• Aucun résultat trouvé

Elaboration of Nanocomposite Coatings by Coupling Aerosol Jets and Physical Vapour Deposition

N/A
N/A
Protected

Academic year: 2021

Partager "Elaboration of Nanocomposite Coatings by Coupling Aerosol Jets and Physical Vapour Deposition"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: cea-02346103

https://hal-cea.archives-ouvertes.fr/cea-02346103

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Elaboration of Nanocomposite Coatings by Coupling

Aerosol Jets and Physical Vapour Deposition

Olivier Sublemontier, Y Rousseau, Y. Leconte, N. Herlin, M. Mayne

To cite this version:

Olivier Sublemontier, Y Rousseau, Y. Leconte, N. Herlin, M. Mayne. Elaboration of Nanocomposite

Coatings by Coupling Aerosol Jets and Physical Vapour Deposition. European Aerosol Conference

(EAC2016), Sep 2016, Tours, France. �cea-02346103�

(2)

Elaboration of Nanocomposite Coatings by Coupling Aerosol Jets and Physical Vapour

Deposition

O. Sublemontier*, Y. Rousseau, Y. Leconte, N. Herlin, M. Mayne

NIMBE-UMR 3685/CEA/CNRS/Université Paris-Saclay, 91191 Gif-sur-Yvette cedex, France Presenting author email: olivier.sublemontier@cea.fr

We propose a generic method for the elaboration, in a single step and in a confined chamber, of nanocomposite coatings consisting of nanoparticles (NP) from 4 to 100 nm, homogeneously distributed in a matrix. The process combines the jet of nanoparticles in vacuum (JNV) technology and Physical Vapor Deposition (PVD). The hybridization of these two techniques is made possible by routing nanoparticles in the aerosol form to the substrate, either immediately after their synthesis in the gas phase, or from colloidal suspensions. The simultaneous deposition of the particles and the matrix is achieved on the same face of the same substrate. The process is innovative in that it allows an unlimited selection in the respective chemical compositions of nanoparticles and the matrix, and a moderate temperature of the substrate. The general scheme of the process is presented in Figure 1a. A laser-driven pyrolysis reactor can be used for in-situ synthesis of nanoparticles. Laser pyrolysis is an efficient method to synthesize various high purity nanopowders, oxides and non-oxides, in a gas phase bottom-up approach [1]. An atomizer that produces aerosol from colloidal suspension of previously synthesized nanoparticles can also be used. The JNV is obtained by the use of an aerodynamic lens system, which is composed of chambers separated by diaphragms, which produces a collimated beam of nanoparticles under vacuum [2]. This kind of beam is currently used for gas phase characterization of freestanding nanoparticles or for precision 3D printing with a high deposition rate. We show that it is possible to obtain an angle-controlled divergent and homogenous jet of nanoaerosols, as well, by changing the geometry of a classical lens. We demonstrate the adaptation if the JNV technique with pressure environment required for running a classical magnetron sputtering device. The later is used for depositing, on the same substrate and in the same time, the material constituting the matrix of the composite film.

The possibility to elaborate large and homogenous nanostructured films were investigated with different types of nanoaerosols with different sizes and densities. Samples composed of gold and silicon nanoparticles (see Figure 1b) will be shown. Many applications are already considered for this type of coatings, including photovoltaic, aesthetic coatings for luxury industry, hard covering for tools or self-healing films. The development of the process is carried out in the frame of the HYMALAYAN project funded by the Agence Nationale de la Recherche under Grant No ANR-14-CE07-0036, and is open to new potential end-users.

.

Figure 1a. General scheme of the co-deposition process. Figure 1b. Dark field TEM micrograph of Si

(3)

This work was supported by the French National Research Agency (ANR) under contract N° ANR-14-CE07-0036.

[1] Herlin-Boime, N. et al. (2004): Encycl. of

Nanoscience and Nanotechnology, Naiwa Ed. Vol. 10, pp.1-26.

[2] Zhang, X.F. et al. (2004), Aerosol Science and Technology 38, 619.

[3] Sublemontier, O., Kintz, H., Lacour, F (2011). Kona powder and Particle Journal 29, 236.

Figure

Figure 1a. General scheme of the co-deposition process.

Références

Documents relatifs

Using stable isotope incubations ( 15 N- ammonium and 13 C-bicarbonate) and combining transmission electron microscopy (TEM) with quantitative nanoscale secondary ion mass

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Merci pour votre collaboration et votre travail dans ce projet. On ne s‘attendait pas à avoir un sujet en commun mais voici que le tryptique s’est dévoilé sous nos yeux au fur et

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Available measurements of brightness temperature are compared with an equivalent form of temperature estimation added to SECHIBA, constraining model parameters to improve the

The Merrill Lynch Opinions of Regulation, 1992 – 1995 is used to assess how favorable a PUC commission is to electric utility shareholder interests.13 Second, a generic order

32 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia 33 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State

En hiver, l’hémisphère Nord est incliné dans le sens contraire du Soleil, vers la pleine Lune, qui nous semble alors haute dans le ciel. En été, c’est le contraire, et