• Aucun résultat trouvé

Expressiveness of Full First Order Constraints in the Algebra of Finite or Infinite Trees

N/A
N/A
Protected

Academic year: 2021

Partager "Expressiveness of Full First Order Constraints in the Algebra of Finite or Infinite Trees"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-00144924

https://hal.archives-ouvertes.fr/hal-00144924

Submitted on 25 Mar 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Expressiveness of Full First Order Constraints in the Algebra of Finite or Infinite Trees

Alain Colmerauer, Thi-Bich-Hanh Dao

To cite this version:

Alain Colmerauer, Thi-Bich-Hanh Dao. Expressiveness of Full First Order Constraints in the Algebra

of Finite or Infinite Trees. Principles and Practice of Constraint Programming - CP 2000, 2000,

Singapore, Singapore. pp.172-186. �hal-00144924�

(2)

in the algebra of nite or innite trees

AlainColmerauerandThi-Bih-HanhDao

Laboratoired'InformatiquedeMarseille,CNRS,

UniversitésdelaMéditerranéeetdeProvene

Abstrat. Weareinterestedintheexpressivenessofonstraintsrepre-

sentedbygeneralrstorderformulae,withequalityasuniquerelational

symbolandfuntionalsymbolstakenfromaninnitesetF.Thehosen

domainisthe setof treeswhosenodes,inpossiblyinnitenumber,are

labeledbyelementsofF.Theoperationlinkedto eahelementf of F

isthe mapping(a1;:::;an)7!b,where bisthetree whoseinitial node

islabeledf andwhosesequeneofdaughtersisa

1

;:::;a

n .

Werstonsideronstraintsinvolvinglongalternatedsequenesofquan-

tiers9898::: .Weshowhowtoexpresswinningpositionsoftwo-partners

gameswithsuhonstraintsandapplyourresultstotwoexamples.

Wethen onstruta familyofstrongly expressiveonstraints, inspired

byaonstrutiveproofofaomplexityresultbyPawelMielnizuk.This

familyinvolvesthehugenumber(k),obtainedbyevaluatingtopdown

apowertowerof2's,ofheight k.Withelementsofthis family,ofsizes

at most proportional to k, we dene a nite tree having (k) nodes,

and we expressthe resultof aProlog mahine exeuting atmost (k)

instrutions.

By replaing the Prolog mahine by a Turing mahine we redisover

thefollowingresultofSergeiVorobyov:theomplexityofanalgorithm,

deidingwhether aonstraint withoutfreevariables istrue, annotbe

boundedabovebyafuntionobtainedbyniteompositionofelemen-

taryfuntionsinludingexponentiation.

Finally,takingadvantageofthefatthatwehaveatourdisposalanalgo-

rithmforsolvingsuhonstraintsinalltheirgenerality,weprodueaset

ofbenhmarksforseparating feasibleexamplesfrompurelyspeulative

ones.Amongotherswesolveonstraintsinvolvingalternatedsequenes

ofmorethan160quantiers.

1 Introdution

The algebra of (possibly) innite trees plays a fundamental at in omputer

siene:itisamodelfordatastrutures,programshemesandprogramexeu-

tions.Asearlyas1976,GérardHuetproposedanalgorithmforunifyinginnite

terms,thatissolvingequationsinthatalgebra[11℄.BrunoCourellehasstudied

thepropertiesof innitetreesin thesopeofreursiveprogramshemes[8,9℄.

AlainColmerauerhasdesribedtheexeutionofPrologII,IIIandIVprograms

(3)

trees[12℄.Amongothers,hehasshownthatinthistheory,andthusinthealgebra

ofinnitetrees, anyrstorder formulaisequivalenttoaBooleanombination

ofonjuntionsofequations(partiallyortotally)existentiallyquantied.Sergei

Vorobyovhas shown that the omplexity of an algorithm, deiding whether a

formulawithoutfreevariablesistrueinthattheory,annotbeboundedabove,

byafuntionobtainedbyniteomposition ofelementaryfuntions,inluding

exponentiation[14℄.PawelMielnizukhasshown asimilar resultin thetheory

offeaturetrees,but withamoreonstrutivemethod, whihhasinspiredsome

ofourexamples[13℄.

Wehavereentlydevelopedanalgorithmforsolvinggeneralrstorder on-

straints in the algebra of innite trees [10℄. The purpose of this paper is not

thepresentationofthisalgorithm,butofexamples,rstimaginedastests,then

extended to show the expressiveness of suh general onstrains. The paper is

organizedasfollows.

(1)Weendthisrstsetionbymakinglearthenotionsoftreealgebraand

rstorderonstraintsin thatalgebra.

(2) Inthe seond setion we onsider onstraintsinvolvinglongalternated

sequenesofquantiers9898:::. Weshowhowto expresswinning positions of

two-partnersgameswithsuhonstraintsandapplyourresultstotwoexamples.

(3) In the third setion, we investigate the most expressive family of on-

straintsweknow.Itinvolvesthetrulyhugenumber(k),obtainedbyevaluating

topdown atowerofpowersof2's,ofheightk.With elementsof thisfamily, of

sizes at mostproportionalto k, we denea nitetree having(k) nodes, and

weexpresstheresultofaPrologmahine exeutingatmost(k).Byreplaing

thePrologmahinebyaTuringmahineweredisovertheomplexityresultof

SergeiVorobyovmentionedatthebeginningofthissetion.This parthasbeen

stronglyinuenedbythework ofPawelMielnizuk[13℄.

(4)We onludebydisussions andbenhmarks separatingthefeasibleex-

amplesfromthepurelyspeulativeones.

1.1 The algebra ofinnite trees

Treesare well known objets in theomputer sieneworld. Here aresome of

them:

. . . . . .

0 1

0 1

0

0 0 0

f

f s

f f

f f

f f

f f s s s s s

0 1 0 s

(4)

takenfromasetF offuntionalsymbols,whihweassumeto beinnite.Note

thatthersttreeistheonlyonehavinganitesetofnodes,butthattheseond

onehasstillanitesetof(patternsof)subtrees.WedenotebyAthesetofall

trees 1

onstrutedonF.

Weintroduein Aa set ofonstrutionoperations 2

, oneforeah element

f 2F whihisthemappings(a

1

;:::;a

n

)7!b,wherenisthearityoff andbthe

treewhoseinitialnodeislabeledf andthesequeneofdaughtersis(a

1

;:::;a

n )

andwhihbeshematizedas

1 1

. . . . . .

f

a a

a an

n

Wethusobtainthealgebraof innite treesonstrutedonF,whihwedenote

by(A ;F).

1.2 Treeonstraints

We are interested in the expressiveness of onstraints represented by general

rst order formulae, with equality as unique relational symbol and funtional

symbolstakenfrom aninnitesetF.These tree onstraintsare ofoneofthe9

forms:

s=t; true; false; :(p); (p^q); (p_q); (p!q); 9xp; 8xp;

where p andq are shorter treeonstraints, x avariable taken from aninnite

set ands;tterms,that areexpressionsofoneoftheforms

x; ft

1 :::t

n

wheren0,f 2F,witharityn,andthet

i

'sareshorterterms.

ThevariablesrepresentelementsofthesetAoftreesonstrutedonF and

thefuntionalsymbolsf areinterpretedasonstrutionoperationsinthealgebra

ofinnitetrees(A ;F).Thusaonstraintwithoutfreevariablesiseithertrueor

false anda onstraint p(x

1

;:::;x

n

) with nfree variablesx

i

establishan n-ary

relationinthesetoftrees.

1

Morepreiselywedenerstanodetobeawordonstrutedonthesetofstritly

positive integers. A tree a, onstruted onF, is thena mapping of type E !F,

where E isanon-emptysetofnodes,eahonei1:::i

k

(with k0) satisfyingthe

twoonditions:(1)if k>0then i

1 :::i

k1

2E,(2)if thearity ofa(i

1 :::i

k ) is n,

thenthesetofnodesofE ofthe formi1:::ikik+

1

is obtainedbygiving toik

+1 the

values1;:::;n.

2

Infat,theonstrutionoperationlinkedtothen-arysymbolfofF isthemapping

(a1;:::;an) 7!b,where the ai's are any trees and bis the treedened as follows

fromtheai's andtheirsetofnodesEi's:thesetE ofnodesof ais f"g[fixjx2

Ei andi21::ng and,foreahx2E,ifx=",thena(x)=f andifxisoftheform

iy,withibeinganinteger,a(x)=a(y).

(5)

We rst introdue the notions of k-winning and k-losing position in any two-

partners gamesandin twoexamples.Weshowhowto express,in any domain,

thesetofk-winningpositionsbyaonstraint.Weendthesetionbyexpressing

the k-winning positions of the two examples by tree onstraints involving an

alternatedembeddingof2k quantiers.

2.1 Winning positionsin a two-partners game

Let(V;E)beadiretedgraph,withV asetofvertiesandEV V asetof

edges. Thesets V and E maybe empty andthe elements ofV are alsoalled

positions. Weonsideratwo-partnersgamewhih,given aninitialpositionx

0 ,

onsists,oneafteranother,inhoosingapositionx

1

suhthat(x

0

;x

1

)2E,then

apositionx

2

suh that(x

1

;x

2

)2E,thenapositionx

3

suhthat (x

2

;x

3 )2E

andsoon... Therstonewhoannotplayanymorehaslostandtheotherone

has won. For example thetwo following innitegraphs orrespond to the two

followinggames:

1

0 2 3 4 5 6

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

Game 1Anon-negativein-

tegeriisgivenand,oneafter

another, eah partner sub-

trats1or2fromi,butkeep-

ing i non-negative.Therst

person whoannot play any

morehaslost.

Game 2 An ordered pair (i;j) of non-negative

integers is given and, one after another, eah

partner hoosesoneoftheintegersi;j.Depend-

ing onthefat that thehosenintegeruisodd

oreven,hetheninreasesordereasestheother

integerv by1,but keepingv non-negative.The

rstpersonwhoannotplayanymorehaslost.

Letx2V beanyvertexofthedireted graph(V;E)andsupposethat itis

theturnofpersonAtoplay.Thepositionxissaidtobek-winningif,nomatter

thewaytheotherperson B plays,itis alwayspossiblefor Ato winin making

at mostkmoves.Thepositionx is saidtobek-losingif, nomatterthewayA

plays,B analwaysforeAtoloseand toplayatmostkmoves.

Considerthe twopreeding graphs and mark with +k the positions whih

are k-winningand with k thepositions whih are k-losing, witheah time k

being as small aspossible. Vertex 0of the rst graphand vertex (0;0) of the

(6)

ndsuessivelythesetofvertiestobemarkedby+1,then 1,then+2,then

2,then+3, then 3,andsoon.Weget

-0 +1 +1 -1 +2 +2 -2

-0 +1 -1 +2 -2 +3

+1 +2 +3

+3 +3 +3 +3 -2 +2 -1 +2

-2 -3

-3 -2

andonvineourselvesthattheset ofk-winningpositionsofgame1is

fi2Nji<3kandimod36=0g

andofgame2

f(i;j))2N 2

ji+j<2kand(i+j)mod2=1}:

whereNisthesetofnon-negativeintegers.

2.2 Expressingk-winningpositions bya onstraint

LetD beadomain, that isanon-emptysetand letG=(V;E)thegraphofa

two-partnersgame, withV D.We willexpress thek-winningpositions ofG

byaonstraintinDinvolvinganembedding989:::of2kalternatedquantiers.

Letus introdueinD thepropertiesmove,winning

k

et losing

k

,dened by

move(x;y) $(x;y)2E;

winning

k

(x)$x isak-winningpositionofG;

losing

k

(x) $x isak-losingpositionofG:

(1)

InDwethenhavetheequivalenes,forallk0:

winning

0

(x) $false;

winning

k +1

(x)$9ymove(x;y)^losing

k (y);

losing

k

(x) $8ymove(x;y)!winning

k (y):

(2)

Contrarytowhat wemaybelieve,itfollowsthatwehave:

winning

k

(x)!winning

k+1

(x); losing

k

(x)!losing

k+1 (x):

Indeed, from the rst and the last equivalene of (2) we onlude that these

impliationsholdfork=0and,ifweassumethattheyholdforaertaink0,

(7)

k

winning

k (x) $

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

9ymove(x;y)^:(

9xmove(y;x)^:(

9ymove(x;y)^:(

9xmove(y;x)^:(

:::

9ymove(x;y)^:(

9xmove(y;x)^:(

false ):::)

|{z}

2k 3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(3)

whereofourseallthequantiersapplyonelementsofD.Bymovingdownthe

negations,wethusgetanembeddingof2k alternatedquantiers.

Inequivalene (3) it is possible to use a moregeneral denition of move

than the one given in (1). We rst remark, that for any non-negative k, the

followingpropertyholds:

Property 1 Let three direted graphs be of the form G

1

= (V

1

;E

1 ), G

2

=

(V

2

;E

2

)andG=(V

1 [V

2

;E

1 [E

2

).ThegraphsG

1

andGhavethesamesetof

k-winningpositions, ifboth:

1. thesetsof vertiesV

1 andV

2

aredisjoint,

2. forallx2V

2

, thereexistsy2V

2

with(x;y)2E

2 .

Indeed,from therst onditionitfollowsthatE

1 andE

2

aredisjointandthus

that the set of k-winning positions of G is the union of the set of k-winning

positionsofG

1

withthesetofk-winningpositionsofG

2

.Thislastsetisempty

beauseoftheseondondition.

Itfollowsthat:

Property 2(Generalizedmove relation) Equivalene(3)holdsalsoforany

move relationobeyingtothe twoonditions:

1. forallx2V andy2V, move(x;y) $ (x;y)2E,

2. forallx2D V there existsy2D V suhthat move(x;y).

2.3 Formalizinggame 1in the algebraof innitetrees

Wenowreonsidergame1introduedin setion2.1.AsdomainD wetakethe

set A of trees onstruted on a set F of funtional symbolsinluding among

others thesymbols0;s, of respetivearities 0;1.We odethe vertiesi of the

gamegraphbythetrees 3

s i

(0).LetG=(V;E)bethegraphobtainedthisway.

As generalized relation move we then antake in the algebra of innite

trees:

move(x;y) def

= x=s(y)_x=s(s(y))_(:(x=0)^:(9ux=s(u))^x=y)

3 0 i+1 i

(8)

ofsolutionsinxof theonstraintwinning

k

(x) denedin(3).

Forexample,withk=1theonstraintwinning

k

(x) isequivalentto

x=s(0)_x=s(s(0))

andwithk=2to

x=s(0)_x=s(s(0))_x=s(s(s(s(0))))_x=s(s(s(s(s(0)))))

2.4 Formalizinggame 2in the algebraof innitetrees

Wealsoreonsidergame2introdued insetion2.1. AsdomainDwetakethe

set A of trees onstruted on a set F of funtional symbolsinluding among

others thesymbols0;f;g;,of respetivearities0;1;1;2.Weodethe verties

(i;j)of thegame graphby thetrees (i;j)with i= (fg) i

2

(0) ifi is even, and

i=g(i 1)ifiisodd 4

. LetG=(V;E)bethegraphobtainedthis way.

Theperspiaiousreaderwill onvinehimself that, asgeneralizedrelation

move,weantakeinthealgebraofinnitetrees:

move(x;y) def

= transition(x;y)_(:(9u9vx=(u;v))^x=y)

with

transition(x;y) def

= 2

6

6

6

6

6

6

4

9u9v9w

(x=(u;v)^y=(u;w))_

(x=(v;u)^y=(w;u))

^

(9iu=g(i)^su(v;w))_

(:(9iu=g(i))^pred(v;w))

3

7

7

7

7

7

7

5

su(v;w)

def

=

((9jv=g(j))^w=f(v))_

(:(9jv=g(j))^w=g(v))

pred(v;w) def

= 2

6

6

6

6

6

4

(9jv=f(j)^

(9kj=g(k)^w=j)_

(:(9kj=g(k))^w=v)

)_

(9jv=g(j)^

(9kj=g(k)^w=v)_

(:(9kj=g(k))^w=j)

)_

(:(9jv=f(j))^:(9jv=g(j))^:(v=0)^w=v) 3

7

7

7

7

7

5

Aordingto property2,theset of k-winningpositions ofgame 2is theset of

solutionsinx oftheonstraintwinning

k

(x)dened in(3).

Forexample,withk=1theonstraintwinning

k

(x) isequivalentto

x=(g(0);0)_x=(0;g(0)))

andwithk=2to

x=(0;g(0))_x=(g(0);0)_x=(0;g(f(g(0))))_

x=(g(0);f(g(0)))_x=(f(g(0));g(0))_x=(g(f(g(0)));0)

4

0 i+1 i

(9)

Afterallthesequantiers,wemoveto onstraints,whih aresoexpressivethat

theirsolvingbeomesquasi-undeidable.

3.1 Dening a huge nitetreeby a onstraint

Weset(k)=2 2

: :

: 2

,withk ourrenesof2.Morepreiselywetake

(0)=1; (k+1)=2 (k )

;

withk0.Thefuntioninreasesinastunningway,sine(0)=1,(1)=2,

(2) = 4, (3) = 16, (4) = 65536 and (5) = 2 65536

. Thus (5) is greater

than10 20000

,anumberprobablymuhgreaterthanthenumberofatomsofthe

universeorthenumberofnanoseondswhihelapsedsineitsreation!

Wesuppose that the set Aof trees isonstruted ona set F of funtional

symbolsinludingamong others thesymbols0;1;2;3;s;f,of respetivearities

0;0;0;0;1;4.Fork0letusintroduetheonstraint:

huge

k (x)

def

= 9z triangle

k

(3;x;z;0)

withstillfork0,

triangle

0

(t;x;z;y) def

= z=x^z=y

triangle

k +1

(t;x;z;y) def

= 2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4 [9u

1 9u

2

z=f(x;u

1

;u

2

;y)℄

^

2

6

6

6

6

6

6

6

6

6

6

4 8t

0

8y 0

8z 0

(t 0

=1_t 0

=2)^

triangle

k (t

0

;z;z 0

;y 0

)

!

2

6

6

6

6

4 (t

0

=1^form1(y 0

))_

(t 0

=2^ 2

6

6

4

9u9v form2(u;y 0

;v)^

(t=1!trans1(u;v))^

(t=2!trans2(u;v))^

(t=3!trans3(u;v)) 3

7

7

5 3

7

7

7

7

5 3

7

7

7

7

7

7

7

7

7

7

5 3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5 (4)

and

form1(x) def

= 9u

1 :::9u

4

x=f(u

1

;f(u

2

;u

2

;u

2

;u

2 );f(u

3

;u

3

;u

3

;u

3 );u

4 )

form2(x;z;y) def

= 9u

1 :::9u

6 z=f(u

1

;f(u

1

;u

2

;u

3

;x);f(y;u

4

;u

5

;u

6 );u

6 )

trans1(x;y) def

= 9u

1 :::9u

4 x=f(u

1

;u

2

;u

3

;u

4

)^(y=u

2

_y=u

3 )

trans2(x;y) def

= trans1(x;y)_x=y

def

Références

Documents relatifs

In order to show that &lt;-inv FO collapses to FO over a class of structures of bounded treewidth, it is tempting to reduce the case of bounded treewidth to the case of trees,

The algebra of ordinal-indexed sequences is being implemented in the proof- assistant Coq, together with the algebra of ordinals represented in Cantor normal form?.

Then we study the coalgebra endomorphisms, using the graded Hopf algebra gr(H R ) associated to the filtration by deg p of [3].. Call a rooted tree t a connected and

Since the full first-order theory of ordering constraints over sufficiently labeled (finite) feature trees can easily be encoded in (weak) second order monadic logic, decidability

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The disjunction φ of general solved formulas extracted from the final working formula is either the formula false or true or a formula having at least one free variable,

(2) we present simple conditions on T and only on T so that the combination of T with the theory of finite or infinite trees is complete and accepts a decision algorithm in the form

We have extended this theory by giving a complete first-order axiomatization T of the evaluated trees [6] which are combination of finite or infinite trees with construction