• Aucun résultat trouvé

We study the p-adic counterpart of the GKZ hypergeo- metric system

N/A
N/A
Protected

Academic year: 2022

Partager "We study the p-adic counterpart of the GKZ hypergeo- metric system"

Copied!
26
0
0

Texte intégral

(1)

THE p-ADIC GELFAND-KAPRANOV-ZELEVINSKY HYPERGEOMETRIC COMPLEX

LEI FU, DAQING WAN AND HAO ZHANG

Abstract. To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky in- troduce a system of differential equations, called the GKZ hypergeometric system. Its solutions are GKZ hypergeometric functions. We study the p-adic counterpart of the GKZ hypergeo- metric system. In the language of dagger spaces introduced by Grosse-Klönne, thep-adic GKZ hypergeometric complex is a twisted relative de Rham complex of meromorphic differential forms with logarithmic poles for an affinoid toric dagger space over the dagger unit polydisc. It is a complex ofO-modules with integrable connections and with Frobenius structures defined on the dagger unit polydisc such that traces of Frobenius on fibers at Techmüller points define the hypergeometric function over the finite field introduced by Gelfand and Graev.

Key words: GKZ hypergeometric system,D-modules, twisted de Rham complex, Dwork trace formula.

Mathematics Subject Classification: Primary 14F30; Secondary 11T23, 14G15, 33C70.

Introduction 0.1. The GKZ hypergeometric system. Let

A=

w11 · · · w1N ... ... wn1 · · · wnN

be an(n×N)-matrix of ranknwith integer entries. Denote the column vectors ofAbyw1, . . . ,wN ∈ Zn. It defines an action of then-dimensional torusTnZ= SpecZ[t±11 , . . . , t±1n ]on theN-dimensional affine spaceANZ = SpecZ[x1, . . . , xN]:

TnZ×ANZ →ANZ,

(t1, . . . , tn),(x1, . . . , xN)

7→(tw111· · ·twnn1x1, . . . , tw11N· · ·twnnNxN).

Letγ1, . . . , γn∈C. In [10], Gelfand, Kapranov and Zelevinsky define theA-hypergeometric system to be the system of differential equations

PN

j=1wijxj∂x∂f

jif = 0 (i= 1, . . . , n), Q

λj>0

∂xj

aj

f =Q

λj<0

∂xj

−aj

(0.1.1) f,

where for the second system of equations,(λ1, . . . , λN)∈ZN goes over the family of integral linear relations

N

X

j=1

λjwj = 0

We would like to thank Jiangxue Fang for helpful discussions. The research is supported by the NSFC..

1

(2)

amongw1, . . . ,wN. We call theA-hypergeometric system as theGKZ hypergeometric system. An integral representation of a solution of the GKZ hypergeometric system is given by

f(x1, . . . , xN) = Z

Σ

tγ11· · ·tγnnePNj=1xjt

w1j

1 ···twnjn dt1 t1

· · ·dtn tn

(0.1.2)

where Σ is a real n-dimensional cycle in Tn. Confer [1, equation (2.6)], [4, section 3] and [8, Corollary 2 in §4.2].

0.2. The GKZ hypergeometric function over finite fields. Let p be a prime number, q a power of p, Fq the finite field with qelements, ψ: Fq →Q

a nontrivial additive character, and χ1, . . . , χn : Fq → Q multiplicative characters. In [7] and [9], Gelfand and Graev define the hypergeometric function over the finite field to be the function defined by the family of twisted exponential sums

Hyp(x1, . . . , xN) = X

t1,...,tn∈Fq

χ1(t1)· · ·χn(tn)ψXN

j=1

xjtw11j· · ·twnnj , (0.2.1)

where(x1, . . . , xN)varies inAN(Fq). It is an arithmetic analogue of the expression (0.1.2).

In [5], we introduce the`-adic GKZ hypergeometric sheafHypwhich is a perverse sheaf onANFq such that for any rational pointx= (x1, . . . , xN)∈AN(Fq), we have

Hyp(x1, . . . , xN) = (−1)n+NTr(Frobx,Hypx¯),

whereFrobxis the geometric Frobenius atx. In this paper, we study thep-adic counterpart of the GKZ hypergeometric system. It is a complex ofO-modules with integrable connections and with Frobenius structures defined on the dagger space ([11]) corresponding to the unit polydisc so that traces of Frobenius on fibers at Techmüller points are given byHyp(x1, . . . , xN).

0.3. The p-adic GKZ hypergeometric complex. For any v = (v1, . . . , vN)∈ ZN≥0 andw = (w1, . . . , wn)∈Zn, write

xv=xv11· · ·xvNN, tw=tw11· · ·twnn, |v|=v1+· · ·+vN. LetK be a finite extension ofQp containing an elementπsatisfying

πp−1+p= 0.

Denote by | · | the p-adic norm on K defined by |a| = p−ordp(a). For each real number r > 0, consider the algebras

K{r−1x} = { X

v∈ZN≥0

avxv: av∈K, |av|r|v|are bounded}, Khr−1xi = { X

v∈ZN≥0

avxv: av∈K, lim

|v|→∞|av|r|v|= 0}.

They are BanachK-algebras with respect to the norm

k X

v∈ZN≥0

avxvkr= sup|av|r|v|.

We haveKhr−1xi ⊂K{r−1x}.Elements inKhr−1xiare exactly those power series converging in the closed polydisc{(x1, . . . , xN) : xi∈Qp, |xi| ≤r}.Moreover, for anyr < r0, we have

K{r0−1x} ⊂Khr−1xi ⊂K{r−1x}.

(3)

Let

Khxi= [

r>1

K{r−1x}= [

r>1

Khr−1xi.

K{x} is the ring ofover-convergent power series, that is, series converging in closed polydiscs of radii>1.

Let ∆ be the convex hull of{0,w1, . . . ,wN} in Rn, and let δ be the convex polyhedral cone generated by{w1, . . . ,wN}. For anyw∈δ, define

d(w) = inf{a >0 : w∈a∆}.

We have

d(aw) =ad(w), d(w+w0)≤d(w) +d(w0)

whenevera≥0andw,w0 ∈δ. There exists an integerd >0such that we have d(w)∈ 1dZfor all w∈Zn. For any real numbersr >0ands≥1, define

L(r, s) = { X

w∈Zn∩δ

aw(x)tw: aw(x)∈K{r−1x}, kaw(x)krsd(w) are bounded}

= { X

v∈ZN≥0,w∈Zn∩δ

avwxvtw: avw∈K, |avw|r|v|sd(w)are bounded},

L = [

r>1, s>1

L(r, s).

Note thatL(r, s)andL are rings. Let F(x,t) =

N

X

j=1

xjtw11j· · ·twnnj,

Consider thetwisted de Rham complex C·(L)defined as follows: We set Ck(L) ={ X

1≤i1<···<ik≤n

fi1...ik

dti1

ti1 ∧ · · · ∧dtik

tik : fi1...ik∈L} ∼=L(nk) with differentiald:Ck(L)→Ck+1(L)given by

d(ω) =

tγ11· · ·tγnnexp(πF(x,t))−1

◦dt

tγ11· · ·tγnnexp(πF(x,t)) (ω)

= dtω+

n

X

i=1

γi

N

X

j=1

wijxjtwjdti ti

∧ω

for anyω ∈Ck(L), where dt is the exterior derivative with respect to the t variable. For each j∈ {1, . . . , N}, define∇

∂xj :C·(L)→C·(L)by

∂xj(ω) =

tγ11· · ·tγnnexp(πF(x,t))−1

◦ ∂

∂xj

tγ11· · ·tγnnexp(πF(x,t))

= ∂ω

∂xj

+πtwjω.

Since ∂x

j commutes withdt, ∇

∂xj commutes with d: Ck(L)→Ck+1(L). We have integrable connections

∇:C·(L)→C·(L)⊗Khxi1Khxi

(4)

defined by

∇(ω) =

N

X

j=1

∂xj(ω)⊗dxj, whereΩ1Khxi is the freeK{x}-module with basisdx1, . . . ,dxN.

Consider the lifting of the Frobenius correspondence in the variabletdefined by Φ(f(x,t)) =f(x,tq).

One verifies directly that Φ(L(r, s)) ⊂ L(r,√q

s) and hence Φ(L) ⊂ L. It induces maps Φ : Ck(L)→Ck(L)on differential forms commuting withdt:

Φ X

1≤i1<···<ik≤n

fi1...ik(x,t)dti1

ti1

∧ · · · ∧ dtik

tik

= X

1≤i1<···<ik≤n

qkfi1...ik(x,tq)dti1

ti1

∧ · · · ∧dtik

tik

Suppose furthermore that γ1, . . . , γn1−q1 Z and (γ1, . . . , γn) ∈ δ. Consider the maps F : Ck(L)→Ck(L)defined by

F =

tγ11· · ·tγnnexp(πF(x,t))−1

◦Φ◦

tγ11· · ·tγnnexp(πF(xq,t)) (0.3.1)

=

tγ11(q−1)· · ·tγnn(q−1)exp πF(xq,tq)−πF(x,t)

◦Φ.

(0.3.2)

Even thoughtγ11· · ·tγnnexp(πF(x,t))does not lie inLand multiplication by it does not define an endomorphism onC·(L), the next Lemma 0.4 (i) shows thattγ11(q−1)· · ·tγnn(q−1)exp

πF(xq,tq)− πF(x,t)

lie inL, and hence the expression (0.3.2) shows thatF defines endomorphism on each Ck(L).

Lemma 0.4.

(i)tγ11(q−1)· · ·tγnn(q−1)exp πF(xq,tq)−πF(x,t)

andtγ11(1−q)· · ·tγnn(1−q)exp πF(x,t)−πF(xq,tq) lie inL(r, r−1pp−1pq )for any 0< r≤pp−1pq .

(ii) Let C(1)·(L)be the twisted de Rham complex so that C(1),j(L) =Cj(L)for each k, and d(1):C(1),k→C(1),k+1 is given by

d(1) =

tγ11· · ·tγnnexp(πF(xq,t))−1

◦dt

tγ11· · ·tγnnexp(πF(xq,t))

= dt+

n

X

i=1

γi

N

X

j=1

wijxqjtwjdti

ti

. Let∇(1) be the connection onC(1)·(L)defined by

(1)

∂xj

=

tγ11· · ·tγnnexp(πF(xq,t))−1

◦ ∂

∂xj

tγ11· · ·tγnnexp(πF(xq,t))

= ∂

∂xj

+qπxq−1j twj.

ThenF defines a horizontal morphism of complexes of Khxi-modules with connections F : (C(1)·(L),∇(1))→(C·(L),∇).

(5)

(iii) LetE(0,1)N be the closed unit polydisc with the dagger structure sheaf ([11]) associated to the algebraKhxi, and letFrbe the lifting

Fr :E(0,1)N →E(0,1)N, (x1, . . . , xN)→(xq1, . . . , xqN) of the geometric Frobenius correspondence. We have an isomorphism

Fr(C·(L),∇)∼= (C(1)·(L),∇(1)).

Proof. (i) Writeexp(πz−πzq) = 1 +P

i=1cizi. We have|ci| ≤pp−1pq iby [15, Theorem 4.1]. Write exp(πzq−πz) = 1−(

X

i=1

cizi) + (

X

i=1

cizi)2− · · ·

= 1 +

X

i=1

c0izi.

Then we also have the estimate|c0i| ≤pp−1pq i. For the monomial xjtwj, we have

exp π(xjtwj)q−πxjtwj

=

X

i=0

c0ixijtiwj, kc0ixijkr≤pp−1pq iri=

r−1pp−1pq −i

r−1pp−1pq −d(iwj)

Here for the last inequality, we use the fact that d(iwj) ≤ i and the assumption that r ≤ pp−1pq . So we have exp π(xjtwj)q −πxjtwj

∈ L(r, r−1pp−1pq ). Since r−1pp−1pq ≥ 1, the space L(r, r−1pp−1pq ) is a ring. So tγ11(q−1)· · ·tγnn(q−1)exp πF(xq,tq)−πF(x,t)

lies in L(r, r−1pp−1pq ).

Similarlytγ11(1−q)· · ·tγnn(1−q)exp πF(x,t)−πF(xq,tq)

lies inL(r, r−1pp−1pq ).

(ii) Using the fact that Φ◦dt= dt◦ΦandΦ◦ ∂x

j =∂x

j ◦Φ, one checks thatF◦d(1)=d◦F andF◦ ∇(1)=∇ ◦F.

(iii) Consider the K-algebra homomorphism

Khy1, . . . , yNi →Khx1, . . . , xNi, yj7→xqj. This makesKhxi a finiteKhyi-algebra. We have a canonical isomorphism

KhyiKhxi† ∼= L,

where L˜ is defined in the same way as L except that we change the variables from xj to yj. The connection∇ onL˜ defines a connection on L˜KhyiKhxi via the Leibniz rule. Via the above isomorphism, it defines the connectionFr∇ on L. Let’s verify that it coincides with the connection∇(1) onL. Any element in L can be written as a finite sum of elements of the form

(6)

f(x)g(y,t)withf(x)∈K[x]andg(y,t)∈L˜. By the Leibniz rule, we have (Fr∇)

∂xj(f(x)g(y,t)) = ∂

∂xj

(f(x))g(y,t) +f(x)

∇(g(y,t)), ∂

∂xj

= ∂

∂xj

(f(x))g(y,t) +f(x) X

m

∂ym(g(y,t))dym, ∂

∂xj

= ∂

∂xj

(f(x))g(y,t) +f(x)∇

∂yj(g(y,t))qxq−1j

= ∂

∂xj

(f(x))g(y,t) +f(x) ∂

∂yj

(g(y,t)) +πtwjg(y,t) qxq−1j

= ∂

∂xj

(f(x))g(y,t) +f(x) ∂

∂xj

(g(y,t)) +qπxq−1j twjf(x)g(y,t)

= ∂

∂xj

f(x)g(y,t)

+qπxq−1j twjf(x)g(y,t)

= ∇(1)(f(x)g(y,t)).

This proves our assertion. Similarly, one verifies that the connectionFr∇ on FrCj( ˜L) can be

identified with the connection∇(1) onC·(L).

Definition 0.5. Supposeγ1, . . . , γn1−q1 Zand(γ1, . . . , γn)∈δ. Thep-adic GKZ hypergeometric complexis defined to be the tuple(C·(L),∇, F)consisting of the complexC·(L)ofKhxi-module modules with the connection∇and the horizontal morphismF : Fr(C·(L),∇)→(C·(L),∇).

0.6. The GKZ hypergeometric D-module. Let D= [

r>1, s>1

{ X

v∈ZN≥0

fv(x) ∂v

π|v| : fv(x)∈K{r−1x}, kfv(x)krs|v| are bounded}, where for anyv= (v1, . . . , vN)∈ZN≥0, we set∂v= v1 +···+vN

∂xv11···∂xvNN .D is a ring of differential operators possibly of infinite orders. ThisD is also used in [14]. LetD

PN,Q(∞)be the sheaf of differential operators of finite level and of infinite order on the formal projective space PN over the integer ring ofK with over-convergent poles along the∞divisor. For the definition of this sheaf, see [3].

By [13], we have Γ(PN,D

PN,Q(∞)) = [

r>1, s>1

{ X

v∈ZN≥0

fv(x)∂v v!

: fv(x)∈K{r−1x}, kfv(x)krs|v|are bounded}, wherev! =v1!· · ·vN!. In section 1, we prove the following proposition.

Proposition 0.7. We haveD= Γ(PN,D

PN,Q(∞)).

In particular, by the result in [13], D is a coherent ring. Let ∂x

j ∈ D act via∇

∂xj. ThenL is a leftD-module, and the twisted de Rham complex C·(L)is a complex ofD-modules. The cohomology groupsHk(C·(L))are also leftD-modules.

Let

C(A) = {k1w1+· · ·+kNwN : ki∈Z≥0},

L†0 = [

r>1, s>1

{ X

w∈C(A)

aw(x)tw: aw(x)∈K{r−1x}, kaw(x)krsd(w)are bounded}.

(7)

C(A)is a submonoid ofZn∩δ, andL†0 is both a subring and aD-submodule ofL. Let Ck(L†0) ={ X

1≤i1<···<ik≤n

fi1...ikdti1 ti1

∧ · · · ∧dtik tik

: fi1...ik ∈L†0} ∼=L†0(nj). Note thatd:Ck(L)→Ck+1(L)(resp. ∇

∂xj) maps Ck(L†0) to Ck+1(L†0) (resp. Ck(L†0)). So C·(L†0)is a subcomplex ofD-modules ofC·(L). Let

Fi,γ =ti

∂ti

i

N

X

j=1

wijxjtwj.

It follows from the definition of the twisted de Rham complex that the homomorphism L†0→Cn(L†0), f 7→fdt1

t1 ∧ · · · ∧dtn

tn induces an isomorphism

L†0/

n

X

i=1

Fi,γL†0∼=Hn(C·(L†0)).

Let’s give an explicit presentation of theD-moduleHn(C·(L†0)). Let Λ = {λ= (λ1, . . . , λN)∈ZN :

N

X

j=1

λjwj= 0},

λ = Y

λj>0

1 π

∂xj

λj

− Y

λj<0

1 π

∂xj

−λj

(λ∈Λ)

Ei,γ =

N

X

j=1

wijxj

∂xj

i(i= 1, . . . , n), Consider the map

ϕ:D→L†0, X

v∈ZN≥0

fv(x)∂v

π|v| 7→( X

v∈ZN≥0

fv(x)∂v

π|v|)·1 = X

v∈ZN≥0

fv(x)tv1wN+···+vNwN.

It is a homomorphism ofD-modules. In §1, we prove the following theorems.

Theorem 0.8. ϕinduces isomorphisms D/X

λ∈Λ

Dλ= L†0,

D/(

n

X

i=1

DEi,γ+X

λ∈Λ

Dλ) →= L†0/

n

X

i=1

Fi,γL†0∼=Hn(C·(L†0)).

Moreover, there exist finitely manyµ(1), . . . , µ(m)∈Λsuch that

m

X

i=1

Dµ(i) =X

λ∈Λ

Dλ.

Theorem 0.9. C·(L)andC·(L†0)are complexes of coherentD-modules.

(8)

Definition 0.10. TheGKZ hypergeometric D-module is defined to be the leftD-module D/(

n

X

i=1

DEi,γ+X

λ∈Λ

Dλ)∼=Hn(C·(L†0)).

The GKZ hypergeometric D-module is the p-adic analogue of the (complex) hypergeometric D-module ([1]) associated to the GKZ hypergeometric system of differential equations (0.1.1).

0.11. Fibers of the GKZ hypergeometric complex. Leta = (a1, . . . , aN)be a point in the closed unit polydiscE(0,1), where ai∈K0 for some finite extensionK0 of K. Let’s specialize at x= a, that is, apply the functor -⊗Khxi K0, where K0 is regarded as a Khxi-algebra via the homomorphism

Khxi →K0, xi7→ai. Let

L0 = [

s>1

{ X

w∈Zn∩δ

awtw: aw∈K0, |aw|sd(w) are bounded}.

In section 1, we prove the following.

Lemma 0.12. L is flat over Khxi and

LKhxiK0∼=L0.

Consider the twisted de Rham complexC·(L0)defined as follows: We set Ck(L0) ={ X

1≤i1<···<ik≤n

fi1...ik

dti1 ti1

∧ · · · ∧dtik tik

: fi1...ik∈L0} ∼=L(nk)

0

with differentiald:Ck(L0)→Ck+1(L0)given by

d(ω) =

tγ11· · ·tγnnexp(πF(a,t))−1

◦dt

tγ11· · ·tγnnexp(πF(a,t)) (ω)

= dtω+

n

X

i=1

γi

N

X

j=1

wijajtwjdti

ti

∧ω

for anyω∈Ck(L0). By Lemma 0.12, we have the following corollary.

Corollary 0.13. In the derived category of complexes of Khxi-modules, we have C·(L)⊗LKhxiK0∼=C·(L0).

The specialization of Φatais the lifting of the Frobenius correspondence defined by Φa:L0→L0, f(t)7→f(tq).

It induces the mapsΦa:Ck(L)→Ck(L)on differential forms commuting withdt:

Φa X

1≤i1<···<ik≤n

fi1...ik(t)dti1 ti1

∧ · · · ∧dtik tik

= X

1≤i1<···<ik≤n

qkfi1...ij(tq)dti1 ti1

∧ · · · ∧dtik tik

The specialization ofF :C·(L)→C·(L)at ais given by

Fa =

tγ11· · ·tγnnexp(πF(a,t))−1

◦Φa

tγ11· · ·tγnnexp(πF(aq,t))

=

tγ11(q−1)· · ·tγnn(q−1)exp πF(aq,tq)−πF(a,t)

◦Φa.

(9)

By Lemma 0.4 (i),tγ11(q−1)· · ·tγnn(q−1)exp πF(aq,tq)−πF(a,t)

lie inL0, and henceFa defines an endomorphism on eachCk(L0).

From now on, we assume thata is a Techmüller point, that is,aqj =aj (j= 1, . . . , N). Thena is a fixed point ofFr. In this case Fa:C·(L0)→C·(L0)commutes withd:Cj(L0)→Cj+1(L0) and hence is a chain map.

Consider the operator Ψa:L0→L0defined by Ψa(X

w

cwtw) =X

w

cqwtw. We extend it to differential forms by

Ψa X

1≤i1<···<ik≤n

fi1...ik(t)dti1

ti1 ∧ · · · ∧dtik

tik

= X

1≤i1<···<ik≤n

q−kΨa(fi1...ij(t))dti1

ti1 ∧ · · · ∧dtik

tik . It commutes withdt. LetGa:C·(L0)→C·(L0)be the map defined by

Ga =

tγ11· · ·tγnnexp(πF(a,t))−1

◦Ψa

tγ11· · ·tγnnexp(πF(a,t))

= Ψa

tγ11(1−q)· · ·tγnn(1−q)exp πF(a,t)−πF(aa,tq) . Here by Lemma 0.4 (i), tγ11(1−q)· · ·tγnn(1−q)exp πF(a,t)−πF(a,tq)

lies in L0 and hence Ga defines an operator onC·(L0). Then Ga commutes withd:Ck(L0)→Ck+1(L0). We thus get a chain mapGa:C·(L0)→C·(L0).

Lemma 0.14. We have Ga◦Fa= id andFa◦Ga is homotopic toid. In particular, Fa andGa induce isomorphisms onH·(C·(L0)).

In section 3, we show that each Ga : Ck(L0) → Ck(L0) is a nuclear operator and hence the homomorphism on eachHk(C·(L0))induced byGais also nuclear. We can talk about their traces and characteristic power series. ButFa does not have this property. Let

Tr Ga, C·(L0)

=

n

X

k=0

(−1)kTr Ga, Ck(L0)

=

n

X

k=0

(−1)kTr Ga, Hk(C·(L0))

=

n

X

k=0

(−1)kTr Fa−1, Hk(C·(L0)) ,

det I−T Ga, C·(L0)

=

n

Y

k=0

det I−T Ga, Ck(L0)(−1)k

=

n

Y

k=0

det I−T Ga, Hk(C·(L0))(−1)k

=

n

Y

k=0

det I−T Fa−1, Hk(C·(L0))(−1)k

.

Letχ:Fq →Qpbe the Techmüller character which maps eachuinFq to its Techmüller lifting.

By [15, Theorems 4.1 and 4.3], the formal power seriesθ(z) = exp(πz−πzp)converges in a disc

(10)

of radius>1, and its valueθ(1)atz= 1is a primitivep-th root of unity inK. Letψ:Fq→K be the additive character defined by

ψ(¯a) =θ(1)TrFq /Fpa) for any¯a∈Fq. Let¯aj∈Fq be the residue classaj modp, let

Sm(F(¯a,t))

= X

¯

u1,...,¯unFqm

χ1(NormFm

q/Fq(¯u1))· · ·χn(NormFm

q/Fq(¯un))ψ

TrFqm/FqXN

j=1

¯

ajw11j· · ·u¯wnnj be the twisted exponential sums for the multiplicative characters χi = χ(1−q)γi, the nontrivial additive characterψ:Fq →Cp, and the polynomial F(¯a,t), and let

L(F(¯a,t), T) = expX

m=1

Sm(F(¯a,t))Tm m

be theL-function for the twisted exponential sums. The following theorem is well-known in Dwork’s theory. Its proof is given in section 2 for completeness.

Theorem 0.15. Suppose γ1, . . . , γn1−q1 Z, γ = (γ1, . . . , γn) ∈δ, and suppose K0 contains all (q−1)-th root of unity. Let a= (a1, . . . , an) be a Techmüller point, that is, aqj =aj. Then each Ga:Ck(L0)→Ck(L0)is nuclear. Moreover, we have

Sm(F(¯a,t)) = Tr (qnGa)m, C·(L0)

=

n

X

k=0

(−1)kTr (qnFa−1)m, Hk(C·(L0)) , L(F(¯a,t), T) = det I−qnT Ga, C·(L0)−1

=

n

Y

k=0

det I−qnT Fa−1, Hk(C·(L0))(−1)k+1

,

In [2], Adolphson shows thatL(F(¯a,t), T)depends analytically on the parameters aandγ.

0.16. The GKZ hypergeometric F-crystal. It follows from the definition of the twisted de Rham complex that the homomorphism

L →Cn(L), f 7→fdt1

t1

∧ · · · ∧dtn

tn

induces an isomorphism

L/

n

X

i=1

Fi,γL ∼=Hn(C·(L)).

∇defines a connection onHn(C·(L)), and F defines a horizontal morphism F : Fr(Hn(C·(L)),∇)→(Hn(C·(L)),∇).

LetU be the affinoid subdomain of the closed unit polydisc E(0,1)N parametrizing those points a= (a1, . . . , aN)so thatF(¯a,t) =PN

j=1¯ajtwj is non-degenerate in the sense that for any faceτ of∆not containing the origin, the system of equations

∂t1

Fτ(¯a,t) =· · ·= ∂

∂tn

Fτ(¯a,t) = 0

(11)

has no solution in(Fp)n, whereFτ(¯a,t) =P

wj∈τjtwj. When restricted to U, we have Hk(C·(L)) = 0

for k 6= n, and Hn(C·(L)) defines a vector bundle on U of rank n!vol(∆). Denote this vector bundle byHyp.

Definition 0.17. We define theGKZ hypergeometric crystal to be(Hyp,∇, F).

Leta= (a1, . . . , aN)be a point inU with coordinates inK0, and letHyp(a)be the fiber ofHyp at a. By Corollary 0.13, the fact Ck(L) = 0 for k > n, and the fact that − ⊗Khxi K0 is right exact, we have

Hn(C·(L))⊗KhxiK0∼=Hn(C·(L0)).

So we have

Hyp(a)∼=L0/

n

X

i=1

Fi,γ,aL0, whereFi,γ,a=ti

∂tii+πPN

j=1wijajtwj.Ifais a Techmüller point, then we have Sm(F(¯a,t)) = (−1)nTr (qnFa−1)m,Hyp(a)

, L(F(¯a,t), T) = det I−qnT Fa−1,Hyp(a)(−1)n−1

.

Leta= (a1, . . . , aN)andb= (b1, . . . , bN)be points inU with coordinates inK0, and let Ta,b: Hyp(a)→= Hyp(b)

be the parallel transport forHyp. It is well-defined if|bi−ai|<1 for alli. It can be described as follows: For any formal power seriesf(t)∈Qp[[Zn∩δ]], we have

∂xj

exp(−πF(x,t))f(t)

= exp(−πF(x,t))◦ ∂

∂xj ◦exp(πF(x,t))

exp(−πF(x,t))f(t)

= 0.

Soexp(−πF(x,t))f(t)is horizontal with respect to∇. But it is only a formal horizontal section since it may not lie in L. Formally, Ta,b maps exp(−πF(a,t))f(t) to exp(−πF(b,t))f(t). So Ta,b: Hyp(a)→= Hyp(b)can be identified with the isomorphism

Ta,b:L0/

n

X

i=1

Fi,γ,aL0→L0/

n

X

i=1

Fi,γ,bL0, g(t)7→exp πF(a,t)−πF(b,t) g(t).

This is well-defined if|bi−ai|<1for allisince we then haveexp πF(a,t)−πF(b,t)

∈L0. SinceF : Fr(Hyp,∇)→(Hyp,∇)is a horizontal morphism, we have a commutative diagram

Hyp(aq) Taq ,xq Hyp(xq)

Fa↓ ↓Fx

Hyp(a) Ta,x Hyp(x).

Let{e1(x), . . . , eM(x)} be a local basis forHyp overU. Write (qnFx−1)

e1(x), . . . , eM(x)

= (e1(xq), . . . , eM(xq))Q(x), Ta,x(e1(a), . . . , eM(a)) = (e1(x), . . . , eM(x))P(x)

(12)

whereP(x)andQ(x)are matrices of power series. Then we have Q(x) =P(xq)Q(a)P(x)−1 and hence

(−1)nSm(F(¯x,t)) = Tr (P(xq)Q(a)P(x)−1)m , (0.17.1)

L(F(¯x,t), T)(−1)n+1 = det I−T P(xq)Q(a)P(x)−1 (0.17.2)

wheneverxq−1j = 1andaq−1j = 1. Write

∂xj

e1(x), . . . , eM(x)

= (e1(x), . . . , eM(x))Aj(x).

As∇

∂xj(Ta,x(ek(a))) = 0for allk,P(x)satisfies the system of differential equations

∂xj

(P(x)) +Aj(x)P(x) = 0.

(0.17.3)

Equations (0.17.1)-(0.17.3) give formulas for calculating the exponential sums and theL-function using a solution of a system of differential equations.

1. D-modules Lemma 1.1. Letm be a positive integer and let

m=a0+a1p+a2p2+· · · be itsp-expansion, where0≤ai≤p−1 for alli. Define

σ(m) =a0+a1+a2+· · · . (i) We have

ordp

πm m!

= σ(m) p−1. (ii) For any real number >0, there existsδ >0 such that

σ(m)≤m+δ.

Proof. (i) We have

ordp(m!) = hm p i

+hm p2 i

+· · ·

= (a1+a2p+· · ·) + (a2+a3p+· · ·) +· · ·

= a1+a2(1 +p) +a3(1 +p+p2) +· · ·

= a1(p−1)

p−1 +a2(p2−1)

p−1 +a3(p3−1) p−1 +· · ·

= m−σ(m) p−1 . So we have

ordp

πm m!

= m

p−1 −m−σ(m)

p−1 =σ(m) p−1. (ii) ChooseM sufficiently large so that for any x≥M, we have

(p−1)(x+ 1)≤px.

(13)

Let

m=a0+a1p+· · ·+alpl

be the expansion of m, where 0≤ai ≤p−1 and al6= 0. Ifm ≥pM, then we have l ≥M and hence(p−1)(l+ 1)≤pl.So we have

σ(m) =a0+a1+· · ·+al≤(p−1)(l+ 1)≤pl≤m

for anym≥pM. Takeδ= max(σ(1), . . . , σ(pM)). Then we haveσ(m)≤m+δfor allm.

1.2. Proof of Proposition 0.7. Set B= [

r>1, s>1

{ X

v∈ZN≥0

fv(x)∂v v!

: fv(x)∈K{r−1x}, kfv(x)krs|v|are bounded}.

Let’s proveB =D. Given P

v∈ZN≥0fv(x)vv

! inB, choose real numbersr >1, s >1 andC >0 such that

kfv(x)krs|v|≤C.

We have

X

v∈ZN≥0

fv(x)∂v v!

= X

v∈ZN≥0

fv(x)π|v|

v!

v π|v|. By Lemma 1.1 (i), we haveordp

π|v|

v!

≥0.Hence

fv(x)π|v|

v!

rs|v|≤ kfv(x)krs|v|≤C.

SoP

v∈ZN≥0fv(x)vv

! lies inD. Conversely, given P

v∈ZN≥0fv(x)π|v|v in D, choose real numbersr > 1, s >1 and C >0 such that

kfv(x)krs|v|≤C.

We have

X

v∈ZN≥0

fv(x)∂v

π|v| = X

v∈ZN≥0

fv(x) v!

π|v|

v v!

. Choose >0 so that

s > pp−1 , and chooseδas in Lemma 1.1 (ii). We have

ordp

π|v|

v!

≤|v|+δn p−1 . Lets0 =spp−1 >1 and letC0=Cpp−1δn. We have

fv(x) v!

π|v|

rs0|v| ≤ kfv(x)krp|v|+δnp−1 s0|v|

= kfv(x)krs|v|pp−1δn

≤ C0. SoP

v∈ZN≥0fv(x)vv

! lies inB.

Références

Documents relatifs

Given an orthogonal ring spectrum A, i.e., an associative algebra object in Sp O , we may define its cyclic bar construction Bar(A) : Λ op −→ Sp O as above using the point-set

In Section 2, objects as- sociated with a weighted arrangement are recalled (Orlik-Solomon algebra, space of singular vectors, contravariant form, master function, canonical

Nous montrons que le foncteur contraction par Frobenius de la catégorie des G-modules est adjoint à droite de celui de tensorisation deux fois par le module de Steinberg du tordu

and FONTANA, M., Mazirnality Properties in Numeri- cal Sernigro~aps and Applications to Or~e-Dimensional Analytically Irreducible Local Domains, Mere.. CURTIS, F.~ On

One important technique in this field is the deformation method of Lauder, inwhich one computes the zeta function of a variety by fitting it into a one-parameter family of

Curves and abelian varieties over finite fields, distribution of the trace of matrices, equidistribution, Frobenius operator, generalized Sato-Tate conjecture, Katz-Sarnak

The problems to which the Vessiot theory can be applied are of the following kind: For a given integer p and a given noncomplete vector field system:F defined on

Similarly, one could vary the p -adic field K in a family of finite field exten- sions of Q p and one may study the behavior of the degree function and its dependence on K.. We would