m e new solid bonds have been established o r t h e s u r f a c e s have been f o r c e d s o c l o s e together that solid-to-solid a t t r a c t i v e f o r c e s contribute t o the higher modulus.

That i n t e r l a y e r w a t e r behaves a s a solid b r i d g e between the l a y e r s i s now apparent, and i t i s c l e a r that t h i s s p a c e cannot b e included a s

porosity, especially s i n c e t h e i n t e r l a y e r w a t e r i s only removed at v e r y low humidities. The equivalent r o l e of t h e w a t e r i s r e - e m p h a s i z e d when

S e r i e s A i s rewetted and Young's modulus r e m a i n s constant, but when t h e s a m p l e s a r e d r i e d again t h e modulii drop t o values s i m i l a r t o t h o s e for S e r i e s B, which h a s a l s o been dried. T h i s m e a n s that, on r e w e t t i n g w a t e r can r e - e n t e r t h e i n t e r l a y e r positions i n s p i t e of t h e fact that t h e l a y e r s a r e c l o s e r together than normal; t h e w a t e r s e e m s t o compensate exactly for any d e c r e a s e i n Young's modulus when t h e l a y e r s move a p a r t . If i n t e r l a y e r

(14)

V o l . 2, No.

4

MODULUS OF E L A S T I C I T Y , HYDRATED CEMENT, COMPACTS water i s again removed, the l a y e r s r e v e r t t o a position s i m i l a r t o that in S e r i e s B where drying took place after compaction. This latter position appears to be a m o r e stable state. A second rewetting of S e r i e s A again

returned the Young's modulus t o the original high value. T h e r e a r e thus

t h r e e configurations for the layers:

1) L a y e r s separated, with H 0 molecules occupying the interlayer ~ o s i t i o n s .

2

These molecules play a reinforcing role, giving a high value for Young's modulus.

2 ) Water removed from between the, layers, resulting only in p a r t i a l

collapse. T h e r e i s a reduction in Young's modulus of over 5070 in some cases.

3) Layers p r e s s e d closer together than in configuration ( 2 ) , resulting in a

Young's modulus identical to that of configuration (1).

Increase of Young's modulus owing to compaction of d-dried cement

appears t o take place in such a manner that up to p r e s s u r e s of 4200 kg/cm 2

2

o r 5600 kg/cm the main mechanism i s a reduction of porosity because 2

particles a r e pushed together. Beyond 5600 kg/cm Young's modulus i n - c r e a s e s v e r y little by this p r o c e s s ( s e e Fig. 5, lower c u r v e . ) If t h e i n t e r - layer positions a r e vacant, compaction of the interlayer system occurs at high p r e s s u r e s and Young's modulus continues to increase. This i s

confirmed by density and helium flow measurements. Conclusions

The r o l e of interlayer H 0 molecules i n increasing Young's

2

modulus i s confirmed. If d-dried hydrated cement i s compacted, Young's

modulus values may be obtained identical to those obtained when interlayer water i s present.

T h r e e configurations exist for the layers: 1) H 2 0 molecules between layers;

2 ) l a y e r s ~ a r t i a l l y collapsed and a l l interlayer water removed;

3) layers forced closer to each other by compaction when interlayer water

(15)

386 V o l . 2,

No.

4

MODULUS OF E L A S T I C I T Y , HYDRATED CEMENT, COMPACTS

I n t e r l a y e r w a t e r a c t s , t h e n , a s i n configuration ( 3 ) and m u s t b e r e - g a r d e d a s p a r t of t h e s o l i d s t r u c t u r e of h y d r a t e d p o r t l a n d c e m e n t . A c k n o w l e d g e m e n t s T h e a u t h o r w i s h e s t o acknowledge t h e v a l u a b l e a s s i s t a n c e of S. Dods i n p e r f o r m i n g e x p e r i m e n t s and g a t h e r i n g d a t a . T h i s p a p e r is a c o n t r i b u t i o n f r o m t h e D i v i s i o n of Building R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a , and i s p u b l i s h e d w i t h t h e a p p r o v a l of t h e D i r e c t o r of t h e Division. R e f e r e n c e s

1. W. D. K i n g e r y and R. L. Coble, Nat. B u r e a u S t a n d a r d s , Monograph 59,

103-113 ( M a r c h 1963)

2. R. J. S t o k e s , Nat. B u r e a u S t a n d a r d s , M i s c . P u b l . No. 257, 41-72 ( A p r i l 1964).

3. P. J. S e r e d a , R. F. F e l d m a n and E. G. Swenson, Highway R e s . Bd. Spec. Rpt. 90, 58-73 (1966).

4. R.A. H e l m u t h and D.H. T u r k , Highway R e s . B d . , Spec. Rpt. NO. 90, 135-144 (1966). 5. I. S o r o k a and P. J. S e r e d a , P r o c . F i f t h I n t e r n a t . Symp. C h e m . C e m e n t , Tokyo, 1968. P a r t 111, Vol. 111, 67-73 (1969). 6. R. F. F e l d m a n and P. J. S e r e d a , M a t e r i a u x e t C o n s t r u c t i o n , Vol. 1, NO. 61 509 (1968). 7. R. F. F e l d m a n , P r o c .

,

F i f t h I n t e r n a t . S y m p . C h e m . C e m e n t , Tokyo, 1968, P a r t 111, Vol. 111, -53, (1969). 8. R . F . F e l d m a n , C e m e n t a n d C o n c r e t e R e s e a r c h , Vol. 1, No. 3, 285, (1971). 9. R . F. F e l d m a n , C e m e n t Technology

2,

5(1972),

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in