• Aucun résultat trouvé

RNR-G, INCIDENCE DU CHOIX DU GAZ, HÉLIUM EN PARTICULIER, SUR LA CONCEPTION ET LE FONCTIONNEMENT DU RÉACTEUR, SÛRETÉ

N/A
N/A
Protected

Academic year: 2022

Partager "RNR-G, INCIDENCE DU CHOIX DU GAZ, HÉLIUM EN PARTICULIER, SUR LA CONCEPTION ET LE FONCTIONNEMENT DU RÉACTEUR, SÛRETÉ"

Copied!
25
0
0

Texte intégral

(1)

RNR-G,

INCIDENCE DU CHOIX DU GAZ, HÉLIUM EN PARTICULIER, SUR LA CONCEPTION ET LE FONCTIONNEMENT DU

RÉACTEUR, SÛRETÉ

JC. Garnier

CEA, DEN, Cadarache

Département d’Etude des Réacteurs

| PAGE 1

| PAGE 1

Séminaire

FLUIDES CALOPORTEURS POUR LES RNR

Académie des sciences

Fondation Simone et Cino del Duca, Paris 8e

19 et 20/02/2013

(2)

 Introduction

 Core design

 System design

 Safety approach, safety analysis

 Conclusions

CONTENT

| PAGE 2

| PAGE 2 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(3)

Allegro

A demonstrator of 75 MWth : 1. Feasibility of the GFR 2. Test of componants 3. Fuel development 4. Service for fast neutron

irradiation

5. Coupling to heat process

Feasibility is to be proved with a small

power demonstrator 

A collaborative program with Tchéquie, Slovaquia, Hongria, Poland in support of an ESFRI project

(European Strategic Forum on Research infrastructures)

A program with a number of R&D challenges

1) A fuel element able to withstand high temperature and fast neutrons 2) innovation on nuclear reactor and energy conversion system

3) safety demonstration (LOCA and sever accident)

THE GFR: AN ALTERNATIVE FAST REACTOR FOR LONGER-TERM

| PAGE 3

| PAGE 3 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(4)

Decided at the very beginning of the project

• Because of its physical, chemical, neutronics properties

• Alternative : CO

2

Safety (He)

• Great neutron transparency, acceptable gas voiding reactivity effect < 1$

• No threshold effect: single phase cooling, chemical inertness (air, water)

• Potential for In-Service Inspection, T° instrumentation: optical transparency

Competitivness (He)

High temperature, potential for:

– high energy conversion efficiency (45% - 48%) – industrial applications (process heat, …)

• Simplification for repairing & decommissioning: non toxic coolant, not activated, optical transparency

H2O 150 bar He-N2

65 bar He 70 bar 850°C

400°C

820°C 535°C

32°C 178°C

362°C 565°C

Electrical grid

SELECTION OF HE COOLANT FOR THE GFR R&D PROJECT

| PAGE 4 | PAGE 4 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(5)

MAJOR GFR DESIGN OPTIONS

Current major reactor design options

A fuel based on high thermal conductivity and refractory materials, to

withstand high temperature : (U, Pu)C & reinforced ceramic composite clad (safety)‏

• “Cold” operating clad/fuel temperature:  1000/1300°C (margins / accident)

• Boundary accidental clad T° (DBA, 4

th

cat.): 1600°C / < 1h (FP confinement, 1

st

barrier)‏

• Ultimate accidental clad T° (SA prevent.): 2000°C / < some min?

(no loss of geometry)

2400 MWth, T°

inlet/outlet

RPV : 400/850°C (economy of scale, trade-off energy conversion  vs materials and safety issues)‏

Pressurized cool.: 7 MPa; with limited P

primary

to ease the gas circulation:

P

core

 0.15 MPa; core designed with favourable reactivity effects… ( safety )‏

+600°C

+1000°C

Reactor concept (fuel managt.) and Decay Heat Removal issue:

– A power density  100 MW/m3 (trade-off neutronics performance vs safety issue)

– Very limited thermal inertia in the core area (vs HTR & graphite blocks) – Challenging concept, combining poor thermal properties of gas (Helium

coolant) with significant power density:

(6)

GFR 2400 MWTH FUEL & CORE DESIGN

1200 1250 1300 1350 1400 1450 1500

0 15 30 45 60 75 90 105

radial position (mm)

Temperature (°C)

No radiation Radiation

| PAGE 6

| PAGE 6 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(7)

FUEL DESIGN & FABRICATION

0 50 100 150 200 250 300

0 0,2 0,4 0,6 0,8 1

Contrainte (MPa)

Déformation (%)

Courtesy of C. Sauder & C. Lorrette (CEA)

Leak-tight domain

with present-day CMC

Elastic limit (E~80MPa - E~0,04%) Beginning of

microcracking

Failure limit (F~300MPa - F~0,9%)

Elongation [%]

Str ess [ MP a]

Fuel : UPuC (density & conductivity)

Clad : SiC f -SiC (thermal and mechanical properties, high meting temperature) SiC f -SiC  Leaktightness needs a liner 1. Sandwich  SiC f -SiC / métal / SiC f -SiC

2. Duplex  SiC / SiC f -SiC

Fuel/clad gap : He bonded or a buffer (C et/ou SiC)

| PAGE 7

| PAGE 7 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(8)

CORE PERFORMANCES

Plate-Type Core Pin-Type Core

« 12/06 » « 03/09 »

Power Density (MW/m3) 91.5 100

Pressure (MPa) T_vessel in/out (°C)

Core Pressure Drop (bar) 1.40 1.45

Tmax_cladding (°C) 920 993

Tmax_fuel BOL/EOL (°C) 1324 1275

Corresponding energy conversion  (%)

H/D Fissile Core 0.62 0.39

9 x 27 13 x 217 Fissile column divided

in 9 modules

Fissile column divided in two « half pins »

Fissile Height (mm) 2349 1650

Fuel element external dimension (mm) 8.4 9.16

Pellet dimensions (d (mm) x h(mm)) 11.285 x 6.5 6.71 x 10

Clad thickness (mm) 0.85 1

Length of a fuel module/element (mm) 257.3 (9modules) 1500 (2 half-pins) Vol. fracti. (%): Fuel / Struct. / Cool. / He gap 23/29.7/36.0/11.3 27.9/26.8/42.9/2.5 Fraction of MA considered in the fuel (%)

Mean Pu Enrichment at equilibrium (%) 17.6 16.3

Pu inventory at equilibrium (tons / GWel) 10.1 9.6

Fuel Burnup, Mean/Max (at%) 4.3/6.3 5.0/7.3

Fuel Management (EFPD) 3 x 450 = 1350 3 x 481 = 1443

Effective breeding Gain at equilibirum +0.03 +0.02

Doppler Constant at equilibrium ($, BOL/EOL) He Depressurization at equilib. ($, BOL/EOL)

Delayed Neut. Fract. at equil..(pcm, BOL/EOL) 356 / 346 369 / 360

Wrapper / Internal wrapper structures / clad

Fuel (U, Pu)C

0.88 / 0.93 0.85 / 0.89

MATERIAL CHOICES

Internal Liner

SiCf/SiC

W–14%Re + Re (40 µm + 10 µm) FUEL ELEMENT

NEUTRONIC FEATURES

-2.94 / -2.46 -2.70 / -2.39 1.1 (self-recycling)

PLANT CHARACTERISTICS (reactor nominal condition)

CORE‏–‏SUB-ASSEMBLY

Nb of S/A Rows x Nb of Fuel elements per S/A

7

48 400/850

Similar performances, the initial expected values being reached:

Moderate P

core

High energy conversion 

Self breeding gain (without fertile blanket)

Reasonable Pu Inventory required (reactor fleet deployment)

Favourable reactivity

coefficients (high doppler, voiding effect < 1 $)

Manufacturing of ceramic clad:

 with pin-type fuel element

(9)

CONTROL ROD AND SHUTDOWN SYSTEMS

CSD & DSD , 2 redundant and diversified shutdown devices:

• Gravity drop of absorber elements

• Specific reinforced wrapper tube

Control rod & Shutdown Device (18 CSD) - electrical motor in connection with a threaded

rod

Diversified Shutdown Device (6 DSD) -pneumatic action, two positions (up, down)

Core layout

B4C pins

Electrical motor (CSD) Rod

follower

| PAGE 9

| PAGE 9 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(10)

H2O 150 bar He-N2

65 bar He

70 bar 850°C

400°C

820°C 535°C

32°C 178°C

362°C

565°C

Electrical grid

GFR 2400 MWTH REACTOR & & SYSTEM DESIGN

| PAGE 10

| PAGE 10 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(11)

• RPV similar to GT-MHR

• 7.3 m diameter metallic vessel

• 7 MPa, 400-850°C

• Vessel material : 9Cr1Mo or 316

• Thermal shielding, cross-duct…

• Upward core cooling

Control rod drive mechanisms: lower plenum Absorber rod: above the core

Fuel handling: upper plenum boundary accidental structure T°

(DBA, 4th cat.): 1250°C, < a few hours

Leak Before Break approach

To enhance natural convection

REACTOR PRESSURE VESSEL

| PAGE 11

| PAGE 11 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(12)

PRIMARY CIRCUIT, ENERGY CONVERSION

Indirect combined cycle: He-Gas with a tertiary steam cycle

Prim. cross-duct blower and motorization prim. isolating valve

High efficiency (potential up to 48%), similar to the direct cycle with lower inlet core temperature (400°C)

Compactness of the primary circuit, easier to integrate in a compact close containment (DHR strategy)

Decoupling the nuclear island from power conversion, high temperature industrial process

2

nd

pipes with isolating valves

H2O 150 bar He-N2

65 bar He

70 bar 850°C

400°C

820°C 535°C

32°C 178°C

362°C

565°C

Electrical grid

| PAGE 12

| PAGE 12 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(13)

1ER OCTOBRE 2013 | PAGE 13

15/07/2009

Trade-off between targeted backup pressure / dimensions of primary components /

mechanical resistance

– Metallic close containment, spherical, Φ 33 m – Free volume  11000 m3

– Unpressurized nitrogen as initial atmosphere – P backup max. : 1 MPa

– P backup 24h  0.4 Mpa

CLOSE CONTAINMENT, REACTOR INTEGRATION

| PAGE 13

| PAGE 13 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(14)

Decay Heat Removal is a key design issue for the GFR

Conduction & Radiation used in HTR are no longer applicable

because of the high core power density and the limited thermal inertia in the core region

Alternative‏“passive”‏mechanisms‏?‏

in-core‏Heat‏Sinks,‏additional‏core‏thermal‏inertia,‏…‏‏

not really compatible with the core neutronic constraints

Core cooling using gas circulation with appropriate design options appeared the best choice

SYSTEM DESIGN, DECAY HEAT REMOVAL (DHR)

| PAGE 14

| PAGE 14 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(15)

92m

3

GT-MHR 600 MWth

GFR 2400 MWth

24m

3

Comparison of GT-MHR (thermal) and GFR (fast) cores SYSTEM DESIGN, DECAY HEAT REMOVAL (DHR)

| PAGE 15

| PAGE 15 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(16)

• Dedicated DHR systems

Reactor High Pressure cooling system (in blue): 3 x 100% with blowers as

normal systems (0.4-7 Mpa) & 2 x 100% with natural convect. as backup syst.

Reactor Low Pressure cooling system (in yellow): 1 x 100% with blower designed for very low pressure (0.4-0.2 MPa)

Decay Heat Removal strategy: close containment enclosing the primary circuit, diversified DHR systems to ensure gas circulation in all situations

3 RHP, blowers (0.4-7 MPa)

axial mono stage, Ptot < 500 KWe

Close containment 2 RHP, natural convection capability

H1

st

+ 2

nd

 20 m

1 RLP, blower (0.4- 0.2MPa) Motorized blower

 3 MWe

• Exploiting the 3 normal loops (most frequent situations, primary integrity)

main blowers with pony motor (being supplied by Diesel): 1°) DHR using steam generator (by-pass of the turbine), 2°) in case of electrical grid loss, backup using a dedicated air cooler circuit (natural convection) plugged in 2

nd

heavy gas injection tanks

(4th category and beyond)

SYSTEM DESIGN, DECAY HEAT REMOVAL (DHR)

| PAGE 16

| PAGE 16 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(17)

SAFETY APPROACH (1/2)

1- Governing principles

Defence in depth (DiD) concept

Principle of physical barriers

The safety functions

ALARA approach for radiation protection

2- General frame of the safety analysis

Identification and preliminary categorization of initiating events (IEs)

Deterministic rules for the safety analysis

Categorization of bounding situations resulting from IE + single

aggravating failure (only the safety systems are considered available for DBAs)

Categorization of complex sequences

Proposition for a combination of deterministic and probabilistic methods

LOP, study of operating conditions, PSA and feed-back on categorization

Objective provision trees as an help to draw an invetory of safety provisions

| PAGE 17

| PAGE 17 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(18)

3 - LOCAs preliminary discrimination and classification status

 Small leaks compensable with the Helium Supply System (limit size to be defined)

Category 2

 Small breaks controllable with natural convection in case of failure of the forced convection means

Up to 2 inches, Category 3

 Large breaks inducing a reverse flow in the core

could require an additional decoupling criterion on the cooling transient on clads and vessel

Larger than 3 inches, Category 4

 Intermediate breaks between 2 and 3 inches

Category 4

SAFETY APPROACH (2/2)

| PAGE 18

| PAGE 18 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(19)

DETERMINISTIC ANALYSIS (1/3)

4 - Transient analysis

Objectives : assessment of the performance and of the robustness of the DHR system (DBA), including cross failures (DEC)

Situations considered :

DBAs : 100 % PN + EI + single aggravating failure

Intermediate states still to be addressed

DEC :  100 % PN + EI (DEC)

 Complex sequences  100 % PN + EI (DBA) + multiple failures

| PAGE 19

| PAGE 19 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(20)

CATHARE2 calculation of a 1 inch break (category 3)

pressure transient

CATHARE2 calculation of a 10 inches break (category 4)

temperature

& flow rate transient

Lowerplenum and containment pressures

0.E+00 1.E+06 2.E+06 3.E+06 4.E+06 5.E+06 6.E+06 7.E+06

0 3000 6000 9000 12000 15000

Time (s)

Pressure (b)

Lowerplenum Containment

Core temperature (z=4.05m)

-200 0 200 400 600 800 1000 1200 1400

0 10 20 30 40 50 60

Time (s)

TemperatureC)

-200 0 200 400 600 800 1000 1200 1400

Mass flow rate (kg/s)

Fuel Clad Helium

Core mass flow rate

DETERMINISTIC ANALYSIS (2/3)

| PAGE 20

| PAGE 20 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(21)

SB-LOCA with failure of blowers at demand (cat.4 <= 4)

Tests are foreseen to assess nitriding process ( the objective is to keep a coolable geometry)

Argon is also an acceptable heavy gas candidate

Pressure transient Thermal transient

LB-LOCA with failure at 24 h (DEC)  envelopped by the previous situation

Pressure history in the accumulators, the guard vessel and the primary circuit

0,00E+00 1,00E+06 2,00E+06 3,00E+06 4,00E+06 5,00E+06 6,00E+06 7,00E+06 8,00E+06

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Time (s)

Pressure (Pa)

Primary Accumulator Guard vessel

Cladding and upper plenum temperature, core flow rate

0 200 400 600 800 1000 1200

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Time (s)

T(°C)

0 50 100 150 200 250 300

Flow rate (kg/s)

Maximum clad Upper plenum Core flow rate

DETERMINISTIC ANALYSIS (3/3)

| PAGE 21

| PAGE 21 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(22)

Checking of the capabilities of the normal and dedicated DHR systems

In case of primary circuit integrity: only one DHR loop (forced or natural convection) can cool the core (even combining with the failure of a primary circuit isolating valve);

only one normal loop could be used to extract the decay heat

In case of primary depressurization: only one DHR loop (forced convection) can cool the core; in case of loss of all DHR blowers, two DHR loops operating under natural convection can cool the core for LOCA up to 3 inches, thanks to heavy gas injection

(*: with best estimate calculations)

DBA: significant T° margins* (decoupling criteria 3

th

or 4

th

cat.): > 300°C

DBA: T° margins* (4

th

cat.) at least : > 100°C

Evaluation

 50 Initiating Events considered,  30 transient situations calculated, using combined deterministic and probabilistic analyses

An encouraging safety potential, based on systems with moderate pumping power and natural convection capabilities

PRELIMINARY SAFETY ANALYSIS

Decay Heat Removal strategy: close containment enclosing the primary circuit,

valorization of the 3 normal loops, blower as normal dedicated system, natural

convection capabilities

(23)

GFR 2400 MWth

Challenging fuel technology, difficulties to be overcome:

fuel element manufacturing and in pile behaviour No showstopper was identified,

global confidence in the viability of the concept, based on

innovative pin-type fuel element:

(U, Pu)C & SiC-SiCf clad

GFR PRELIMINARY VIABILITY – PRESENT CONCLUSION‏

| PAGE 23

| PAGE 23 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

(24)

FIN

1ER OCTOBRE 2013 | PAGE 24

(25)

GFR 2400 MWTH, OVERALL PLANT LAYOUT

Spent &

fresh fuel storage Reactor

plant

Nuclear Steam Supply System

(tertiary) Gas Turbine

Conversion System

(secondary, x 3) Diesels

Control command

(x 2) Gas tanks

storage

| PAGE 25

| PAGE 25 GFR - Présentation au séminaire Académie des Sciences, le 20/02/2013

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Knowledge: • the most common health needs of the community • diverse SRH service needs for different groups, inclusive of the vulnerable and marginalized, at different points in

④ Fermer l’interrupteur et déplacer le curseur C de manière à faire varier la tension aux bornes de la résistance et compléter le tableau ci-dessous...

Furthermore we seek to determine the pressure gradient and the Nusselt number variation along the inner and outer walls and finally we try Io see how the Reynolds number as well as

Lorsque l’examinateur est obligé d’intervenir dans le cas d’un montage incorrect ou d’une manipulation erronée, aucune étoile n’est attribuée pour cette tâche..

However, population health outcomes for people with chronic diseases managed in primary care are similar to outcomes in specialized care, with lower costs and better quality..

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice.. primary busbar, power supply). Ignoring this warning can lead

In this paper we show that for a wide class of service time distributions with a DHR tail (including the Pareto distribution), the optimal nonanticipating discipline is a combination