• Aucun résultat trouvé

Towards the integration of niche and network theories

N/A
N/A
Protected

Academic year: 2021

Partager "Towards the integration of niche and network theories"

Copied!
14
0
0

Texte intégral

(1)

Towards

the

Integration

of

Niche

and

Network

Theories

Oscar

Godoy,

1,

*

,@

Ignasi

Bartomeus,

2

Rudolf

P.

Rohr,

3

and

Serguei

Saavedra

4

Thequestforunderstandinghowspeciesinteractionsmodulatediversityhas

progressedbytheoreticalandempiricaladvancesfollowingnicheandnetwork

theories.Yet,nichestudieshavebeenlimited todescribecoexistence within

tropiclevelsdespiteincorporatinginformationaboutmulti-trophicinteractions.

Networkapproachescouldaddressthislimitation,buttheyhaveignoredthe

structure of species interactions within trophic levels. Here we call for the

integrationofnicheandnetworktheoriestoreachnewfrontiersofknowledge

exploringhow interactionswithin andacross trophiclevels promotespecies

coexistence.Thisintegrationispossibleduetothestrongparallelisms inthe

historical development, ecological concepts, and associated mathematical

toolsofboththeories.Weprovideaguidelinetointegratethisframeworkwith

observationalandexperimental studies.

NicheTheoryMeetsNetworkTheory

Onecentralaiminecologyisunderstandinghowspeciesinteractionsmodulatebiodiversity.At theoriginofthisinterestisDarwin’slegacy;hereasonedthatspeciescoexistenceislesslikely amongcloselyrelatedspeciesastheytendtocompeteforsimilarresourcesforsurvivingand reproducing[1].Giventhisreasoning,ecologistsbuilttheconceptoftheniche(seeGlossary)to assessthe degree of resource overlapamong species[2,3],and earlywork exploredthe consequencesofcompetitionforasingle-resourcenichedimension[4,5].However, research-erssoon recognized that a species’ niche is composed ofmultiple dimensions [6,7]. For instance,plantscompetedirectlyandindirectlyforabioticresourcessuchaswater,nutrients, andlight[8–10],as wellasforbiotic resourcesintheformofmutualisticinteractions(e.g., pollinators,disperses,andmycorrhizae)[11–14].Inadditiontoresourcecompetition,parallel workhasshownthatantagonistinteractionswithinatrophiclevel(i.e.,intraguildpredation)

[15]aswellasthosecomingfromothertrophiclevels(e.g.,predation,herbivory,and parasit-ism)arealsopartofaspecies’niche[16–19].Moreover,positiveinteractionssuchasfacilitation canbeasimportantascompetitiveinteractionsforstructuringecologicalcommunities[20,21]. Thisbody of knowledge has revealedthat species coexistence is a muchmore complex processthanoriginallythought.

Paralleltodescribingthemultidimensionalnatureofspecies’niche,ecologistshaveobtained critical progress by revealing general principles of the consequences of multiple species interactions for species coexistence. For example, the concept of apparent competition

[22,23]hasbeenparticularlykeytounderstandingtheroleofindirectmulti-trophicinteractions incoexistencebydescribinghowcompetitionwithinaguildofspeciesismodulatedbyshared enemies(e.g.,predatorsandpathogens).Thisconceptrecentlysetthepathtorecognizethat competitionforresourcesandpredationcanbeofequalimportanceforlimitingorpromoting diversitywithinaguildofprimaryproducersorconsumers(e.g.,plantsorherbivores)[24,25].

Highlights

We propose to integrate niche and

network theories into a single

framework.

Thisintegrationispossiblethroughthe

strongparallelisms ofconcepts and

methodologiesofboththeories.

Feasibilityandstabilityconditionsare

thekeyconceptsthatcanallowthe

integration.

How species interactions across

trophiclevelsfulfillfeasibilityand

stabi-lityconditionsisyettobediscovered.

1

InstitutodeRecursosNaturalesy

AgrobiologíadeSevilla(IRNAS-CSIC)

Av.ReinaMercedes10,E-41080

Sevilla,Spain

2

EstaciónBiol ́ogicadeDoñana

(EBD-CSIC)CalleAḿ ericoVespucio26,

E-41092Sevillea,Spain

3

DepartmentofBiology–Ecologyand

Evolution,UniversityofFribourg

CheminduMuśee10,CH-1700

Fribourg,Switzerland

4

DepartmentofCiviland

EnvironmentalEngineering,MIT,77

MassachusettsAv.,02139

Cambridge,MA,USA

@

Twitter:@Eco_Godoy

*Correspondence:

ogodoy@irnas.csic.es(O.Godoy).

http://doc.rero.ch

Published in "Trends in Ecology & Evolution 33 (4): 287–300, 2018"

which should be cited to refer to this work.

(2)

However,theseadvancestogetherwithnichestudiesarelimitedintheirapproach,astheirgoal istounderstandtheroleofspecies interactionsinshapingspeciescoexistencewithin one singletrophiclevel[26].Therestofthespecieswithinacommunitythatdonotbelongtothe focaltrophiclevelisconsideredtobealwayspresentandstatic.Thiscriticallimitationofniche studies clasheswiththe increasinginterest of ecologistsin disentangling themechanisms maintainingspeciescoexistenceinmorethanonetrophiclevel(seeFigure1foraschematic representation).Indeed,partofthismotivationisduetohavingmulti-trophicinformationreadily available[27,28],butthe fundamentalquestionishowtoextend nichetheoryto studythe effects of species interactions on determining diversity across multiple trophic levels simultaneously.

To addressthis limitation,we call for the integrationof niche theory withnetwork theory. Networktheoryhasalreadypartiallyaddressedthechallengeofhowtoconsidertheroleof speciesinteractionsinshapingspeciescoexistenceacrossseveraltrophiclevels[29,30],butit hasmissedtheinformationwithintrophiclevelsthatnichetheoryincorporates.Inparticular, networkstudieshavefocusedontheassociationofthestructureofspeciesinteractionswith communitydynamics inmutualistic (e.g.,plant–pollinator and plant–disperser) [31–35] and antagonisticsystems(e.g.,host–parasite,prey–predator,andplant–herbivore)[34,36–38]Yet, becausenetworkstudiesemphasizespeciesinteractionsbetweentrophiclevels,theyconsider thatspecieswithinthesametrophicleveldonotdirectlyinteract,ortheyallinteractwiththe samestrength[33,35].

Becausenichestudies lack the ability to describespecies coexistencefor more than one trophiclevel,andnetworkstudiesignorethestructureofspeciesinteractionswithintrophic levels(Figure1),itissurprisingthatboththeorieshavenotspokenfluentlytoeachotherdespite

Glossary

Equilibriumpoint:afixedstateat

whichspeciesabundancesare

constantovertime.

Dynamicalstability:thepropertyof

anecologicalsystemtoreturntoan

originalequilibriumpointafterapulse

perturbation.

Intrinsicgrowthrate:therateat

whichapopulationincreasesinsize

intheabsenceofdensity-dependent

regulation.

Feasibility:thepropertyofan

ecologicalsystemtoholdan

equilibriumpointwithpositive

abundancesinallitsconstituent

species.

Feasibilitydomain:therangeof

conditions(e.g.,demographic

parameters)compatiblewithall

specieshavingpositiveabundance.

Feedback:theprocessbywhichthe

outputofasystemisroutedbackas

aninputofanothersystemforminga

loop.

Fitness:thespeciesabilitytomature

andproduceoffspring.

Fitnessdifferences:accordingto

Chesson(2000)[48],averagefitness

differencesbetweenspeciesarean

equalizingmechanismofspecies

coexistencethatreducecompetitive

imbalancebetweencompetitors.In

theabsenceofnichedifferences,

determinethesuperiorcompetitorin

acommunity.

Multi-trophicnetwork:anetwork

representingpatternsofmultiple

interactiontypesbetweenspecies,

includingcompetition,mutualistic,or

antagonisticrelationships.Also

knownasmultiplexnetworks.

Niche:theenvironmentalconditions

andresourcesaspeciesrequiresfor

livingandreproducing.

Nichedifferences:accordingto

Chesson(2000)[48],niche

differencesareastabilizing

mechanismofspeciescoexistence

bycausingintraspecificcompetition

toexceedinterspecificcompetition.

Percapitagrowthrate:therelative

contributiontothepopulation

increasesinsizeperindividual.

Speciesdynamics:changesin

species’populationoverspaceand

time.

Trophiclevel:aleveloforganization

withinthefoodchainofan

ecosystem,theorganismsofwhich

obtainresourcesinasimilarway.

Figure1.ResearchDomainsofNicheandNetworkTheories.Nichetheory(leftside)hasbeensuccessfulin

incorporatingtheeffectofdirectandindirectinteractionswithinandbetweentrophiclevels(denotedbyblackarrows)on

determiningspeciescoexistencewithinasingletrophiclevel(lightgreenrectangle)[7,16,22,24].However,nichestudies

havenotaddressedhowthesedirectandindirecttrophicinteractionsmodulatecoexistenceacrosstrophiclevels.By

contrast,thistaskhasbeenaddressedbynetworkresearch(rightside).Whiletheareaofstudyisbigger(greenrectangle),

networkstudieshavenotconsideredthestructureofinteractionswithintrophiclevels(nounbrokenlinespresent).By

integratingnicheandnetworktheorieswecanstartconsideringexplicitlyandsimultaneouslyspeciesinteractionsacross

trophiclevelsandtheirrole(feedbacks)inmodulatingspeciescoexistence.Notethatarrowsaredouble-headed,indicating

theexistenceofsuchfeedbacks.Unbrokenandbrokenarrowsindicatewhethertheinteractioniswithinorbetween

trophiclevels,respectively.

(3)

theircomplementarities;doingsocanprovidenewresearchavenuesandunderstandingof howspeciesdiversityismaintained.Ouraimhereistoshowadirectintegrationofboththeories as they share strong similitudes in their theoretical motivations, ecological concepts, and mathematicaltools.Thispathofmutualunderstandingpavestheroadtocombinetheoretical conceptsandassociatedtoolboxesfromboththeoriesintoacommonmethodological frame-work. We believe the emerging framework is particularly useful for investigating species coexistenceinmulti-trophicnetworks,whichincludecompetitive,mutualistic,and antago-nisticinteractionssimultaneously.Additionally,weprovidearoadmapthataccommodatesthis newframeworktoexperimentalandobservationalstudies.

ConceptualParallelismsBetweenNicheandNetworkTheories

Obtainingacommontheoreticalframeworkfrom theintegrationofbothnicheandnetwork theoriesisstraightforwardasthesestudieshavestartedfromsimilarconceptualconstructs, andafterdecadesofresearchhaveindependentlyconvergedonequivalentconclusionsabout theconditionsleadingtospeciescoexistence.Toreachthemaximumaudience,weverbally detailthishistoricalconvergenceandexplainherewhyboththeoriesspeakthesamelanguage despite using different technical terms. We also aim to present a rigorous mathematical explanationofthisconceptualparallelism.Thisispossiblebecauseboththeoriesusesimilar population dynamics models to build ecological theory rooted in the Lotka-Volterra form

[4,24,25,35,38–41](Box1).WeareawarethatthedirectapplicationofLotka-Volterramodels todescribenaturalsystemsmightbelimitedassumingspecieslinearresponses,anddonot takeintoaccountmeta-communitydynamics.Partoftheselimitationswillbesolvedlaterwhen wepresentmoremechanisticmodelsthatcaptureadditionalnonlinearspeciesresponsesin orderto explain howto apply this emergingframework to experimentaland observational approximations[42,43].

Aswepreviouslymentioned,thenicheconceptwasafundamentalconstructtounderstand patternsofspeciesdistributionandco-occurrencewithinatrophiclevelbasedonhowspecies interact with the habitat they experience (Grinnellian niche), how they modify the habitat (Eltonianniche)andhowinteractwithotherspeciesinthecommunity(Hutchinsonianniche)

[44].Underclassicnichetheory,theonlyconditionmodulatingspeciescoexistencewasthe amount of niche overlap between species [4,45], which ecologists assumed to arise, for instance,from differences inphenology, billsize, shade tolerance,or feeding preferences. The rationale was that the smaller the niche overlap, the larger the chances of species coexistence[7,46,47].

However,subsequentwork[25,41,48]showedthatnichedifferencesalonearenotenough to determinespecies coexistence.Under recentadvancesof nichetheory (alsoknownas ‘moderncoexistencetheory’),nichedifferencesareonlyastabilizingmechanismthattendsto promotecoexistencewhenspecieslimitthemselvesmorethantheylimitothers[48].Modern coexistence theory has provided techniques to directly measure niche differences as the relative ratio between intra- and interspecific competition [25], and consider that neutral dynamicsoccurwhenspeciesdonotdifferintheirnichesbuthaveequivalentfitness[49]. Theestimationofnichedifferencesusingcoexistencetheorytechniquesremains phenome-nological(i.e.,thesourceofvariationisunknown),andrecentstudiesare,forinstance,mapping howspeciesfunctionaltraitdifferencesrelatetonichedifferences[50].

Conversely,speciescanalsodifferintheirfitness.Fitnessdifferencesarerelatedtospecies’ abilitytocaptureandtransformresourcesintooffspring,whichisgenerallyacombinationof demographicparameters(e.g.,fecundity,survival,andrecruitment)andthespecies’sensitivity

(4)

toreduce thesedemographicparametersinthepresenceofneighbors [25,43,49].Fitness differencesinessencedeterminethesuperiorcompetitorwithinaspeciespairintheabsenceof niche differences.It has been wellrecognized that coexistence is the result of a balance betweentherelativestrengthofnicheversusfitnessdifferences.Thatis,twospecieswillstably coexistwhentheirnichedifferencesovercometheirfitnessdifferences[48,49](seeTable1for examplesofbothspeciesdifferencesacrossawiderangeoforganisms).Thisconditionhas

Box1.ConceptualParallelismbetweenConditionsLeadingSpeciesCoexistenceforNicheand

NetworkTheory

Forapairofspeciesincompetition,thecoexistenceconditionsaccordingtonichetheoryaredefinedby:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi a11a22 a12a21 r ð1NichedifferenceÞ1 > r1 r2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi a22a21 a11a12 r Fitnessdifference > ffiffiffiffiffiffiffiffiffiffiffiffiffiffia12a21 a11a22 r 1Nichedifference [I]

wherer1>0correspondstotheintrinsicgrowthrate(demographicparameter)ofspecies1,anda12>0represents

thecompetitivepercapitaeffectofspecies2onthepercapitagrowthrateofspecies1.Thisequationstatesthatthe

fitnessdifference(i.e.,theratiobetweenintrinsicgrowthratesmodulatedbywhatisknownasthecompetitiveresponse

ratio)ofthetwospecieshastofallbetweenalowerandanupperbound,computedfromthenichedifference(i.e.,range

ofvaluesdefinedbytheratiobetweeninter-andintraspecificcompetition).Notethattheseinequalitiescanbealso

simplywrittenasa11/a21>r1/r2>a12/a22.Moreover,suchinequalitieshavealsotoassumethatthenichedifferenceis

smallerthanone,i.e.,

a12a21<a11a22 [II]

whichguaranteesthattheequilibriumpointisdynamicallystable(thesystemreturnstoitsoriginalequilibriumpointafter

apulseperturbation)inaLotka-Volterracompetitionmodeloftheform:

dN1 dt ¼N1ðr1a11N1a12N2Þ dN2 dt ¼N2ðr2a21N1a22N2Þ 8 > < > : [III]

whereN1andN2correspondtotheabundanceofspecies1and2,respectively.NotethattheinequalitiesinEquationI

correspondtoanequilibriumpointcalledfeasiblebecauseallspecieshavepositiveabundances(i.e.,N1*>0and

N2*>0)[35,52–54,99].Bycontrast,theinequalityofEquationIIonlygrantsthedynamicalstability(infact,inthat

specificcasetheglobalstability)byhavingintraspecificcompetitionstrongerthaninterspecificcompetition.Notethat

feasibilityisanecessaryconditionforspeciespersistenceinaLotka-Volterramodel[54].

Letusexplainhowdynamicalstabilityandfeasibilityconditionsariseinmulti-trophicsystemsbytakingasanexamplea

two-trophiclevelsystemdescribingthemutualisticinteractionsbetweenasetofplants(P)andasetofpollinators(A).

Notethatsimilarconclusionsareobtainedbyconsideringantagonistinteractionssuchasaprey–predatorsystem.This

mutualisticsystemcanbedescribedbythefollowingsetofdynamicalequations:

dPi dt ¼Pi r ðPÞ i  X j aðPÞij Pjþ X j gðPÞij Aj ! dAi dt ¼Ai r ðAÞ i  X j aðAÞij Ajþ X j gðAÞij Pj ! 8 > > > > < > > > > : [IV]

wherethevariablesPiandAidenotetheabundanceofplantandanimalspeciesi,respectively.Theparametersofthis

mutualisticmodelcorrespondtothevaluesdescribingintrinsicgrowthrates(ri),within-guildcompetition(aij>0),and

thebenefitreceivedviamutualisticinteractionsbetweentrophiclevels(gij>0).Alltheseinteractionstrengthscan,in

turn,beembeddedinatwo-by-twoblockmatrix;

gaðPÞðAÞ gaðAÞðPÞ

 

[V]

Theconditionsforfeasibilitydependonboththespeciesinteractionsdefinedbybandthedemographicparametersof

speciesr(analogoustoEquationIabove)[71].Notethattheconditionsfordynamicalstabilityaremorecomplex[40].

Indeed,severalmeaningfulnotionsofstabilityhavebeendefinedinecology,suchasVolterra-dissipative,D-stability,

sign-stability,andlocalstability.Sign-stability,Volterra-dissipative,andD-stabilityareonlydeterminedbytheinteraction

matrixb.Sign-stabilityhasthepropertyofgrantingglobalstabilityonlyonthedescriptionofwhoeatswhomandnoton

thestrengthofthetrophicinteractions.Volterra-dissipativeimpliestheglobalstabilityofafeasibleequilibrium,while

D-stabilitygrantsonlylocalstability.Finally,localstabilityinvolvesalsotheequilibriumdensitiesandthereforetheintrinsic

growthrates.Therelationsamongthesenotionsofstability(andmore)arewellrepresentedbyLogofet’sflower[53].

(5)

alsobeenreinterpretedasthelargerthenichedifferencebetweentwospecies,thelargerthe combinationoftheirfitnessdifferencescompatiblewiththeircoexistence[49,51](Box1).This reinterpretationiscriticalasit providesthemainbridgeofcommonunderstandingbetween nicheandnetworktheories,explaininghowspeciescoexistenceispossible.

Networkresearchonspeciescoexistencestartedbystudyingthestabilizingmechanismsfor entirecommunities[5],ratherthanfocusingonpairwiseinteractions.Thisstabilitywasdefined inadynamicalratherthanastaticway.Dynamicalstabilityisthepropertyofasystemto returntoanoriginalequilibriumpoint(ifitexists)afterapulseperturbation(e.g.,achangein speciesabundances)comingfromdemographicstochasticity,whichincludesmigrationand random changes in birth and death processes. Early network studies showed that this dynamicalstabilitydepends onspeciesinteractions(analogousto nichedifferences) within

Table1.ExamplesofNicheandFitnessDifferencesforDifferentOrganismsandTrophicLevelsa

Trophiclevel Evidencesofnicheandfitnessdifferences Refs

Niche Fitness

Plant–plant Spatialsegregation,phenology,orplantmorphology

differencesreducenicheoverlap.

Speciesabilitytodrawdowncommonlimitingresources

determinesspeciesfitness.

[4,8,48]

Plant–insect Fragmentedevidencessuggestthatdifferencesin

pollinatorscanstabilizeplantcoexistence.

Herbivorousinsectsandtheirnetworkofhyperparasitoids

cansignificantlyaffectplantfitness.

[11,70,83]

Plant–vertebrate Interactiveeffectsbetweenabioticstress,tolerancetoherbivory,andherbivorebodysizedetermineplantabundances

andrichness.

[84,85]

Plant–fungi Fungalpathogensmediatecoexistencethroughtrade-offs

betweencompetitiveabilityandresistancetopathogens

andthroughpathogenspecialization.

Lowspecificityoffungalpathogensdetermineslocal

abundanceofplantspeciesinatropicalforest.

[19,86]

Insect–insect Plantspecies,stemsize,andlocationwithinstem

determinenichedifferenceswithinaguildofherbivorous

insects.

Searchingability,femalefecundity,andresource

degradationandpreemptiondeterminefitnessdifferences

amongparasitoids,phytophagousinsects,and

arachnids.

[87,88]

Insect–plant Wildbeesspecializeintheirfloralrewardincludingnectar,

pollen,pollenresins,volatiles,lipids,andwaxes.

Foragingratesandfoodstoragedeterminefitness

differences(i.e.,droneproduction,wintersurvival)among

geneticallydiversehoney-beecolonies.

[11,89]

Insect–vertebrate Tickhabitatdiffersgreatlyamongspeciesfromrodent

burrowstocavesandbirdnests.

Thetiminganddurationofaquaticinsectemergenceis

regulatedbytemporalvariationinsalmondensity.

[90,91]

Vertebrate–vertebrate Differencesinbillshapeandbodysizestabilize

coexistencebetweenbirdsbytheuseofdifferent

resources.

IntraguildpredationoflargecarnivoresonAfricanwild

dogsreducestheirpopulationsize.

[92,93]

Vertebrate–plant Strongoverlapofdietaryrequirementsbetweenwildand

domesticherbivores.

[94,95]

Insect–vertebrate Vertebratesdifferinthenumberandspecificityoftheir

parasiticinsects.

Ticksreduceoffspringandincreasemortalityinawide

varietyofanimalsincludingbirds,lizards,andmammals.

[90,96]

Trematode–mollusk Spatialheterogeneitystabilizescoexistenceofaguildof

saltmarshtrematodes.

Competition-colonizationtrade-offsdeterminetrematode

fitness.

[72]

Alga–alga Nicheandfitness:Phylogeneticrelatednessdoesnotpredictcompetitiveoutcomesbetweenfreshwateralgae. [58]

Bacteria–vertebrate SpecificimmunityofStreptococcuspneumoniae

serotypesstabilizescoexistence.

Acquiredimmunitytononcapsularantigensdetermines

serotypefitness.

[97]

Protist–bacteria Nicheandfitness:Differencesinmouthsizeofbacterivorousprotistspeciesreducescompetitiveexclusion. [46]

a

Someexamplesexplicitlyseparatethestudyofthespecies’nichefromthespecies’fitness,whileinotherexamplesresearchershaveonlystudiedonecomponent,or

bothnicheandfitnessdifferenceshavebeenconsideredtogether.Notethatformanytrophiclevels,informationofnicheandfitnessdifferencesisasymmetric,these

differencesarebetterknownforonetrophiclevelthanfortheother(e.g.,plants–fungiorinsects–vertebrate).

(6)

andbetweentrophiclevelcompartments(containedinbmatrix,Box1).Importantly,anumber ofinterestingquestionsemergedfromtheseconcepts,suchaswhethertheobservedstructure oflargemulti-trophicsystemsnecessarilyleadstomoredynamicallystablecommunities[5]. However,extensiveresearchshowedthatdynamicalstabilityalone(asnichedifferencesalone) isnotenoughtoguaranteestablecoexistenceofallspeciesinacommunity.Thismeansthatit canbepossibletohaveadynamicallystablecommunitywheretheequilibriumpointwillalways lead to one or more species withzero abundance (Ni*=0), even if reintroduced into the community[35,52,53].Inotherwords,thesystemisdynamicallystablebutcontainsonly a subsetofspeciesfromtheoriginalpool.

As it hashappenedwith the historicaldevelopment of nichetheory, subsequent work on networktheoryhasshownthatitisalsonecessarytoaccountforthespecies’fitnessinorderto evaluatetheconditionofwhetherspeciescanattainpositiveabundancesatequilibrium[54]. Networkstudiescalledthisconditionfeasibility,whichalsodependsonthespecies inter-actionscontainedinthematrix(b)andthespecies’demographicparameters(r)[35,52,55](Box 1).Importantly,theserecentadvanceshaveshownthatthestructureofspeciesinteractions betweentrophiclevelscanmodulatetherangeofcombinationsofdemographicparameters leadingtofeasiblesystems[35,55].Therefore,inlinewithnichetheory,networkstudiesalso found that species coexistence within communities depends on how the demography of speciesmatchtheconstraintsimposedbyspeciesinteractions.

This historical convergence shows the existence of a commontheoretical framework for understandinghowspecies interactionsmodulatediversity,whichhastwo keyingredients: (i)species’demographyand(ii)thestructureofspeciesinteractions.Thisstructureiscontained inthe bmatrix described in Box 1. Thetake-home messageof this framework isthat a communityofspeciescancoexistwhenbothingredientsarecombinedinthefollowingway:

Box2.EmergingPropertiesoftheIntegrationofNicheandNetworkTheory

Formulti-trophicdynamicalsystemsofthegeneralformdNi/dt=Nifi(N),annnblockmatrixemergesfordescribing

speciesinteractionacrossntrophiclevels:

b¼ a1 g12  g1n g21 a2  g2n ... ... } ... gn1 gn2  an 2 6 6 6 4 3 7 7 7 5; [I]

wherethediagonalblocks (ai)correspondto thewithin-trophiclevel(i)interactions(i.e.,competition,intraguild

predation,facilitation)andtheotherblocks(gij)representthebetween-trophiclevelinteractions(effectoftrophiclevel

joniintheformofmutualismorantagonisminteractions).Asbisablockmatrix,eachelementofthematrixrepresentsa

submatrixofspeciesinteraction.Forinstance,a1isamatrixdescribingallspeciesinteractionwithinthetrophiclevel1,

andg12isanothermatrixdescribingallinteractiveeffectsofspeciesfromthetrophiclevel2onspeciesfromthetrophic

level1.

Stablecoexistenceofallspecies(Ni*>0)acrosstrophiclevelsdependsonwhetherthisinteractionmatrixbandthe

demographicparametersrisatisfiestogetherboththestabilityandfeasibilityconditions[53,54,71].Therearedifferent

classesofdynamicalstability.Forinstance,localstabilityisthepropertyofthesystemtoreturntotheequilibriumpointaftera

small pulseperturbation(changesin speciesabundances), whereasglobalstabilityisconcernedwithexternalperturbations

ofanygivenmagnitudeconvergingtothesameequilibriumpoint.Eachclassdemandsspecificpropertiestobefulfilledby

theinteractionmatrixbincombinationwiththespeciesdemographicparametersri[53,71],andwhichclassofstability

shouldbe studieddepends on boththeresearchquestionand knowledgeabout the system. The feasibilityofamulti-trophic

systemcorrespondstotheconditionsallowingallspeciestohavepositiveabundances,whichalsodependsonboththe

interactionmatrixbandthedemographicparametersri[35,52–54,71].Thefigurebelowillustratestheconditionsof

feasibilityinathree-speciessystem.Thegreenareaonthesphererepresents therangeofdemographic parameters leading

tofeasibilitygiventheinteractionstrengthsmatrix.Tosomeextent,FigureIoftheextensionofmoderncoexistencetheoryto

multispeciescoexistence;theborderofthegreenareaisthemultispeciesanalogousofthefitnessandnichedifference

inequality(seeEquationIinBox1)thatappliestospeciespairsonly.

(7)

speciesinteractionsdefinethecoexistencespace(i.e.thefeasibilityregion)andspeciescoexist whenthecombinationoftheirdemographicparameters(i.e.fitness)fallswithinthisspace(Box 2andFigure2).Onecrucialadvantageofthisframeworkisthatitisnotlimitedtoanyparticular typeofmulti-trophicinteractions,andcanbethereforeaccommodatedtobothmutualisticand antagonisticinteractions,suchasaplant–pollinatororapredator–preycommunity.Another keyimportantadvantageisthatthisframeworkisnotlimitedtotwotrophiclevels.Itcanbe extended to multi-trophic structures, where three or more trophic levels are considered simultaneously.Indeed,thesemulti-trophicstructuresaresimplythecombinationof competi-tive/facilitativeinteractionswithintrophiclevels,aswellasantagonisticandmutualistic inter-actionsbetweentrophiclevels[56](Box2).

CouplingtheIntegrationofNicheandNetworkTheoriesWithExperimental andObservationalWork

Weacknowledge thatone criticalstepto considerinfullis thatthis integrativeframework dependsonhoweasilyresearcherscanadaptittotheirparticularsystems.Thebasictaskisto

FigureI.IllustrationoftheFeasibilityDomainforaMulti-TrophicSystem.Thefigureshowsthenormalized

domainofdemographicparameters(feasibilitydomainrelativetotheunitsphere)thatatwo-trophicsystem(e.g.,two

pollinatorsandoneplant)cantheoreticallyhavetobecompatiblewithallspecieshavingpositiveabundances.This

normalizedfeasibilitydomain(greensphericaltriangle)isconstrainedbytheintra-andinterspecificinteractionmatrix(b).

Thecolumnsoftheinteractionmatrix(e.g.[b11,b12,b13])givetheboundariesofthefeasibilitydomain(threebluelines).

Thelargerthisvolumeis,thelargerthesetofdemographicvaluescompatiblewithfeasibility,andthelargerthelikelihood

ofspeciescoexistenceacrosstrophiclevels[55,71].

(8)

obtaininformationofdemographicparametersaswellasspeciesinteractioncoefficientswithin andbetweentrophiclevels.However,itisnotsoobvioushowthisinformationcanbeobtained andrelatedtotheory.Wecanstartlearningfromtheabilityofrecentadvancesinnichetheoryto coupletheorywithfieldandlabexperiments[42,57–60].

Thesestudiessuggestthatthemostrigorouswaytoproceedwouldbetoconductexperiments inordertoparameterizeandvalidateasystemofequationscontainingamodelofpopulation dynamicsforeachtrophiclevel.Technically,thisparameterizationiseasiertoobtainwhenthe

(A)

(D) (E) (F)

(B) (C)

Network Interacons with environmental variaon in me and space

Feasibility domain

Fitness differences

Coexistence Coexistence Exclusion

Figure2.EffectsofSpeciesIntrinsicPropertiesandNetworkStructureonSpeciesCoexistence

ForaFigure360authorpresentationofFigure2,seethefigurelegendathttps://doi.org/10.1016/j.tree.2018.01.007

Speciestraitssuchasbodysize,phenologicaltiming,orfeedingpreferencesinteractwithenvironmentalvariationsin

spaceandtimetodetermine(i)networkstructureand(ii)species’fitness.Brokenlinesrepresentthestrengthofspecies

interactionswithintrophiclevelsandunbrokenlinesrepresentthesameacrosstrophiclevels.Obtaininginformationon

howsuchtrait–environmentinteractionsmodifiedthesetwoelementsinecologicalcommunitiesremainsfundamentalto

predicttheconsequencesofspeciesinteractionsforthemaintenanceofdiversity[98].Considerahypotheticalcaseofa

plant–pollinatorsysteminwhichenvironmentalvariationmodifiesthesetwoelementsinthreedifferentways(PanelsA–C).

Thesizeofthecirclesdenotestherealizedspecies’fitness,whicharisesasacombinationofspeciesinteractionsandtheir

demographicparameters(plantsingreenandinsectsinblue).Additionally,wehavelearnedfromtheintegrationofniche

andnetworktheoriesthatthestructureofspeciesinteractionswithinandbetweentrophiclevelsrendersthefeasibility

domain(hererepresentedintwodimensionsforsimplicity;darkgrayareainPanelsD–F).Notethateachnetworkstructure

givesadifferentsizeoffeasibilitydomain.Inprinciple,thelargerthefeasibilitydomain,themorelikelyspeciescoexistasit

allowsforalargercombinationoffitnessdifferences(seeFfeasibilitydomaincomparedwithDandE).However,itis

paramounttopointoutthatevenwithalargefeasibilitydomain,speciesmaynotcoexistifthepositionofthevector

containingspecies’fitness(redline)fallsoutsidethefeasibilitydomain(i.e.,fallswithinthelightgrayarea)[71].Thisisthe

caseofFwhereoneplantspeciesisexcluded.Conversely,thesystemcanbemaintaineddespiteshowingasmaller

feasibilityregionifthevectorofspecies’fitnessfallswithinthefeasibilitydomain(casesDandE).Therefore,thetake-home

messageisthatcoexistenceoccurswhenspeciesinteractionscreateafeasibilitydomaincompatiblewiththeobserved

fitnessdifferences.Recallthatfitnessdifferencesaremeasuredasthedistancebetweenthecenterofthefeasibilitydomain

andthepositionofthevectorcontainingspeciesfitness(redline).Importantly,systemswithlowfitnessdifferencesmay

facelargerperturbations.Forinstance,speciescancoexistincaseEbutcanbelessresistanttoperturbationscompared

withcaseD,giventhatthepositionofthevectorofspecies’fitnessisclosetotheexclusionregion.

(9)

life-spanbetweenorganismsissimilar.Inparticular,populationmodels describingspecies dynamicswithanannuallifecycleseemamongthebestapproximationstochooseforseveral reasons.Theydefinethenetworkstructureandspeciesfitnessintheexactsamewayasthe originaldefinitionusingtheLotka-Volterraframework[25,43],yettheyarecomplexenoughto includenonlinearmechanismsofspeciescoexistencesuchasthestorageeffect,and saturat-ingfunctionalresponsestocompetitive,mutualistic,andantagonisticinteractions(Box3).They canalsotakeintoaccounttheeffectofenvironmentalvariationinspaceandtimeonmodifying diversitymaintenanceduetochangesinintransitivecompetition[59],intraspecifictraitvariation

[61],orphenotypicplasticity[62].Moreover,annualspeciesarerelativelyeasytomanipulate, modelsdescribingpopulationdynamicshavebeensuccessfullyusedforplants[43,57],and canbeextendedtootherannualorganismsincludingpollinators(e.g.,wildbees),herbivores (e.g.,snails,grasshoppers),orpathogens(e.g.,fungalseedpathogens).

Analternativetoexperimentsisthe useofobservationaldata(e.g.,[63,64]).Observational approachesarejustifiedwhenorganismsdifferintheirlife-span,orwhentheirmanipulationis notfeasible for technical or conservation issues. Thetraditional limitation of observational studiesisthatthestructureofspeciesinteractionsbetweentrophiclevelsisofteneasierto describe,atleastatthespecieslevel,thanthestructureofspeciesinteractionswithintrophic levels.Thislimitationcanbesolvedbyusingmathematicalmodelsfedwithspatiallyexplicit and/or temporal series data. These methodologies allow inferring species demographic parameters and species interactionsfrom changes inspecies fitness due to both natural variationsinthecommunitydensityandspeciesrelative abundances[65,66].Forexample, recent work [64] combined statistical models for survival, growth, and recruitment with individual-basedmodelstodescribetemporalpatternsinplantspeciesco-occurrences.These model-generated population abundances were then integrated into projection models to estimatethestructureofcompetitiveinteractionswithinplantspecies.

Regardlessoftheapproachselected,westresstheurgencyoflinkingtheoryandempirical work. We are at the dawn of understanding whether species characteristics, commonly reportedinthenicheandnetworkliterature,aremorestronglyrelatedtodifferencesinspecies demographyortothestrengthandsignofspeciesinteractions[50,67,68].Moreover,weare notawareofasinglestudythathasattemptedtoempiricallyestimateinaquantitativewaythe matrixofspeciesinteractionswithinandbetweentrophiclevelssimultaneously.Webelievethat taking such an approach is crucial for answering an outstanding research question that emerges with the integration of both theories, namely,how species interactions between trophiclevelsdrivenicheandfitnessregionswithintrophiclevelsandviceversa.Therefore,this isthetopicofournextsection.

HowDoSpeciesInteractionsBetweenTrophicLevelsDriveNicheand FitnessDifferencesWithin TrophicLevels?

Bycouplingrecentconceptualadvancesofnicheandnetworktheory,wearereadytounderstand howthespeciesdifferencesthatdeterminecoexistencewithintrophiclevels(nicheandfitness differences)feedbackwith thestructureofspeciesinteractionsthatdeterminecoexistence betweentrophiclevelsandviceversa.Toillustratetheseideas,letusconsideramutualisticplant– pollinatorsystem(seegraphicalexampleinFigure2).Whatwehavelearnedfrompriorworkisthat differencesinfeedingbehavior,bodymass,orinsectphenologycancontributetotheniche differencesthattendtostabilizecoexistencebetweenplants(seeTable1)[69,70].However, pollinatorsalsocontributetothefitnessdifferencespromotingplantcompetitivedominance.For instance,changesintheabundanceofpollinatorscan,inturn,modifythecompetitivehierarchyof aplantguildbyincreasingthenumberandthequalityofseedsproducedbypollinator-dependent

(10)

Box3.AnExampleofHowToIntegrateNicheandNetworkTheorieswithExperimentaland

ObservationalData

Ourapproachtoevaluatehowbetween-trophicinteractionsdrivenicheandfitnessdifferenceswithintrophiclevelsand

viceversainvolvesthreesteps.

Step1:Departfromarelativelysimplesystemofequations.Hereitiscomposedoftwoannualpopulationmodels

describingchangesinpopulationsizewithtimeinplants(seeds,Pi,t+1)andpollinators(eggs,Ai,t+1).Bothmodelsare

mirrorimagesincludinganequalnumberofparameterswiththesamebiologicalmeaning,

Pi;tþ1¼Pi;t ð1giÞsiþ ligið1þ X kgikAk;tÞ 1þXjaijgjPj;t 0 @ 1 A Ai;tþ1¼Ai;t ð1eiÞtiþ nieið1þ X kdikPk;tÞ 1þXjuijejAj;t 0 @ 1 A ; 8 > > > > > > < > > > > > > : [I]

whereeachmodelisthesummationoftwocomponents.Thefirstcomponentdescribesthepossibilityofastorage

effectprocess,andthesecondcomponentdescribespercapitafecundity.Specifically,thissecondcomponent

describeshowmutualismsenhancethespeciesintrinsicabilitytoproduceoffspring,reducedbythecompetitive

effectsexertedbyotherspecieswithinthesameguild.

Step2:Estimatesspeciesvitalrates.Estimatepercapitagrowthrateintheabsenceofspeciesinteraction[plants(l),

pollinators(n)],isbestdescribedastheinterceptofthestatisticalmodelsbuiltforStep3(seebelow).Additionalefforts

areneededtoestimateratesofseedgermination(g)orlarvasurvival(e),andthestorageeffectasthesurvivalofthe

species’lifestagesthatdonotproduceoffspringwithinayear[e.g.,soilseedbankinplants(s)andnonreproductive

adultmortalityinsomepollinators(t)].

Step3:Estimatespeciesinteractionmatrix.Toestimatespeciesintra-andinterspecificcompetitiveinteractionswithin

trophiclevels[plants(a),pollinators(u)],thebestapproachistofitaseriesofstatisticalmodelsdescribingforeach

speciesitspercapita growthrateasa functionofcompetitor’srelativeabundance. Formutualisticinteractions

[pollinator’seffectonplants(g),plants’effectonpollinators(d)],dothesamebutdescribespecies’percapitagrowth

rateasafunctionofthemutualisticrelativeabundances(FigureI).

FigureI.Competitive relationshipbetween species includingitself areexpectedto takea negative

exponentialform[59,66],whereasmutualisticrelationshipareexpectedtobefunctionallysaturatingbest

describedbynon-inflictedcurves[100]. Withthisinformationispossibletothenbuildthebmatrix

summarizingspeciesinteractionsacrosstrophiclevels.

(11)

plants.Differentiatingbetweenthesealternativesiscrucialbecauseifpollinatorsprimarilydrive nichedifferencesoverfitnessdifferencesbetweenplantcompetitors,thenwecanexpectamore diverseplantcommunity(e.g.,[11,70]).Acompletelydifferentoutcomewouldoccurifpollinators primarilydrivefitnessdifferencesamongplants.Inthatcase,adominantplantspeciesfavoredby pollinatorscandominatethecommunity.

Similarly,consideringpollinatorsbeyondbeingaresourceforplantsimpliesthatwehaveto assesssimultaneouslytheirpopulationdynamics.Forinstance,plantcharacteristicssuchas floralmorphologyorplantphenologicaltimingcancontributetothedifferentpollinator require-ments(i.e.,nichedifferences)thatstabilizetheircoexistence.Butsomeplantspeciescanalso contributetothedominanceofafewpollinators(i.e.,fitnessdifferences)ifthosecanparticularly benefitfromthem,asoccurswithpollinatorspecialists.Allinall,thiscouldleadustorethink whether mutualistic interactions between trophic levels always increase the likelihood of speciescoexistence. Traditionally,mutualismshave been considered apositiveinteraction thatenhancecoexistencebecausetheindividualsinvolvedobtainacertainbenefitthatcanbe translatedtotheirpopulationgrowthrates(butsee[16]inageneralcontext).However,towhat extentthesebeneficialeffectsbetweenparticularspeciesacrosstrophiclevelscanreducethe likelihoodofspeciescoexistenceintheentiresystem(i.e.,withinandamongtrophiclevels)is notknownyet(Figure2).

Notethatweneedtouseageometricalratherthananalgebraicapproachtostudyfitnessand nichedifferencesformorethantwospecies(seeFigureIinBox2).Thisapproachinformsus whetherspeciescoexistence ispossible whenthe fitness differencesbetween speciesfall withinthefeasibilitydomain(Figure2).Moreover,thisapproachallowsustoquantifyhow environmentalvariationmodulatestheextentofthefeasibilitydomainandthedifferencesin fitnessbetweenspecies.Estimatingtheseenvironmentallydependentrelationshipsis impor-tant as they determine how strongly an ecological community can be perturbed without pushingspecies towards extinction.As a ruleof thumb, the closerthe fitness differences totheedgeofthefeasibilitydomain,thelowertheabilityofthecommunitytofaceperturbations (Figure2)[71].Itisalsoimportanttonotethatthisapproachcanbeappliedtoothernetwork types,suchas food webs,parasitoidwebs [24,72],andmulti-trophic networkscombining antagonisticandmutualisticinteractions[56,73].

Answeringthisquestionusingempiricalapproachesinvolvesthreesteps(Box3).First,weneed aframeworkfordescribingspeciespopulationdynamicsasafunctionofspeciesdemographic parametersandspeciesinteractionswithin andbetweentrophiclevels. Forexample,for a plant–pollinatorsystem,thisframeworkcanbeasystemoftwoannualpopulationmodels(one foreachtrophiclevel)thatcanincludeastorageeffectcomponentifdesired(Box3).Second,in ordertoparameterizethemodels,weneedinformationonspeciesdemography.Forspecies, demographicparameterssuchas percapitagrowthrateintheabsence ofcompetition, germination rate, or larval survival, can be inferred relatively easily from experimental or observationaldata[43,57,64,66].Third,weneedtoestimatethematrixbthatsummarizes speciesinteractionsacrosstrophiclevels.

Thisthirdstepisbyfarthemostchallengingaspectasthenumberofparametersthatneedto beestimatedgrowsexponentiallywiththenumberofspeciesinthecommunity.Inprinciple, theseestimatescanbeobtainedfromstatisticalmodelsfittingempiricalorobservationaldata

[27,59,74].Forintra-andinterspecificcompetitivecoefficientswithinplantsandwithin polli-nators,theseparameterscanbeobtainedbydescribinghowspeciespercapitagrowthrates dependoneachcompetitor’srelativeabundance[50,59](seeFigureIinBox3).Forthecaseof

(12)

mutualisticeffectsofplantsonpollinatorsandviceversa,theprocedureissimilartotheone previouslydescribed,butthistimepercapitagrowthratesshouldbedescribedasafunctionof therelativeabundanceofeachmutualisticspecies.In thelikelycasethat thisoptionisnot feasible, onepossibility isto group species byfunctionalgroups, and estimateinteraction coefficients(atthatresolution)viachangesinpopulationsizeofbothtrophiclevelsthroughtime

[75].Whilethefunctionalgroupapproachassumesuniformityofresponseswithinfunctional groups,itmightbearequirementwhenscalinguptohigherdimensions.Anotherpossibilityis tousenoveltechniquesthatcombineecological,phylogenetic,andgeographicinformationto predictforbiddenlinksanddefinearealizedratherthanapotentialmatrixofspeciesinteractions forlargecommunities[76].Thislatterpossibilityinfersthestrengthofspeciesinteraction(e.g., competition, mutualism, etc.) without the necessity of measuring fitness directly. In sum, obtaining information for estimating the matrix b is challenging, but there are techniques availabletosolvethatlimitation[75–77].

Thisthree-stepapproachcan alsobecombinedwithvariation inspecies’functionaltraits, phylogenetic relatedness,orintraspecificvariation to test amyriad ofecologicalquestions regardingthe functionaland phylogenetic assemblyof communities (e.g. limiting similarity hypothesis,Darwin’snaturalizationhypothesis)[4,78].Moreover,measuringemergent prop-ertiesofthecommunity,suchasbiomassorfoodproduction,wouldallowlinkingthe mecha-nisms of biodiversity maintenance to ecosystem functioning (e.g. biodiversity insurance hypothesis, biodiversity-complementarity hypothesis) [79,80]. For instance, experimental assemblagesvaryingplantandflowermorphologyandpollinators’bodysizecanallowtesting theroleofspeciestraitsinprovidinghigherfoodproductionyields[81]bytheeffectsofplant andanimaltraitsonnicheandfitnessdifferences(see[82]fordetails).

ConcludingRemarks

Theintegrationofnicheandnetworktheoriesprovidesanaturalpathwaytoobtainadeeper understandingoftheroleofspeciesinteractionsinmodulatingspeciescoexistence.Here,we show that this integration isstraightforward thanks to the strong parallelism of ecological concepts,complementaryapproaches,andassociatedmathematicaltoolsfoundacrossthese tworesearchareas.Theemergentpropertyofthisintegrationistheconsiderationthatdiversity withinecologicalcommunitiesismaintainedwhenspeciesinteractionscreateacoexistence spacethataccommodatesthedifferencesinfitnessbetweenspecies.Importantly,wehave provided a methodological framework readily available to investigate howthe strength of mutualistic,antagonistic,andcompetitiveinteractionsacrosstrophiclevelspromotespecies coexistenceinmulti-trophicnetworksandvariableenvironments.Thekeylimitationweface nowistheempiricalparameterizationoftheinteractionmatrix,whichsummarizesthestructure of species interactions across trophic levels. It should be no surprise that applying the integrationofnicheandnetworktheorytoexperimentalandobservationalapproachescan bechallenging,butwehaveprovidedaguidelinetoaccomplishthisaim.Whilethisisnotan easytask,thebenefitscanbeunlimited.

Acknowledgements

Commentsfromthreeanonymousreviewersgreatlyimprovethequalityofthispaper,whichistheresultofacollaborative

projectfundedbytheSpanishMinistryofEconomyandCompetitiveness(LINCX,CGL2014-61590-EXP).OGacknowledges

postdoctoralfinancialsupportprovidedbytheSpanishMinistryofEconomyandCompetitiveness(JCI-2012-12061)andby

theEuropeanUnionHorizon2020researchandinnovationprogramundertheMarieSklodowska-CuriegrantagreementNo

661118-BioFUNC.SS alsoacknowledges support fromMIT Research CommitteeFundsand theMitsuiChair.Wefinallythank

Phylopic.comandMelissaBroussardforprovidingsilhouetteimagesofplantsandpollinators.

(13)

SupplementalInformation

Supplementalinformationassociatedwiththisarticlecanbefound,intheonlineversion,athttps://doi.org/10.1016/j.tree.

2018.01.007.

References

1. Darwin,C.(1859)TheOriginoftheSpecies,ModernLibrary 2. Grinnell, J.(1917) Theniche-relationships of theCalifornia

Thrasher.Auk34,427–433

3. Elton,C.(1946)Competitionandthestructureofecological communities.J.Anim.Ecol.15,54–68

4. Macarthur,R.andLevins,R.(1967)Thelimitingsimilarity, con-vergence,anddivergenceofcoexistingspecies.Am.Nat.101, 377–385

5. May,R.M.andMacArthur,R.H.(1972)Nicheoverlapasa functionof environmentalvariability.Proc.Natl.Acad.Sci. U.S.A.69,1109–1113

6. Hutchinson,G.E.(1961)Theparadoxoftheplankton.Am.Nat. 95,137–145

7. Abrams,P.(1983)Thetheoryoflimitingsimilarity.Annu.Rev. Ecol.Syst.14,359–376

8. Tilman,D.(1982)ResourceCompetitionandCommunity Struc-ture,PrincetonUniversityPress

9. McKane,R.B.etal.(2002)Resource-basednichesprovidea basisforplantspeciesdiversityanddominanceinarctictundra. Nature415,68–71

10. Hautier,Y.etal.(2009)Competitionforlightcauses plant biodiversitylossaftereutrophication.Science324,636–638 11. Pauw,A.(2013)Canpollinationnichesfacilitateplant

coexis-tence?TrendsEcol.Evol.28,30–37

12. Bennett,J.A.etal.(2017)Plant-soilfeedbacksandmycorrhizal typeinfluencetemperateforestpopulationdynamics.Science 355,181–184

13. Runquist,R.B.andStanton,M.L.(2013)Asymmetricand fre-quencydependentpollinatormediatedinteractionsmayin flu-encecompetitivedisplacementintwovernalpoolplants.Ecol. Lett.16,183–190

14. Howe,H.F.andEstabrook,G.F.(1977)Onintraspecific com-petitionforaviandispersersintropicaltrees.Am.Nat.111, 817–832

15. Polis,G.A.etal.(1989)Theecologyandevolutionofintraguild predation:potentialcompetitorsthateateachother.Annu.Rev. Ecol.Syst.20,297–330

16. Abrams,P.A.etal.(1998)Apparentcompetitionorapparent mutualism?Sharedpredationwhenpopulationscycle.Ecology 79,201–212

17. Pacala,S.andCrawley,M.(1992)Herbivoresandplant diver-sity.Am.Nat.140,243–260

18. Parker,I.M.etal.(2015)Phylogeneticstructureandhost abun-dancedrivedisease pressurein communities.Nature520, 542–544

19. Gilbert,G.S.andWebb,C.O.(2007)Phylogeneticsignalinplant pathogen–hostrange.Proc.Natl.Acad.Sci.U.S.A.104, 4979–4983

20. Bertness,M.D.andCallaway,R.(1994)Positiveinteractionsin communities.TrendsEcol.Evol.9,191–193

21. Callaway,R.M.(1995)Positiveinteractionsamongplants.Bot. Rev.61,306–349

22. Holt,R.D.(1977)Predation,apparentcompetition,andthe structureofpreycommunities.Theor.Popul.Biol.12,197–229 23. Holt,R.D.(1984)Spatialheterogeneity,indirectinteractions,and

thecoexistenceofpreyspecies.Am.Nat.124,377–406 24. Chesson,P.andKuang,J.J.(2008)Theinteractionbetween

predationandcompetition.Nature456,235–238

25. Chesson,P.(2013)Speciescompetitionandpredation.In Ency-clopediaofSustainabilityScienceandTechnology(Leemans, R.,ed.),pp.223–256,Springer

26. Chase,J.M.etal.(2002)Theinteractionbetweenpredation and competition: a review and synthesis. Ecol. Lett. 5, 302–315

27. Deraison,H.etal.(2015)Functionaltraitdiversityacrosstrophic levelsdeterminesherbivoreimpactonplantcommunity bio-mass.Ecol.Lett.18,1346–1355

28. Soliveres,S.etal.(2016)Biodiversityatmultipletrophiclevelsis neededforecosystemmultifunctionality.Nature536,456 29. Bascompte,J.andSolé,R.V.(1995)Rethinkingcomplexity:

modellingspatiotemporaldynamicsinecology.TrendsEcol. Evol.10,361–366

30. Harfoot,M.B.etal.(2014)Emergentglobalpatternsof ecosys-temstructureandfunctionfromamechanisticgeneral ecosys-temmodel.PLoSBiol.12,e1001841

31. Jordano,P.etal.(2003)Invariantpropertiesincoevolutionary networksofplant–animalinteractions.Ecol.Lett.6,69–81 32. Bascompte,J.andJordano,P.(2007)Plant-animalmutualistic

networks:thearchitectureofbiodiversity.Annu.Rev.Ecol.Evol. Syst.38,567–593

33. Bastolla,U.etal.(2009)Thearchitectureofmutualisticnetworks minimizescompetitionandincreasesbiodiversity.Nature458, 1018–1020

34. Pocock,M.J.etal.(2012)Therobustnessandrestorationofa networkofecologicalnetworks.Science335,973–977 35. Rohr,R.P.etal.(2014)Onthestructuralstabilityofmutualistic

systems.Science345,1253497

36. Lafferty,K.D.etal.(2008)Parasitesinfoodwebs:theultimate missinglinks.Ecol.Lett.11,533–546

37. Allesina,S.andPascual,M.(2008)Networkstructure,predator– preymodules,andstabilityinlargefoodwebs.Theor.Ecol.1, 55–64

38. May,R.M.andLeonard,W.J.(1975) Nonlinearaspectsof competitionbetweenthreespecies.SIAMJ.Appl.Math.29, 243–253

39. Chase,J.M.andLeibold,M.A.(2003)EcologicalNiches:Linking ClassicalandContemporaryApproaches,UniversityofChicago Press

40. Case, T.J. (1999) Illustrated guide to theoretical ecology. Ecology80, 2848–2848

41. Chesson,P.(1990)MacArthur’sconsumer-resourcemodel. Theor.Popul.Biol.37,26–38

42. Kuang,J.J.andChesson,P.(2009)Coexistenceofannual plants:generalistseedpredationweakensthestorageeffect. Ecology90,170–182

43. Godoy,O.andLevine,J.M.(2014)Phenologyeffectson inva-sionsuccess:insightsfromcouplingfieldexperimentsto coex-istencetheory.Ecology95,726–736

44. Hutchinson,G.E.(1957)Concludingremarks.ColdSpringHarb. Symp.Quant.Biol.22,415–427

45. Diamond,J.M.(1975)Assemblyofspeciescommunities.In EcologyandEvolutionofCommunities(Cody,M.andDiamond, J.M.,eds),pp.342–444,BelknapPress,HarvardUniversity 46. Violle,C.etal.(2011)Phylogeneticlimitingsimilarityand

com-petitiveexclusion.Ecol.Lett.14,782–787

47. Pacala,S.W.andTilman,D.(1994)Limitingsimilarityin mecha-nisticandspatialmodelsofplantcompetitioninheterogeneous environments.Am.Nat.143,222–257

48. Chesson,P.(2000)Mechanismsofmaintenanceofspecies diversity.Annu.Rev.Ecol.Syst.31,343–366

49. Adler,P.B.etal.(2007)Anicheforneutrality.Ecol.Lett.10, 95–104

(14)

50. Kraft,N.J.B.etal.(2015)Plantfunctionaltraitsandthe multidi-mensionalnatureofspeciescoexistence.Proc.Natl.Acad.Sci. U.S.A.112,797–802

51. Leibold,M.A.andMcPeek,M.A.(2006)Coexistenceofthe nicheandneutralperspectivesincommunityecology.Ecology 87,1399–1410

52. Roberts,A.(1974)Thestabilityofafeasiblerandomecosystem. Nature251,607–608

53. Logofet,D.O.(2005)Stronger-than-Lyapunovnotionsofmatrix stability,orhowflowershelpsolveproblemsinmathematical ecology.LinearAlgebraAppl.398,75–100

54. Hofbauer,J.andSigmund,K.(1998)EvolutionaryGamesand PopulationDynamics,CambridgeUniversityPress 55. Saavedra,S.etal.(2016)Seasonalspeciesinteractions

mini-mizetheimpactofspeciesturnoveronthelikelihoodof com-munitypersistence.Ecology97,865–873

56. Kéfi,S.etal.(2016)Howstructuredistheentangledbank?The surprisinglysimpleorganizationofmultiplexecologicalnetworks leadstoincreasedpersistenceandresilience.PLoSBiol.14, e1002527

57. Levine,J.M.andHilleRisLambers,J.(2009)Theimportanceof nichesforthemaintenanceofspeciesdiversity.Nature461, 254–257

58. Narwani,A.etal.(2013)Experimentalevidencethatevolutionary relatednessdoesnotaffecttheecologicalmechanismsof coex-istenceinfreshwatergreenalgae.Ecol.Lett.16,1373–1381 59. Godoy,O.etal.(2017)Intransitivityisinfrequentandfailsto

promoteannualplantcoexistencewithoutpairwiseniche differ-ences.Ecology98,1193–1200

60. Germain,R.M.etal.(2016)Speciescoexistence: macroevolu-tionaryrelationshipsandthecontingencyofhistorical interac-tions.Proc.R.Soc.B283,20160047

61. Hart,S.P.etal.(2016)Howvariationbetweenindividualsaffects speciescoexistence.Ecol.Lett.19,825–838

62. Turcotte,M.M.andLevine,J.M.(2016)Phenotypicplasticity andspeciescoexistence.TrendsEcol.Evol.31,803–813 63. Siepielski,A.M.etal.(2011)Signatureofecologicalpartitioning

inthemaintenanceofdamselflydiversity.J.Anim.Ecol.80, 1163–1173

64. Chu,C.andAdler,P.B.(2015)Largenichedifferencesemerge attherecruitmentstagetostabilizegrasslandcoexistence.Ecol. Monogr.85,373–392

65. Ives,A.etal.(2003)Estimatingcommunitystabilityand ecologi-cal interactions fromtime series data.Ecol. Monogr.73, 301–330

66. Kunstler,G.etal.(2016)Plantfunctionaltraitshaveglobally consistenteffectsoncompetition.Nature529,204–207 67. Angert,A.L.etal.(2009)Functionaltradeoffsdeterminespecies

coexistenceviathestorageeffect.Proc.Natl.Acad.Sci.U.S.A. 106,11641–11645

68. Coux,C.etal.(2016)Linkingspeciesfunctionalrolestotheir networkroles.Ecol.Lett.19,762–770

69. Buchmann,S.L.(1987)Theecologyofoilflowersandtheirbees. Annu.Rev.Ecol.Syst.18,343–369

70. Benadi,G.etal.(2014)Specializationandphenological syn-chronyofplant–pollinatorinteractionsalonganaltitudinal gradi-ent.J.Anim.Ecol.83,639–650

71. Saavedra,S.etal.(2017)Astructuralapproachfor understand-ingmultispeciescoexistence.Ecol.Monogr.87,470–486 72. Mordecai,E.A.etal.(2016)Theroleofcompetition–colonization

tradeoffsandspatialheterogeneityinpromotingtrematode coexistence.Ecology97,1484–1496

73. Pilosof,S.etal.(2017)Themultilayernatureofecological net-works.Nat.Ecol.Evol.1,0101

74. Fründ,J.etal.(2013)Beediversityeffectsonpollinationdepend onfunctionalcomplementarityandnicheshifts.Ecology94, 2042–2054

75. Tack,A.J.etal.(2011)Canwepredictindirectinteractionsfrom quantitativefoodwebs?–anexperimentalapproach.J.Anim. Ecol.80,108–118

76. Morales-Castilla,I.etal.(2015)Inferringbioticinteractionsfrom proxies.TrendsEcol.Evol.30,347–356

77. Bartomeus,I.etal.(2016)Acommonframeworkforidentifying linkagerulesacrossdifferenttypesofinteractions.Funct.Ecol. 30,1894–1903

78. Duncan,R.P.andWilliams,P.A.(2002)Ecology:Darwin’s nat-uralizationhypothesischallenged.Nature417,608–609 79. Loreau,M.andHector,A.(2001)Partitioningselectionand

complementarityinbiodiversityexperiments.Nature412,72–76 80. Lawton,J.H.andBrown,V.K.(1994)Redundancyin ecosys-tems.InBiodiversityandEcosystemFunction(Schulze,E.-D. andMooney,H.A.,eds),pp.255–270,Springer

81. Garibaldi,L.A.etal.(2015)Traitmatchingofflowervisitorsand cropspredictsfruitsetbetterthantraitdiversity.J.Appl.Ecol. 52,1436–1444

82. Carroll,I.T.etal.(2011)Nicheandfitnessdifferencesrelatethe maintenanceofdiversitytoecosystemfunction.Ecology92, 1157–1165

83. Pashalidou,F.G.etal.(2015)Earlyherbivorealertmatters:plant mediatedeffectsofeggdepositiononhighertrophiclevels benefitplantfitness.Ecol.Lett.18,927–936

84. Rueda,M.etal.(2013)Contrastingimpactsofdifferent-sized herbivoresonspeciesrichnessofMediterraneanannual pas-turesdifferinginprimaryproductivity.Oecologia172,449–459 85. Louthan,A.M.etal.(2013)Climaticstressmediatestheimpacts ofherbivoryonplantpopulationstructureandcomponentsof individualfitness.J.Ecol.101,1074–1083

86. Bever,J.D.etal.(2015)Maintenanceofplantspeciesdiversity bypathogens.Annu.Rev.Ecol.Evol.Syst.46,305–325 87. Venner,S.etal.(2011)Coexistenceofinsectspeciescompeting

forapulsedresource:towardaunifiedtheoryofbiodiversityin fluctuatingenvironments.PLoSOne6,e18039

88. Reitz,S.R.andTrumble,J.T.(2002)Competitivedisplacement amonginsectsandarachnids.Annu.Rev.Entomol.47,435–465 89. Mattila,H.R.andSeeley,T.D.(2007)Geneticdiversityinhoney beecoloniesenhancesproductivityandfitness.Science317, 362–364

90. Jongejan,F.andUilenberg,G.(2004)Theglobalimportanceof ticks.Parasitology129,S3–S14

91. Moore,J.W.andSchindler,D.E.(2010)Spawningsalmonand thephenologyofemergenceinstreaminsects.Proc.R.Soc. Lond.BBiol.Sci.277,1695–1703

92. Abzhanov,A.etal.(2004)Bmp4andmorphologicalvariationof beaksinDarwin’sfinches.Science305,1462–1465 93. Creel,S.andCreel,N.M.(1996)LimitationofAfricanwilddogs

by competition with larger carnivores. Conserv. Biol. 10, 526–538

94. Voeten,M.M.andPrins,H.H.(1999)Resourcepartitioning betweensympatricwildanddomesticherbivoresinthe Taran-gireregionofTanzania.Oecologia120,287–294

95. Mishra,C.etal.(2004)Competitionbetweendomesticlivestock andwildbharalPseudoisnayaurintheIndianTransHimalaya.J. Appl.Ecol.41,344–354

96. Askew,R.R.(1971)ParasiticInsects,Heinmann

97. Cobey,S.andLipsitch,M.(2012)Nicheandneutraleffectsof acquiredimmunitypermitcoexistenceofpneumococcal sero-types.Science335,1376–1380

98. Cenci,S.etal.(2018)Estimatingtheeffectofthereorganization ofinteractionsontheadaptabilityofspeciestochanging envi-ronments.J.Theor.Biol.437,115–125

99. Svirezhev,I.U.andLogofet,D.O.(1978)TheStabilityof Biologi-calCommunities,MIRPublishers

100.Morris,W.F.etal.(2010)Benefitandcostcurvesfortypical pollinationmutualisms.Ecology91,1276–1285

Figure

Figure 1. Research Domains of Niche and Network Theories. Niche theory (left side) has been successful in incorporating the effect of direct and indirect interactions within and between trophic levels (denoted by black arrows) on determining species coexis
Figure 2. Effects of Species ’ Intrinsic Properties and Network Structure on Species Coexistence For a Figure360 author presentation of Figure 2, see the figure legend at https://doi.org/10.1016/j.tree.2018.01.007 Species traits such as body size, phenologi
Figure I. Competitive relationship between species including itself are expected to take a negative exponential form [59,66], whereas mutualistic relationship are expected to be functionally saturating best described by non-in fl icted curves [100]

Références

Documents relatifs

The FT-IR studies show that the increase of molar fraction, x of the tellurate-borate network yield the formation of some [BO 4 ] and [TeO 4 ] structural

If the clustering approach is applied to the subset of proteins expressed in the shoot apical meristem, the 3 clusters obtained are almost nested in the three clusters shown

The inclusion criteria were: (1) an underlying diagnosis of osteoarthritis, developmental dysplasia, inflammatory arthritis, fracture or osteonecrosis, primary THA, (2) age more than

(Annexe 1) Donc, si l’aménagement ne permet pas de manquer des cours, l’objectif devrait être de faire en sorte que les élèves SAE n’en manquent pas plus d’un par

Using multivariate linear models based on least-square estimation, we test the effect of varying levels of two factors, proportion of speciation events associated with colour

Meningococci spread rapidly among university students, probably due to social mixing This explains the higher rates of invasive disease found among students each autumn during the

ؾكمس بيذيتك ؿيدعت يف يضايرلا يحيكرتلا طاشنلا ةسرامم ركد ىلإ ةجيتنلا هذى ثحابلا كزعيك وحيتت امك ،ةيعامتجلااك ةيلاعفنلااك ةيسفنلاك ةيمقعلاك ةيندبلا يحاكنلا عيمج فم

La théorie de la fiabilité a pour objectif d’étudier l’aptitude de dispositifs techniques (ma- chines, équipements,...), ccomplir une fonction requise, dans des conditions