• Aucun résultat trouvé

Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model Decaying to <em>τ</em> Pairs in <em>pp</em> Collisions at s√=1.96  TeV

N/A
N/A
Protected

Academic year: 2022

Partager "Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model Decaying to <em>τ</em> Pairs in <em>pp</em> Collisions at s√=1.96  TeV"

Copied!
8
0
0

Texte intégral

(1)

Article

Reference

Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model Decaying to τ Pairs in pp Collisions at s√=1.96  TeV

CDF Collaboration

CAMPANELLI, Mario (Collab.), et al.

Abstract

We present a search for neutral supersymmetric Higgs bosons decaying to τ pairs produced in pp collisions at s√=1.96  TeV. The data, corresponding to 310  pb−1 integrated luminosity, were collected with the Collider Detector at Fermilab in run II of the Tevatron. No significant excess above the standard model backgrounds is observed. We set exclusion limits on the production cross section times branching fraction to τ pairs for Higgs boson masses in the range from 90 to 250  GeV/c2.

CDF Collaboration, CAMPANELLI, Mario (Collab.), et al . Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model Decaying to τ Pairs in pp Collisions at s√=1.96   TeV. Physical Review Letters , 2006, vol. 96, no. 01, p. 011802

DOI : 10.1103/PhysRevLett.96.011802

Available at:

http://archive-ouverte.unige.ch/unige:38308

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model Decaying to Pairs in p p Collisions at

p s

1:96 TeV

A. Abulencia,23D. Acosta,17J. Adelman,13T. Affolder,10T. Akimoto,53M. G. Albrow,16D. Ambrose,16S. Amerio,42 D. Amidei,33A. Anastassov,50K. Anikeev,16A. Annovi,44J. Antos,1M. Aoki,53G. Apollinari,16J.-F. Arguin,32 T. Arisawa,55A. Artikov,14W. Ashmanskas,16A. Attal,8F. Azfar,41P. Azzi-Bacchetta,42P. Azzurri,44N. Bacchetta,42 H. Bachacou,28W. Badgett,16A. Barbaro-Galtieri,28V. E. Barnes,46B. A. Barnett,24S. Baroiant,7V. Bartsch,30G. Bauer,31

F. Bedeschi,44S. Behari,24S. Belforte,52G. Bellettini,44J. Bellinger,57A. Belloni,31E. Ben-Haim,16D. Benjamin,15 A. Beretvas,16J. Beringer,28T. Berry,29A. Bhatti,48M. Binkley,16D. Bisello,42M. Bishai,16R. E. Blair,2C. Blocker,6

K. Bloom,33B. Blumenfeld,24A. Bocci,48A. Bodek,47V. Boisvert,47G. Bolla,46A. Bolshov,31D. Bortoletto,46 J. Boudreau,45S. Bourov,16A. Boveia,10B. Brau,10C. Bromberg,34E. Brubaker,13J. Budagov,14H. S. Budd,47S. Budd,23

K. Burkett,16G. Busetto,42P. Bussey,20K. L. Byrum,2S. Cabrera,15M. Campanelli,19M. Campbell,33F. Canelli,8 A. Canepa,46D. Carlsmith,57R. Carosi,44S. Carron,15M. Casarsa,52A. Castro,5P. Catastini,44D. Cauz,52 M. Cavalli-Sforza,3A. Cerri,28L. Cerrito,41S. H. Chang,27J. Chapman,33Y. C. Chen,1M. Chertok,7G. Chiarelli,44 G. Chlachidze,14F. Chlebana,16I. Cho,27K. Cho,27D. Chokheli,14J. P. Chou,21P. H. Chu,23S. H. Chuang,57K. Chung,12

W. H. Chung,57Y. S. Chung,47M. Ciljak,44C. I. Ciobanu,23M. A. Ciocci,44A. Clark,19D. Clark,6M. Coca,15 A. Connolly,28M. E. Convery,48J. Conway,7B. Cooper,30K. Copic,33M. Cordelli,18G. Cortiana,42A. Cruz,17J. Cuevas,11 R. Culbertson,16D. Cyr,57S. DaRonco,42S. D’Auria,20M. D’onofrio,19D. Dagenhart,6P. de Barbaro,47S. De Cecco,49 A. Deisher,28G. De Lentdecker,47M. Dell’Orso,44S. Demers,47L. Demortier,48J. Deng,15M. Deninno,5D. De Pedis,49 P. F. Derwent,16C. Dionisi,49J. Dittmann,4P. DiTuro,50C. Do¨rr,25A. Dominguez,28S. Donati,44M. Donega,19P. Dong,8 J. Donini,42T. Dorigo,42S. Dube,50K. Ebina,55J. Efron,38J. Ehlers,19R. Erbacher,7D. Errede,23S. Errede,23R. Eusebi,47 H. C. Fang,28S. Farrington,29I. Fedorko,44W. T. Fedorko,13R. G. Feild,58M. Feindt,25J. P. Fernandez,46R. Field,17 G. Flanagan,34L. R. Flores-Castillo,45A. Foland,21S. Forrester,7G. W. Foster,16M. Franklin,21J. C. Freeman,28Y. Fujii,26

I. Furic,13A. Gajjar,29M. Gallinaro,48J. Galyardt,12J. E. Garcia,44M. Garcia Sciveres,28A. F. Garfinkel,46C. Gay,58 H. Gerberich,23E. Gerchtein,12D. Gerdes,33S. Giagu,49P. Giannetti,44A. Gibson,28K. Gibson,12C. Ginsburg,16 K. Giolo,46M. Giordani,52M. Giunta,44G. Giurgiu,12V. Glagolev,14D. Glenzinski,16M. Gold,36N. Goldschmidt,33

J. Goldstein,41G. Gomez,11G. Gomez-Ceballos,11M. Goncharov,51O. Gonza´lez,46I. Gorelov,36A. T. Goshaw,15 Y. Gotra,45K. Goulianos,48A. Gresele,42M. Griffiths,29S. Grinstein,21C. Grosso-Pilcher,13U. Grundler,23 J. Guimaraes da Costa,21C. Haber,28S. R. Hahn,16K. Hahn,43E. Halkiadakis,47A. Hamilton,32B.-Y. Han,47R. Handler,57 F. Happacher,18K. Hara,53M. Hare,54S. Harper,41R. F. Harr,56R. M. Harris,16K. Hatakeyama,48J. Hauser,8C. Hays,15 H. Hayward,29A. Heijboer,43B. Heinemann,29J. Heinrich,43M. Hennecke,25M. Herndon,57J. Heuser,25D. Hidas,15

C. S. Hill,10D. Hirschbuehl,25A. Hocker,16A. Holloway,21S. Hou,1M. Houlden,29S.-C. Hsu,9B. T. Huffman,41 R. E. Hughes,38J. Huston,34K. Ikado,55J. Incandela,10G. Introzzi,44M. Iori,49Y. Ishizawa,53A. Ivanov,7B. Iyutin,31

E. James,16D. Jang,50B. Jayatilaka,33D. Jeans,49H. Jensen,16E. J. Jeon,27M. Jones,46K. K. Joo,27S. Y. Jun,12 T. R. Junk,23T. Kamon,51J. Kang,33M. Karagoz-Unel,37P. E. Karchin,56Y. Kato,40Y. Kemp,25R. Kephart,16U. Kerzel,25

V. Khotilovich,51B. Kilminster,38D. H. Kim,27H. S. Kim,27J. E. Kim,27M. J. Kim,12M. S. Kim,27S. B. Kim,27 S. H. Kim,53Y. K. Kim,13M. Kirby,15L. Kirsch,6S. Klimenko,17M. Klute,31B. Knuteson,31B. R. Ko,15H. Kobayashi,53

K. Kondo,55D. J. Kong,27J. Konigsberg,17K. Kordas,18A. Korytov,17A. V. Kotwal,15A. Kovalev,43J. Kraus,23 I. Kravchenko,31M. Kreps,25A. Kreymer,16J. Kroll,43N. Krumnack,4M. Kruse,15V. Krutelyov,51S. E. Kuhlmann,2

Y. Kusakabe,55S. Kwang,13A. T. Laasanen,46S. Lai,32S. Lami,44S. Lammel,16M. Lancaster,30R. L. Lander,7 K. Lannon,38A. Lath,50G. Latino,44I. Lazzizzera,42C. Lecci,25T. LeCompte,2J. Lee,47J. Lee,27S. W. Lee,51R. Lefe`vre,3 N. Leonardo,31S. Leone,44S. Levy,13J. D. Lewis,16K. Li,58C. Lin,58C. S. Lin,16M. Lindgren,16E. Lipeles,9T. M. Liss,23 A. Lister,19D. O. Litvintsev,16T. Liu,16Y. Liu,19N. S. Lockyer,43A. Loginov,35M. Loreti,42P. Loverre,49R.-S. Lu,1

D. Lucchesi,42P. Lujan,28P. Lukens,16G. Lungu,17L. Lyons,41J. Lys,28R. Lysak,1E. Lytken,46P. Mack,25 D. MacQueen,32R. Madrak,16K. Maeshima,16P. Maksimovic,24G. Manca,29F. Margaroli,5R. Marginean,16C. Marino,23

A. Martin,58M. Martin,24V. Martin,37M. Martı´nez,3T. Maruyama,53H. Matsunaga,53M. E. Mattson,56R. Mazini,32 P. Mazzanti,5K. S. McFarland,47D. McGivern,30P. McIntyre,51P. McNamara,50R. McNulty,29A. Mehta,29 S. Menzemer,31A. Menzione,44P. Merkel,46C. Mesropian,48A. Messina,49M. von der Mey,8T. Miao,16N. Miladinovic,6

J. Miles,31R. Miller,34J. S. Miller,33C. Mills,10M. Milnik,25R. Miquel,28S. Miscetti,18G. Mitselmakher,17 A. Miyamoto,26N. Moggi,5B. Mohr,8R. Moore,16M. Morello,44P. Movilla Fernandez,28J. Mu¨lmensta¨dt,28

(3)

A. Mukherjee, M. Mulhearn, Th. Muller, R. Mumford, P. Murat, J. Nachtman, S. Nahn, I. Nakano, A. Napier,54D. Naumov,36V. Necula,17C. Neu,43M. S. Neubauer,9J. Nielsen,28T. Nigmanov,45L. Nodulman,2

O. Norniella,3T. Ogawa,55S. H. Oh,15Y. D. Oh,27T. Okusawa,40R. Oldeman,29R. Orava,22K. Osterberg,22 C. Pagliarone,44E. Palencia,11R. Paoletti,44V. Papadimitriou,16A. Papikonomou,25A. A. Paramonov,13B. Parks,38

S. Pashapour,32J. Patrick,16G. Pauletta,52M. Paulini,12C. Paus,31D. E. Pellett,7A. Penzo,52T. J. Phillips,15 G. Piacentino,44J. Piedra,11K. Pitts,23C. Plager,8L. Pondrom,57G. Pope,45X. Portell,3O. Poukhov,14N. Pounder,41

F. Prakoshyn,14A. Pronko,16J. Proudfoot,2F. Ptohos,18G. Punzi,44J. Pursley,24J. Rademacker,41A. Rahaman,45 A. Rakitin,31S. Rappoccio,21F. Ratnikov,50B. Reisert,16V. Rekovic,36N. van Remortel,22P. Renton,41M. Rescigno,49 S. Richter,25F. Rimondi,5K. Rinnert,25L. Ristori,44W. J. Robertson,15A. Robson,20T. Rodrigo,11E. Rogers,23S. Rolli,54 R. Roser,16M. Rossi,52R. Rossin,17C. Rott,46A. Ruiz,11J. Russ,12V. Rusu,13D. Ryan,54H. Saarikko,22S. Sabik,32 A. Safonov,7W. K. Sakumoto,47G. Salamanna,49O. Salto,3D. Saltzberg,8C. Sanchez,3L. Santi,52S. Sarkar,49K. Sato,53

P. Savard,32A. Savoy-Navarro,16T. Scheidle,25P. Schlabach,16E. E. Schmidt,16M. P. Schmidt,58M. Schmitt,37 T. Schwarz,33L. Scodellaro,11A. L. Scott,10A. Scribano,44F. Scuri,44A. Sedov,46S. Seidel,36Y. Seiya,40A. Semenov,14

F. Semeria,5L. Sexton-Kennedy,16I. Sfiligoi,18M. D. Shapiro,28T. Shears,29P. F. Shepard,45D. Sherman,21 M. Shimojima,53M. Shochet,13Y. Shon,57I. Shreyber,35A. Sidoti,44A. Sill,16P. Sinervo,32A. Sisakyan,14J. Sjolin,41 A. Skiba,25A. J. Slaughter,16K. Sliwa,54D. Smirnov,36J. R. Smith,7F. D. Snider,16R. Snihur,32M. Soderberg,33A. Soha,7

S. Somalwar,50V. Sorin,34J. Spalding,16F. Spinella,44P. Squillacioti,44M. Stanitzki,58A. Staveris-Polykalas,44 R. St. Denis,20B. Stelzer,8O. Stelzer-Chilton,32D. Stentz,37J. Strologas,36D. Stuart,10J. S. Suh,27A. Sukhanov,17

K. Sumorok,31H. Sun,54T. Suzuki,53A. Taffard,23R. Tafirout,32R. Takashima,39Y. Takeuchi,53K. Takikawa,53 M. Tanaka,2R. Tanaka,39M. Tecchio,33P. K. Teng,1K. Terashi,48S. Tether,31J. Thom,16A. S. Thompson,20 E. Thomson,43P. Tipton,47V. Tiwari,12S. Tkaczyk,16D. Toback,51K. Tollefson,34T. Tomura,53D. Tonelli,44 M. To¨nnesmann,34S. Torre,44D. Torretta,16S. Tourneur,16W. Trischuk,32R. Tsuchiya,55S. Tsuno,39N. Turini,44 F. Ukegawa,53T. Unverhau,20S. Uozumi,53D. Usynin,43L. Vacavant,28A. Vaiciulis,47S. Vallecorsa,19A. Varganov,33

E. Vataga,36G. Velev,16G. Veramendi,23V. Veszpremi,46T. Vickey,23R. Vidal,16I. Vila,11R. Vilar,11I. Vollrath,32 I. Volobouev,28F. Wu¨rthwein,9P. Wagner,51R. G. Wagner,2R. L. Wagner,16W. Wagner,25R. Wallny,8T. Walter,25 Z. Wan,50M. J. Wang,1S. M. Wang,17A. Warburton,32B. Ward,20S. Waschke,20D. Waters,30T. Watts,50M. Weber,28

W. C. Wester III,16B. Whitehouse,54D. Whiteson,43A. B. Wicklund,2E. Wicklund,16H. H. Williams,43P. Wilson,16 B. L. Winer,38P. Wittich,43S. Wolbers,16C. Wolfe,13S. Worm,50T. Wright,33X. Wu,19S. M. Wynne,29A. Yagil,16 K. Yamamoto,40J. Yamaoka,50Y. Yamashita,39C. Yang,58U. K. Yang,13W. M. Yao,28G. P. Yeh,16J. Yoh,16K. Yorita,13

T. Yoshida,40I. Yu,27S. S. Yu,43J. C. Yun,16L. Zanello,49A. Zanetti,52I. Zaw,21F. Zetti,44X. Zhang,23 J. Zhou,50and S. Zucchelli5

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain

4Baylor University, Waco, Texas 76798, USA

5Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy

6Brandeis University, Waltham, Massachusetts 02254, USA

7University of California –Davis, Davis, California 95616, USA

8University of California –Los Angeles, Los Angeles, California 90024, USA

9University of California –San Diego, La Jolla, California 92093, USA

10University of California –Santa Barbara, Santa Barbara, California 93106, USA

11Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

12Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

13Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

14Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

15Duke University, Durham, North Carolina 27708, USA

16Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

17University of Florida, Gainesville, Florida 32611, USA

18Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

19University of Geneva, CH-1211 Geneva 4, Switzerland

20Glasgow University, Glasgow G12 8QQ, United Kingdom

011802-2

(4)

21Harvard University, Cambridge, Massachusetts 02138, USA

22Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

23University of Illinois, Urbana, Illinois 61801, USA

24The Johns Hopkins University, Baltimore, Maryland 21218, USA

25Institut fu¨r Experimentelle Kernphysik, Universita¨t Karlsruhe, 76128 Karlsruhe, Germany

26High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan

27Center for High Energy Physics: Kyungpook National University, Taegu 702-701;

Seoul National University, Seoul 151-742;

and SungKyunKwan University, Suwon 440-746; Korea

28Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

29University of Liverpool, Liverpool L69 7ZE, United Kingdom

30University College London, London WC1E 6BT, United Kingdom

31Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

32Institute of Particle Physics: McGill University, Montre´al, Canada H3A 2T8;

and University of Toronto, Toronto, Canada M5S 1A7

33University of Michigan, Ann Arbor, Michigan 48109, USA

34Michigan State University, East Lansing, Michigan 48824, USA

35Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

36University of New Mexico, Albuquerque, New Mexico 87131, USA

37Northwestern University, Evanston, Illinois 60208, USA

38The Ohio State University, Columbus, Ohio 43210, USA

39Okayama University, Okayama 700-8530, Japan

40Osaka City University, Osaka 588, Japan

41University of Oxford, Oxford OX1 3RH, United Kingdom

42University of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

43University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

44Istituto Nazionale di Fisica Nucleare Pisa, Universities of Pisa, Siena and Scuola Normale Superiore, I-56127 Pisa, Italy

45University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

46Purdue University, West Lafayette, Indiana 47907, USA

47University of Rochester, Rochester, New York 14627, USA

48The Rockefeller University, New York, New York 10021, USA

49Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome ‘‘La Sapienza’’, I-00185 Roma, Italy

50Rutgers University, Piscataway, New Jersey 08855, USA

51Texas A&M University, College Station, Texas 77843, USA

52Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy

53University of Tsukuba, Tsukuba, Ibaraki 305, Japan

54Tufts University, Medford, Massachusetts 02155, USA

55Waseda University, Tokyo 169, Japan

56Wayne State University, Detroit, Michigan 48201, USA

57University of Wisconsin, Madison, Wisconsin 53706, USA

58Yale University, New Haven, Connecticut 06520, USA (Received 24 August 2005; published 5 January 2006)

We present a search for neutral supersymmetric Higgs bosons decaying to pairs produced in pp collisions atps

1:96 TeV. The data, corresponding to310 pb1integrated luminosity, were collected with the Collider Detector at Fermilab in run II of the Tevatron. No significant excess above the standard model backgrounds is observed. We set exclusion limits on the production cross section times branching fraction topairs for Higgs boson masses in the range from 90 to250 GeV=c2.

DOI:10.1103/PhysRevLett.96.011802 PACS numbers: 14.80.Cp, 12.60.Fr, 12.60.Jv, 13.85.Rm

One of the outstanding questions in particle physics is the dynamics of electroweak (EW) symmetry breaking and the origin of particle masses. In the standard model (SM), EW symmetry is spontaneously broken through the Higgs mechanism [1], which predicts the existence of a massive scalar Higgs bosonhSM. Theoretical difficulties related to divergent radiative corrections to thehSMmass have natu- ral solutions in supersymmetric (SUSY) models [2].

The minimal supersymmetric extension of the standard model (MSSM) [3] is the simplest realistic SUSY theory.

The Higgs sector in the MSSM consists of two charged and three neutral scalar bosons. AssumingCPinvariance, one of the neutral bosons (A) is CP-odd, and the other two (h; H) areCP-even. Throughout this Letter, we useh(H) for the lighter (heavier)CP-even neutral Higgs boson and to denote any ofh; H; A. At tree level, the MSSM Higgs

(5)

bosons are described by the mass ofA(mA), andtan vu=vd, wherevu,vdare the vacuum expectation values of the neutral Higgs fields that couple to up-type and down- type fermions, respectively. The Yukawa couplings ofAto down-type fermions (such as the b quark and ) are en- hanced by a factor oftanrelative to the SM. For large tan, one of the CP-even bosons is nearly mass- degenerate withAand has similar couplings. The dominant production mechanisms of neutral MSSM Higgs bosons at hadron colliders are gluon fusion [4] andbbfusion [5,6].

The leading decay modes ofAand the corresponding mass- degenerate CP-even Higgs boson are !bb (90%) and!(10%).

In this Letter, we present the results of a search for neutral MSSM Higgs bosons produced in pp collisions

at

ps

1:96 TeV. The data sample of 310 pb1 inte- grated luminosity was collected with the upgraded Collider Detector at Fermilab (CDF II) between 2002 and 2004 in run II of the Tevatron. The search is performed in the!decay channel for90< mA<250 GeV=c2. Oneis detected in the decay to aneorand neutrinos, and the other in the decay to hadrons and a neutrino. In the following, we usee,, andhadas shorthand notations for the decay modes !ee, !, and ! hadrons, respectively. Previous and related searches in the di-channel are presented in Refs. [7,8].

CDF II [9] is a general purpose detector with tracking and calorimetry. The tracking system consists of silicon microstrip detectors and a cylindrical wire drift cham- ber. It is immersed in a 1.4 T magnetic field produced by a superconducting solenoid. Electromagnetic (EM) and hadronic (HAD) sampling calorimeters are located out- side the solenoid and cover detector pseudorapidityjj<

3:6, where lntan=2 and is the polar angle with respect to the proton beam. The calorimeters are divided into towers with projective geometry. A central electromagnetic shower maximum detector (CES) con- sisting of proportional chambers with anode wires parallel to the beam axis and orthogonal cathode strips is embedded in the EM calorimeter at a depth of six radia- tion lengths. The CES is used to determine the position of EM showers with spatial resolution of 0:5 cm.

Muons are identified by a system of drift chambers lo- cated outside the calorimeter volume with combined cover- age extending to jj<1:5. The luminosity is measured by gas Cherenkov counters located in the detector for- ward and backward regions (3:7<jj<4:7) with 6%

precision [10].

The search for!requires detection of aneor (from e; ) and the reconstruction of the had decay products. Events are preselected with ‘‘lepton plus track’’

triggers [11]. The triggers require a lepton (e; ) candi- date and another track, both pointing to the central calorimeter (jj&1:0) and having azimuthal separa- tion ’ >10. The overall trigger efficiency for signal

events passing the selection criteria described below is greater than 90%. The algorithms for eandidentifica- tion are described in detail in Ref. [9]. The vector sum of the transverse momenta [12] of the neutrinos from decays appears as missing transverse energy (6ET), deter- mined from the imbalance of energy deposition in the calorimeter [13]. The decay products inhad form narrow jets with low multiplicity of neutral and charged particles.

The positions and energies of0’s and photons are recon- structed with the CES detector and EM calorimeter, re- spectively. In this search, we do not distinguish reconstructed photons and 0’s, and all neutrals are as- sumed to be 0’s. A charged track with pT>6 GeV=c pointing to a cluster of six or fewer contiguous calorimeter towers serves as a seed for ahadcandidate. The direction of the track defines the axis of a signal cone of size sigand an isolation annulus extending from sig to iso 0:52 rad. The signal cone size depends on the calorimeter cluster energy Ecl: sig is the minimum of 0.17 and 5 GeV=Ecl rad. To reduce position resolution effects, the minimum value of sigis set to 0.05 (0.1) rad for tracks (0’s). The four-momentum of had is calculated from tracks and0’s in the signal cone. Particles in the isolation annulus are used to impose requirements that discriminate against quark and gluon jets: The scalar sum of the pT of tracks (sum of ET of 0’s) is required to be less than 1 GeV=c(1 GeV). We selecthad candidates with one or three tracks in the signal cone (Ntrksig1;3) with pT>

1 GeV=c, consistent with the dominant decay modes.

In theNsigtrk3case, the sum of the electric charges must be equal to1. The invariant mass of the hadronic system is required to be less than 1:8 GeV=c2. Electrons are rejected by imposing the conditionEcl=Ptrksig0:95f>

0:1, where f is the ratio of EM to HAD energy in the calorimeter cluster, and Ptrksig is the scalar sum of track momenta in the signal cone. Muons are suppressed by requiringEclT >15 GeV. Thehadidentification efficiency increases from 38% at transverse momentum of the had- ronic system phadT 15 GeV=c to 46% for phadT * 25 GeV=c. The probability for misidentifying a quark or gluon jet as had is measured using jet data samples. It is 1:5%for jet transverse energyEjetT 20 GeV, dropping to0:1%forEjetT 100 GeV.

The acceptances for signal and most of the backgrounds are determined from samples of Monte Carlo (MC) simu- lated events produced by the PYTHIAevent generator [14]

with CTEQ5L [15] parton distribution functions (PDF’s).

Tau decays are simulated by the TAUOLA package [16].

Detector response is simulated with a GEANT-based [17]

model of the detector.

The dominant (and irreducible) background in the final sample of selected events is from inclusive Z= produc- tion with subsequent decays topairs. It is estimated using MC simulated events with normalization corresponding to 011802-4

(6)

pp !Z= BRZ= !ll 254:9 pb in the di- lepton mass region66< mll<116 GeV=c2[18]. The sec- ond largest background contribution comes from processes with quark or gluon jets misidentified ashad, such as dijet and multijet, Wjets, and jets production. These backgrounds are estimated from the data by applying jet! had misidentification rates to jets in events that pass all selection criteria except forhadidentification. The validity of the predictions is verified using independent data samples representing the background processes. The third group of backgrounds includes Z= !ll (le; ), WW,WZ,ZZ, andttproduction. Their contributions are determined from MC samples normalized to the theoretical cross sections.

The events in theehad(had) channel are selected by requiring onee() candidate withpeT >10 GeV=cand one had candidate with phadT >15 GeV=c and opposite electric charge. Low-energy multijet backgrounds are sup- pressed by rejecting events withjpeT j jphadT j j6ETj<

50 GeV. Backgrounds fromWjet events are suppressed by imposing a requirement on the relative directions of the visibledecay products and6ET. We define a unit vector^ along the bisector of the angle between the directions ofe () andhadin the transverse plane. The projectionspvis p~ep~had ^andp6ET 6E~T ^are required to satisfy p6ET>0:6pvis 10 GeV=c. This condition removes 85% of the Wjet events passing the other selection criteria while retaining 95%of the signal. To suppress backgrounds fromZ!lldecays with a misidentified lep- ton, we do not accept events with invariant mass of ane() and a single-trackhadcandidate within10 GeV=c2 of the Zmass. The combined signal acceptance for a Higgs boson of mass90 GeV=c2(250 GeV=c2) in theehadandhad channels is 0.8% (2.0%).

The systematic uncertainties for particle identification efficiency are 3.5% (had), 1.3% (e), and 4.6% (). The uncertainties in trigger efficiency for theehadandhad channels are 2.1% and 1.4%, respectively. The uncertainty in the determination of backgrounds due to jet! mis- identification is 20%, resulting in 3% effect on the total background estimate. The systematic uncertainty in signal acceptance from event-level cuts is less than 2%. The imprecise knowledge of the PDF’s introduces an additional 5.7% uncertainty on signal acceptance [19].

Figure 1 shows the track multiplicity distribution forhad candidates in the data, along with the background predic- tions. The characteristic enhancement in the one- and three-track bins clearly shows the contribution from events withhad in the final state. The total number of expected events from SM processes after applying all selection criteria is NSM4965stat 28syst 25lumi.

The contributions from Z=!, backgrounds with jet! misidentification, and all remaining background sources are 405, 75, and 16, respectively.

We observe 487 events, in agreement with NSM. To probe for a possible Higgs signal, we perform binned likelihood fits of the partially reconstructed mass of the di- system (mvis) defined as the invariant mass of the visible tau decay products and 6ET. The backgrounds are allowed to float within limits set by Gaussian constraints corresponding to the systematic uncertainties in trigger efficiencies, particle identification, production cross sec- tions, PDF’s, event cuts, and luminosity measurement.

Potential differences in mvis shapes between data and the MC simulation in different channels are treated as system- atic uncertainties. We create signal and background mvis templates with the MC energy scales shifted from the nominal values according to the uncertainties and study the effect on hypothetical cross section measurements. The deviations from the results obtained with the nominal templates are parametrized in terms of the Higgs boson mass and input cross section. An example fit for mA 140 GeV=c2 is shown in Fig. 2. We observe no signal evidence formA90–250 GeV=c2and set exclusion lim- its at 95% C.L. on pp !X BR! as FIG. 1 (color online). Track multiplicity for hadronically de- caying tau candidates before applying the opposite charge and Nsigtrk requirements.

FIG. 2 (color online). Example fit of themvisdistribution for signal withmA140 GeV=c2. Signal and background normal- izations correspond to the fit results for signal exclusion at 95%

C.L.

(7)

shown in Fig. 3. The sensitivity of the limit-setting proce- dure is determined from MC simulations assuming no signal. The mvis shape uncertainty leads to 15% (5%) deterioration of the limits for the low (high) end of the considered mA region. The observed limits range from 24.4 pb for mA90 GeV=c2, to 9.3 pb for mA 140 GeV=c2, to 1.8 pb formA250 GeV=c2.

Using the theoretical predictions for the MSSM Higgs boson production and decay to pairs, we interpret the limits on pp !X BR! as exclusions of parameter regions in thetanvsmA plane. The cross sections are obtained from SM calculations and scaling factors MSSM=SM accounting for the modified Higgs couplings [20]. The cross sections for gluon fusion medi- ated by a b-quark loop are calculated with the HIGLU

program [21]. The corresponding values forbb!X

are taken from Ref. [6]. The scaling factors and BR! are calculated with theFEYNHIGGSprogram [22]. They depend on mA,tan, theSU2 gaugino mass parameter M2, the SUSY mass scale MSUSY, the squark mixing parameter Xt, the gluino mass mg~, and the Higgs mixing parameter. We consider four benchmarks [23]: themmaxh and no-mixing scenarios, with >0 and <0. The excluded tanvsmAregions are shown in Fig. 4.

The LEP experiments have excludedmA&93 GeV=c2 and higher-mass A for small tan [24]. Our search is complementary, providing sensitivity in the large tan region. The excluded parameter space in the tanvsmA plane for <0is similar to the D0 results obtained in the !bb decay mode [25] and extends to higher mA. Moreover, our results in the !channel allow us to set comparable exclusions for scenarios with >0, as the lower production cross sections are compensated by an increase inBR!.

We thank A. Belyaev, M. Carena, J. Gunion, T. Han, S. Heinemeyer, W. Kilgore, S. Mrenna, M. Spira, C. Wagner, G. Weiglein, and S. Willenbrock for illuminat- ing discussions on the theory of MSSM Higgs production and decays. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contri- butions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foun- dation; the A. P. Sloan Foundation; the Bundes- ministerium fu¨r Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, U.K.; the Russian Foundation for Basic Research; the Comisio´n Interministerial de Ciencia y Tecnologı´a, Spain; in part by the European Community’s Human Potential Programme under Contract No. HPRN-CT- 2002-00292; and the Academy of Finland.

[1] P. W. Higgs, Phys. Lett.12, 132 (1964); Phys. Rev. Lett.

13, 508 (1964); Phys. Rev.145, 1156 (1966).

[2] S. P. Martin, hep-ph/9709356, and references therein.

[3] D. J. H. Chung et al., Phys. Rep. 407, 1 (2005), and references therein.

[4] S. Dawson, A. Djouadi, and M. Spira, Phys. Rev. Lett.

77, 16 (1996).

[5] F. Maltoni, Z. Sullivan, and S. Willenbrock, Phys. Rev. D 67, 093005 (2003).

[6] R. V. Harlander and W. B. Kilgore, Phys. Rev. D 68, 013001 (2003).

[7] D. Acosta et al.(CDF Collaboration), Phys. Rev. D72, 072004 (2005).

FIG. 4 (color online). Excluded regions in the tan vs mA plane for the mmaxh and no-mixing scenarios with (a) <0 and (b) >0.

FIG. 3 (color online). Upper limits at 95% C.L. on Higgs production cross section times branching fraction to pairs.

The expected limits from the pseudoexperiments are also shown.

011802-6

(8)

[8] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett.

95, 131801 (2005).

[9] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).

[10] S. Klimenko, J. Konigsberg, and T. M. Liss, Fermilab Report No. FERMILAB-FN-0741, 2003.

[11] A. Anastassovet al., Nucl. Instrum. Methods Phys. Res., Sect. A518, 609 (2004).

[12] We define transverse momentum (pT) and transverse energy (ET) aspTpsinandETEsin.

[13] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 72, 052003 (2005).

[14] T. Sjo¨strand et al., Comput. Phys. Commun. 135, 238 (2001). We usePYTHIAv. 6.215.

[15] H. L. Lai et al. (CTEQ Collaboration), Eur. Phys. J. C 12, 375 (2000).

[16] Z. Waset al., Nucl. Phys. B, Proc. Suppl.98, 96 (2001).

[17] R. Brun and F. Carminati, CERN Programming Library Long Writeup W5013, 1993.

[18] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett.

94, 091803 (2005).

[19] We compare the acceptances obtained with the CTEQ5 and CTEQ6 PDF sets. In the latter case, we also include the effect of the eigenvector variations.

[20] M. Carena, S. Heinemeyer, G. Weiglein, and C. E. M.

Wagner, Fermilab Report No. FERMILAB-PUB-05-370- T, 2005.

[21] M. Spira, Nucl. Instrum. Methods Phys. Res., Sect. A 389, 357 (1997).

[22] S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J.

C9, 343 (1999); Comput. Phys. Commun.124, 76 (2000).

[23] M. Carena, S. Heinemeyer, C. E. M. Wagner, and G.

Weiglein, hep-ph/9912223; Eur. Phys. J. C26, 601 (2003).

[24] ALEPH, DELPHI, L3, and OPAL Collaborations, LHWG-Note 2004-01, 2004.

[25] V. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.

95, 151801 (2005).

Références

Documents relatifs

Using theoretical predictions assuming the manifest left- right symmetric model, which has the right-handed CKM matrix and the gauge coupling constant identical to those of the

A search for neutral Higgs bosons of the minimal supersymmetric standard model (MSSM) and for a heavneutral Z′ boson is performed using a data sample corresponding to an

In the CDF II data sample of 2 : 2 fb 1 , we find no evidence of charged Higgs bosons in the dijet mass spectrum of the top quark decays. This analysis also yields conservative

After basic event selection, the total expected signal event yield in the current data set is 5:1 0:5 ( 3:5 0:4 ) single (double)-tag events for a Higgs boson with a mass of 115

47 Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy.. 48 University of Pittsburgh,

final CDF cross section limits for Higgs boson production in association with a vector boson from the run I data.. The CDF detector is described

In summary, we have performed a search for a charged Higgs boson in top quark decays using measurements of the top pair production cross section in four different final states, and

Both the number of events and the dijet mass distribution are consistent with standard model background expectations, and we set 95% confidence level upper limits on the