• Aucun résultat trouvé

Sharp rates for the subcritical parabolic-elliptic Keller-Segel model in the plane

N/A
N/A
Protected

Academic year: 2022

Partager "Sharp rates for the subcritical parabolic-elliptic Keller-Segel model in the plane"

Copied!
56
0
0

Texte intégral

(1)

Sharp rates for the subcritical parabolic-elliptic Keller-Segel model in the plane

Jean Dolbeault

http://www.ceremade.dauphine.fr/ ∼ dolbeaul Ceremade, Universit´e Paris-Dauphine

September 7, 2012

Applied Partial Differential Equations in Physics, Biology and Social Sciences: Classical and Modern Perspectives,

Barcelona (September 3-7, 2012)

J. Dolbeault Rates for the subcritical Keller-Segel model

(2)

Outline

1

Preliminaries: functional inequalities, fast diffusion, Onofri, etc.

2

Keller-Segel model: subcritical and small mass results

[A. Blanchet, JD, M. Escobedo, J. Fern´ andez]

3

Keller-Segel model: inequalities and spectrum of the linearized

operator [J. Campos, JD]

4

Keller-Segel model, a functional analysis approach

[J. Campos, JD]

J. Dolbeault Rates for the subcritical Keller-Segel model

(3)

1 – Preliminaries: functional analysis

Flows, functional inequalities, functional spaces...

1

Fast diffusion, Gagliardo-Nirenberg and Onofri inequalities

2

Logarithmic Hardy-Littlewood-Sobolev and Onofri inequalities:

duality, flows

3

Linearized fast diffusion and weighted L 2 spaces

J. Dolbeault Rates for the subcritical Keller-Segel model

(4)

Fast diffusion, Gagliardo-Nirenberg and Onofri inequalities

J. Dolbeault Rates for the subcritical Keller-Segel model

(5)

The fast diffusion equation

Consider the Fokker-Planck version of fast diffusion equation (FDE) with exponent m ∈ ( d−1 d , 1), d ≥ 3

∂u

∂t = ∆u m + ∇ · (x u) t > 0 , x ∈ R d

with u 0 ∈ L 1 + (R d ) such that u 0 m ∈ L 1 + (R d ) and | x | 2 u 0 ∈ L 1 + (R d ) Any solution converges as t → ∞ to the Barenblatt profile

u ∞ (x) = C M + 1−m 2m | x | 2

m−11

x ∈ R d

J. Dolbeault Rates for the subcritical Keller-Segel model

(6)

Asymptotic behaviour of the solutions of FDE

[J. Ralston, W.I. Newman] Define the relative entropy (or free energy) by

F [u] := 1 m − 1

Z

R

d

u mu mm u m−1 (u − u ∞ ) dx

d

dt F [u(t , · )] = − m−1 m 2 R

R

d

u |∇ u m−1 − ∇ u m−1 | 2 dx =: − I [u(t , · )]

F [u(t , · )] ≤ 1 2 I [u(t, · )]

if m is in the range ( d−1 d , 1), thus showing that F [u(t , · )] ≤ F [u 0 ] e −2tt ≥ 0

With p = 2m−1 1 , the inequality F [u] ≤ 1 2 I [u] can be rewritten in terms of f = u m−1/2 as

k f k L

2p

( R

d

) ≤ C p,d k∇ f k θ L

2

( R

d

) k f k 1−θ L

p+1

(R

d

)

f ∞ = um−1/2 is optimal [M. del Pino, JD] [F. Otto]

[D. Cordero-Erausquin, B. Nazaret, C. Villani]

J. Dolbeault Rates for the subcritical Keller-Segel model

(7)

Gagliardo-Nirenberg inequalities

Consider the following sub-family of Gagliardo-Nirenberg inequalities k f k L

2p

(R

d

) ≤ C p,d k∇ f k θ L

2

(R

d

) k f k 1−θ L

p+1

( R

d

)

with θ = θ(p) := p−1 p d+2−p d (d−2) , p = 2m−1 1 1 < p ≤ d−2 d if d ≥ 3, d−1 dm < 1 1 < p < ∞ if d = 2, 1 2 < m < 1

[M. del Pino, JD] equality holds in if f = F p with F p (x) = (1 + | x | 2 )

p−11

x ∈ R d

All extremal functions are equal to F p up to a multiplication by a constant, a translation and a scaling

When p → 1, we recover the euclidean logarithmic Sobolev inequality in optimal scale invariant form [F. Weissler]

If d ≥ 3, the limit case p = d /(d − 2) corresponds to Sobolev’s inequality [T. Aubin, G. Talenti]

If d = 2 and p → ∞ ...

J. Dolbeault Rates for the subcritical Keller-Segel model

(8)

Onofri’s inequality as a limit case

When d = 2, Onofri’s inequality can be seen as an endpoint case of the family of the Gagliardo-Nirenberg inequalities [JD], [del Pino, JD]

Proposition (JD)

Assume that g ∈ D (R d ) is such that R

R

2

g d µ = 0 and let f p := F p

1 + 2p g

. With µ(x) := π 1 (1 + | x | 2 ) −2 , and d µ(x ) := µ(x ) dx, we have

1 ≤ lim

p→∞ C p,2

k∇ f p k θ(p) L

2

( R

2

) k f p k 1−θ(p) L

p+1

( R

2

)

k f p k L

2p

(R

2

)

= e

161π

R

R2

|∇g|

2

dx R

R

2

e g

The standard form of the euclidean version of Onofri’s inequality is

log Z

R

2

e g

− Z

R

2

g d µ ≤ 1 16 π

Z

R

2

|∇ g | 2 dx

J. Dolbeault Rates for the subcritical Keller-Segel model

(9)

Logarithmic Hardy-Littlewood-Sobolev and Onofri inequalities: duality, flows

J. Dolbeault Rates for the subcritical Keller-Segel model

(10)

The logarithmic HLS inequality

The classical logarithmic Hardy-Littlewood-Sobolev (logHLS) in R 2 Z

R

2

n log n M

dx+ 2

M Z

R

2

× R

2

n(x ) n(y) log | xy | dx dy +M (1 + log π) ≥ 0 Equality is achieved by

µ(x) := 1

π (1 + | x | 2 ) 2x ∈ R 2 Notice that − ∆ log µ = 8 π µ can be inverted as

( − ∆) −1 µ = 1

8 π log (π µ)

With M = 8 π and n ∞ = 8 π µ (logHLS) can be rewritten as Z

R

2

n log n

n

dx

| {z }

=:F

1

[n]

≥ 1 2

Z

R

2

(n − n ∞ ) ( − ∆) −1 (n − n ∞ ) dx

| {z }

=:F

2

[n]

J. Dolbeault Rates for the subcritical Keller-Segel model

(11)

The two-dimensional case: Legendre duality

Onofri’s inequality

F 1 [u] := log Z

R

2

e u

≤ 1 16 π

Z

R

2

|∇ u | 2 dx + Z

R

2

u µ dx =: F 2 [u]

By duality: F i [v ] = sup R

R

2

v u d µ − F i [u]

we can relate Onofri’s inequality with (logHLS)

Proposition (E. Carlen, M. Loss & V. Calvez, L. Corrias) For any v ∈ L 1 + (R 2 ) with R

R

2

v dx = 1, such that v log v and (1 + log | x | 2 ) v ∈ L 1 (R 2 ), we have

F 1 [v ] − F 2 [v ] = Z

R

2

v log v

µ

dx − 4 π Z

R

2

(v − µ) ( − ∆) −1 (v − µ) dx ≥ 0

J. Dolbeault Rates for the subcritical Keller-Segel model

(12)

The two-dimensional case: (logHLS) and flows

[E. Carlen, J. Carrillo, M. Loss]

H 2 [v] :=

Z

R

2

(v − µ) ( − ∆) −1 (v − µ) dx − 1 4 π

Z

R

2

v log v

µ

dx is related to Gagliardo-Nirenberg inequalities if v t = ∆ √ v

Alternatively, assume that v is a positive solution of

∂v

∂t = ∆ log v

µ

t > 0 , x ∈ R 2 Proposition (JD)

If v is a solution with nonnegative initial datum v 0 in L 1 (R 2 ) such that R

R

2

v 0 dx = 1, v 0 log v 0 ∈ L 1 (R 2 ) and v 0 log µ ∈ L 1 (R 2 ), then d

dt H 2 [v (t, · )] = 1 16 π

Z

R

2

|∇ u | 2 dx − Z

R

2

e

u2

− 1

u d µ ≥ F 2 [u] − F 1 [u]

with log(v/µ) = u/2

J. Dolbeault Rates for the subcritical Keller-Segel model

(13)

Linearized fast diffusion and weighted L 2 spaces

J. Dolbeault Rates for the subcritical Keller-Segel model

(14)

Linearization and weighted L 2 spaces

Back to the fast diffusion equation ∂u ∂t = ∆u m + ∇ · (x u) we investigate the linear regime u = u ∞ (1 + ε f u 1−m ) as ε → 0

∂f

∂t = − L f := u m−2 ∞ ∇ · (u ∞ ∇ f )

Use L 2 (R d , u 2−m dx) [A. Blanchet, M. Bonforte, JD, G. Grillo, J.L. V´ azquez]

F [u] := 1 m − 1

Z

R

d

u mu m m u m−1 (u − u ∞ )

dxm 2

Z

R

d

| f | 2 u 2−m dx

d

dt F [u(t , · )] = − I [u(t , · )] ∼ − R

R

d

|∇ f | 2 udx = − h f , L f i F [u(t , · )] ≤ 1 2 I [u(t, · )] = ⇒

Z

R

d

| f | 2 u 2−m dx ≤ 1 Λ

Z

R

d

|∇ f | 2 udx for any m < 1, m 6 = (d − 4)/(d − 2) i.e. Hardy-Poincar´e inequality (under zero average condition on f ) and... Λ = 1 if m ∈ [(d − 1)/d, 1)

J. Dolbeault Rates for the subcritical Keller-Segel model

(15)

Linearized fast diffusion: spectrum

mc=d−2d

m1=d−1d m2=d+1d+2

e m1=d+2d

e m2=d+4d+6

m Spectrum of L

(d= 5)

Essential spectrum

1 2 4 6

Figure: Spectrum of L, appropriately normalized

J. Dolbeault Rates for the subcritical Keller-Segel model

(16)

2 – Keller-Segel model: subcritical and small mass results

J. Dolbeault Rates for the subcritical Keller-Segel model

(17)

The parabolic-elliptic Keller and Segel system

 

 

 

 

∂u

∂t = ∆u − ∇ · (u ∇ v) x ∈ R 2 , t > 0

− ∆v = u x ∈ R 2 , t > 0 u( · , t = 0) = n 0 ≥ 0 x ∈ R 2 We make the choice:

v(t , x ) = − 1 2π

Z

R

2

log | xy | u(t , y) dy and observe that

v(t, x) = − 1 2π

Z

R

2

xy

| xy | 2 u(t, y ) dy Mass conservation: d

dt Z

R

2

u(t , x) dx = 0

J. Dolbeault Rates for the subcritical Keller-Segel model

(18)

Blow-up

M = R

R

2

n 0 dx > 8π and R

R

2

| x | 2 n 0 dx < ∞ : blow-up in finite time a solution u of

∂u

∂t = ∆u − ∇ · (u ∇ v) satisfies

d dt

Z

R

2

| x | 2 u(t, x) dx

= − Z

R

2

2 x · ∇ u dx

| {z }

−4M

+ 1 2π

Z Z

R

2

× R

2

2x·(y−x)

|x−y|

2

u(t, x) u(t, y) dx dy

| {z }

(x−y)·(y−x)

|x−y|

2

u(t,x) u(t,y) dx dy

= 4 MM 2

2π < 0 if M > 8π

J. Dolbeault Rates for the subcritical Keller-Segel model

(19)

Existence and free energy

M = R

R

2

n 0 dx ≤ 8π: global existence [W. J¨ager, S. Luckhaus], [JD, B. Perthame], [A. Blanchet, JD, B. Perthame], [A. Blanchet, J.A. Carrillo, N. Masmoudi]

If u solves

∂u

∂t = ∇ · [u ( ∇ (log u) − ∇ v)]

the free energy

F[u] :=

Z

R

2

u log u dx − 1 2 Z

R

2

u v dx satisfies

d

dt F[u(t, · )] = − Z

R

2

u |∇ (log u) − ∇ v | 2 dx (log HLS) inequality [E. Carlen, M. Loss]:

F is bounded from below if M < 8π

J. Dolbeault Rates for the subcritical Keller-Segel model

(20)

The existence setting

 

 

 

 

∂u

∂t = ∆u − ∇ · (u ∇ v ) x ∈ R 2 , t > 0

− ∆v = u x ∈ R 2 , t > 0 u( · , t = 0) = n 0 ≥ 0 x ∈ R 2 Initial conditions

n 0 ∈ L 1 + (R 2 , (1+ | x | 2 ) dx) , n 0 log n 0 ∈ L 1 (R 2 , dx) , M :=

Z

R

2

n 0 (x) dx < 8 π Global existence and mass conservation: M = R

R

2

u(x, t) dx for any t ≥ 0, see [W. J¨ager, S. Luckhaus], [A. Blanchet, JD, B. Perthame]

v = − 2π 1 log | · | ∗ u

J. Dolbeault Rates for the subcritical Keller-Segel model

(21)

Time-dependent rescaling

u(x, t) = 1 R 2 (t) n

x R(t ) , τ (t)

and v(x, t ) = c x

R(t ) , τ (t)

with R(t ) = √

1 + 2t and τ(t) = log R(t)

 

 

 

 

∂n

∂t = ∆n − ∇ · (n ( ∇ cx)) x ∈ R 2 , t > 0 c = − 1

2π log | · | ∗ n x ∈ R 2 , t > 0 n( · , t = 0) = n 0 ≥ 0 x ∈ R 2

[A. Blanchet, JD, B. Perthame] Convergence in self-similar variables

t→∞ lim k n( · , · + t ) − n ∞ k L

1

( R

2

) = 0 and lim

t→∞ k∇ c( · , · + t) − ∇ c ∞ k L

2

( R

2

) = 0 means intermediate asymptotics in original variables:

k u(x, t ) − R

2

1 (t) n

x

R (t) , τ(t )

k L

1

(R

2

) ց 0

J. Dolbeault Rates for the subcritical Keller-Segel model

(22)

The stationary solution in self-similar variables

n ∞ = M e c

−|x|

2

/2 R

R

2

e c

−|x|

2

/2 dx = − ∆c ∞ , c ∞ = − 1

2π log | · | ∗ n

Radial symmetry [Y. Naito]

Uniqueness [P. Biler, G. Karch, P. Lauren¸cot, T. Nadzieja]

As | x | → + ∞ , n ∞ is dominated by e −(1−ǫ)|x|

2

/2 for any ǫ ∈ (0, 1) [A. Blanchet, JD, B. Perthame]

Bifurcation diagram of k n ∞ k L

( R

2

) as a function of M :

M→0 lim

+

k n ∞ k L

( R

2

) = 0 [D.D. Joseph, T.S. Lundgren] [JD, R. Sta´ nczy]

J. Dolbeault Rates for the subcritical Keller-Segel model

(23)

The stationary solution when mass varies

0.5 1.0 1.5 2.0

2 4 6 8

Figure: Representation of the solution appropriately scaled so that the 8π case appears as a limit (in red)

J. Dolbeault Rates for the subcritical Keller-Segel model

(24)

The free energy in self-similar variables

∂n

∂t = ∇ h

n (log nx + ∇ c) i F [n] :=

Z

R

2

n log n dx + Z

R

2

1

2 | x | 2 n dx − 1 2

Z

R

2

n c dx satisfies

d

dt F[n(t, · )] = − Z

R

2

n |∇ (log n) + x − ∇ c | 2 dx A last remark on 8π and scalings: n λ (x) = λ 2 n(λ x ) F [n λ ] = F [n]+

Z

R

2

n log(λ 2 ) dx+

Z

R

2

λ

−2

−1

2 | x | 2 n dx+ 1 4π

Z

R

2

× R

2

n(x) n(y ) log 1 λ dx dy F [n λ ] − F[n] =

2M − M 2

| {z }

>0 if M<8π

log λ + λ −2 − 1 2

Z

R

2

| x | 2 n dx

x

J. Dolbeault Rates for the subcritical Keller-Segel model

(25)

Keller-Segel with subcritical mass in self-similar variables

 

 

 

 

∂n

∂t = ∆n − ∇ · (n ( ∇ cx)) x ∈ R 2 , t > 0 c = − 1

2π log | · | ∗ n x ∈ R 2 , t > 0 n( · , t = 0) = n 0 ≥ 0 x ∈ R 2

t→∞ lim k n( · , · + t ) − n ∞ k L

1

( R

2

) = 0 and lim

t→∞ k∇ c( · , · + t) − ∇ c ∞ k L

2

( R

2

) = 0 n ∞ = M e c

−|x|

2

/2

R

R

2

e c

−|x|

2

/2 dx = − ∆c ∞ , c ∞ = − 1

2π log | · | ∗ n

J. Dolbeault Rates for the subcritical Keller-Segel model

(26)

First result: small mass case

Theorem (A. Blanchet, JD, M. Escobedo, J. Fern´andez)

There exists a positive constant M such that, for any initial data n 0 ∈ L 2 (n −1 dx) of mass M < M satisfying the above assumptions, there is a unique solution nC 0 (R + , L 1 (R 2 )) ∩ L ((τ, ∞ ) × R 2 ) for any τ > 0

Moreover, there are two positive constants, C and δ, such that Z

R

2

| n(t, x)n ∞ (x) | 2 dx

n ∞ ≤ C e δ tt > 0 As a function of M, δ is such that lim M→0

+

δ(M) = 1

The condition M ≤ 8 π is necessary and sufficient for the global existence of the solutions, but there are two extra smallness conditions in our proof:

Uniform estimate: the method of the trap Spectral gap of a linearised operator L

J. Dolbeault Rates for the subcritical Keller-Segel model

(27)

First step: the trap

Lemma

For any M < M 1 , there exists C = C(M) such that, for any solution uC 0 (R + , L 1 (R 2 )) ∩ L (R + loc × R 2 )

k u(t ) k L

( R

2

) ≤ C t −1t > 0 The method of the trap... Duhamel’s formula

H(t k u( · , t ) k L

( R

2

) , M) ≤ 0

0 z

H(z, M) H(z

0

(M ),M)

z

0

(M) z

0

(M

0

(p))

M

2π J. Dolbeault Rates for the subcritical Keller-Segel model

(28)

Second step: L p and H 1 estimates in the self-similar variables

 

 

 

 

∂n

∂t = ∆n − ∇ · (n ( ∇ cx)) x ∈ R 2 , t > 0 c = − 1

2π log | · | ∗ n x ∈ R 2 , t > 0 n( · , t = 0) = n 0 ≥ 0 x ∈ R 2 With K = K (x ) = e |x|

2

/2 , rewrite the equation for n as

∂n

∂t − 1

K ∇ · (K ∇ n) = −∇ c · ∇ n + 2n + n 2 1

2 d dt

Z

R

2

| n | 2 K dx + Z

R

2

|∇ n | 2 K dx

= − Z

R

2

nc · ∇ n K dx + 2 Z

R

2

n 2 K dx + Z

R

2

n 3 K dx

≤ ε Z

R

2

|∇ n | 2 K dx + C

J. Dolbeault Rates for the subcritical Keller-Segel model

(29)

Third step: linearization and spectral gap

Proposition

For any M ∈ (0, M 2 ), for any f ∈ H 1 (n ∞ dx) such that Z

R

2

f ndx = 0 = ⇒ Z

R

2

|∇ f | 2 ndx ≥ 1 Λ(M)

Z

R

2

| f | 2 ndx for some Λ(M) > 0 and lim M→0

+

Λ(M) = 1

Corollary

If M < M 2 , then any solution n is bounded in

L (R + , L 2 (n −1 dx))L ((τ, ∞ ), H 1 (n −1 dx)) for any τ > 0

J. Dolbeault Rates for the subcritical Keller-Segel model

(30)

Fourth step: collecting the estimates

 

 

∂f

∂t − L (t , x , f , g ) = − 1

n ∞ ∇ · [f n ∞ ∇ (g c ∞ )] x ∈ R 2 , t > 0

− ∆(c ∞ g ) = f nx ∈ R 2 , t > 0 Multiply by f n ∞ and integrate by parts

1 2

d dt

Z

R

2

| f | 2 ndx + Z

R

2

|∇ f | 2 ndx

= Z

R

2

f · ∇ (g c ∞ ) ndx

| {z }

= I

+ Z

R

2

f · ∇ (g c ∞ ) f ndx

| {z }

= II

1 2

d dt

Z

R

2

| f | 2 ndx ≤ − [1 − γ(M)]

Z

R

2

|∇ f | 2 ndx ≤ − [1 − γ(M) Λ(M )

Z

R

2

| f | 2 ndx

J. Dolbeault Rates for the subcritical Keller-Segel model

(31)

3 – Keller-Segel model: inequalities and spectrum of the linearized

operator

J. Dolbeault Rates for the subcritical Keller-Segel model

(32)

A parametrization of the solutions and the linearized operator

[J. Campos, JD]

− ∆c = M e

12

|x|

2

+c R

R

2

e

12

|x|

2

+c dx Solve

− φ ′′ − 1

r φ = e

12

r

2

, r > 0

with initial conditions φ(0) = a, φ (0) = 0 and get with r = | x | M (a) := 2π

Z

R

2

e

12

r

2

a

dx

n a (x) = M(a) e

12

r

2

a

(r) 2π R

R

2

r e

12

r

2

a

dx = e

12

r

2

a

(r)

J. Dolbeault Rates for the subcritical Keller-Segel model

(33)

Mass

-4 -2 2 4 6 8 10

0.2 0.4 0.6 0.8 1.0

Figure: The mass can be computed as M(a) = 2π R

0

n

a

(r) r dr . Plot of a 7→ M(a)/8π

J. Dolbeault Rates for the subcritical Keller-Segel model

(34)

Bifurcation diagram

1.5 2.0 2.5 3.0 3.5 4.0

5 10 15

Figure: The bifurcation diagram can be parametrized by a 7→ (

21π

M(a), kc

a

k

L∞(Rd)

) with kc

a

k

L∞(Rd)

= c

a

(0) = a − b(a) (cf. Keller-Segel system in a ball with no flux boundary conditions)

J. Dolbeault Rates for the subcritical Keller-Segel model

(35)

Spectrum of L (lowest eigenvalues only)

5 10 15 20 25

1 2 3 4 5 6 7

Figure: The lowest eigenvalues of −L = (−∆)

1

(n

a

f ) (shown as a function of the mass) are 0, 1 and 2, thus establishing that the spectral gap of −L is 1

[A. Blanchet, JD, M. Escobedo, J. Fern´ andez], [J. Campos, JD], [V. Calvez, J.A. Carrillo], [J. Bedrossian, N. Masmoudi]

J. Dolbeault Rates for the subcritical Keller-Segel model

(36)

Spectral analysis in the functional framework determined by the relative entropy method

J. Dolbeault Rates for the subcritical Keller-Segel model

(37)

Simple eigenfunctions

Kernel Let f 0 = ∂M c ∞ be the solution of

− ∆ f 0 = nf 0

and observe that g 0 = f 0 /c ∞ is such that 1

n ∞ ∇ · n ∞ ∇ (f 0 − cg 0 )

=: L f 0 = 0 Lowest non-zero eigenvalues f 1 := n 1

∂n ∂x

1

associated with g 1 = c 1

∂c

∂x

1

is an eigenfunction of L , such that −L f 1 = f 1

With D := x · ∇ , letf 2 = 1 + 1 2 D log n ∞ = 1 + 2 n 1

D n ∞ . Then

− ∆ (D c ∞ ) + 2 ∆c ∞ = D n ∞ = 2 (f 2 − 1) n

and so g 2 := c

1 ( − ∆) −1 (n ∞ f 2 ) is such that −L f 2 = 2 f 2

J. Dolbeault Rates for the subcritical Keller-Segel model

(38)

Functional setting...

Lemma (A. Blanchet, JD, B. Perthame)

Sub-critical HLS inequality [A. Blanchet, JD, B. Perthame]

F[n] :=

Z

R

2

n log n

n

dx − 1

2 Z

R

2

(n − n ∞ ) (c − c ∞ ) dx ≥ 0 achieves its minimum for n = n

Q 1 [f ] = lim

ε→0

1

ε 2 F[n ∞ (1 + ε f )] ≥ 0 if R

R

2

f ndx = 0. Notice that f 0 generates the kernel of Q 1

Lemma (J. Campos, JD)

Poincar´e type inequality For any fH 1 (R 2 , ndx) such that R

R

2

f ndx = 0, we have Z

R

2

|∇ ( − ∆) −1 (f n ∞ ) | 2 ndx = Z

R

2

|∇ (g c ∞ ) | 2 ndx ≤ Z

R

2

| f | 2 ndx

J. Dolbeault Rates for the subcritical Keller-Segel model

(39)

... and eigenvalues

With g such that − ∆(g c ∞ ) = f n ∞ , Q 1 determines a scalar product h f 1 , f 2 i :=

Z

R

2

f 1 f 2 ndx − Z

R

2

f 1 n ∞ (g 2 c ∞ ) dx on the orthogonal space to f 0 in L 2 (n ∞ dx)

Q 2 [f ] :=

Z

R

2

|∇ (f − g c ∞ ) | 2 ndx with g = − 1 c

1

2π log |·|∗ (f n ∞ ) is a positive quadratic form, whose polar operator is the self-adjoint operator L

h f , L f i = Q 2 [f ] ∀ f ∈ D (L 2 ) Lemma (J. Campos, JD)

L has pure discrete spectrum and its lowest eigenvalue is 1

J. Dolbeault Rates for the subcritical Keller-Segel model

(40)

Linearized Keller-Segel theory

L f = 1

n ∞ ∇ · n ∞ ∇ (f − cg ) Corollary (J. Campos, JD)

h f , f i ≤ hL f , f i The linearized problem takes the form

∂f

∂t = L f

where L is a self-adjoint operator on the orthogonal of f 0 equipped with h· , ·i . A solution of

d

dt h f , f i = − 2 hL f , f i has therefore exponential decay

J. Dolbeault Rates for the subcritical Keller-Segel model

(41)

More functional inequalities

J. Dolbeault Rates for the subcritical Keller-Segel model

(42)

A subcritical logarithmic HLS inequality

Recall that

Lemma (A. Blanchet, JD, B. Perthame)

Sub-critical HLS inequality [A. Blanchet, JD, B. Perthame]

F[n] :=

Z

R

2

n log n

n

dx − 1

2 Z

R

2

(n − n ∞ ) (c − c ∞ ) dx ≥ 0 achieves its minimum for n = n

Lemma (J. Campos, JD)

Poincar´e type inequality For any fH 1 (R 2 , ndx) such that R

R

2

f ndx = 0, we have Z

R

2

|∇ ( − ∆) −1 (f n ∞ ) | 2 ndx = Z

R

2

|∇ (g c ∞ ) | 2 ndx ≤ Z

R

2

| f | 2 ndx ... Legendre duality

J. Dolbeault Rates for the subcritical Keller-Segel model

(43)

A new Onofri type inequality

Theorem (J. Campos, JD)

For any M ∈ (0, 8π), if n ∞ = M e

c∞−

1 2|x|2

R

R2

e

c∞ −12|x|2

dx with c ∞ = ( − ∆) −1 n, d µ M = M 1 ndx, we have the inequality

log Z

R

2

e φ d µ M

− Z

R

2

φ M ≤ 1 2 M

Z

R

2

|∇ φ | 2 dx ∀ φ ∈ D 0 1,2 (R 2 )

Corollary (J. Campos, JD)

The following Poincar´e inequality holds Z

R

2

ψ − ψ

2 ndx ≤ Z

R

2

|∇ ψ | 2 dx where ψ = Z

R

2

ψ M

J. Dolbeault Rates for the subcritical Keller-Segel model

(44)

An improved interpolation inequality (coercivity estimate)

Lemma (J. Campos, JD)

For any fL 2 (R 2 , ndx) such that R

R

2

f f 0 ndx = 0 holds, we have

− 1 2π

Z Z

R

2

× R

2

f (x) n ∞ (x) log | xy | f (y) n ∞ (y) dx dy

≤ (1 − ε) Z

R

2

| f | 2 ndx for some ε > 0, where g c ∞ = G 2 ∗ (f n ∞ ) and, if R

R

2

f ndx = 0 holds, Z

R

2

|∇ (g c ∞ ) | 2 dx ≤ (1 − ε) Z

R

2

| f | 2 ndx

J. Dolbeault Rates for the subcritical Keller-Segel model

(45)

4 – Keller-Segel model, a functional analysis approach

J. Dolbeault Rates for the subcritical Keller-Segel model

(46)

Exponential convergence for any mass M ≤ 8 π

If n 0,∗ (σ) stands for the symmetrized function associated to n 0 , assume that for any s ≥ 0

(H) ∃ ε ∈ (0, 8 π − M ) such that Z s

0

n 0,∗ (σ) ≤ Z

B “ 0, √

s/π ” n ∞,M+ε (x) dx Theorem (J. Campos, JD)

Under the above assumption, if n 0 ∈ L 2 + (n −1 dx) and M := R

R

2

n 0 dx < 8 π, then any solution with initial datum n 0 is such that Z

R

2

| n(t , x ) − n ∞ (x) | 2 dx

n ∞ (x) ≤ C e 2 tt ≥ 0

for some positive constant C , where nis the unique stationary solution with mass M

J. Dolbeault Rates for the subcritical Keller-Segel model

(47)

Sketch of the proof

[J. Campos, JD] Uniform convergence of n(t, · ) to n ∞ can be established for any M ∈ (0, 8π) by an adaptation of the

symmetrization techniques of [J.I. D´ıaz, T. Nagai, J.M. Rakotoson]

Uniform estimates (with no rates) easily result

Estimates based on Duhammel’s formula inspired by [M. Escobedo, E. Zuazua] allow to prove uniform convergence

Spectral estimates can be incorporated to the relative entropy approach

Exponential convergence of the relative entropy follows

J. Dolbeault Rates for the subcritical Keller-Segel model

(48)

Step 1: symmetrization (1/2)

To any measurable function u : R 2 7→ [0, + ∞ ),

we associate the distribution function defined by µ(t , τ) := |{ u > τ }|

and its decreasing rearrangement given by

u ∗ : [0, + ∞ ) → [0, + ∞ ] , s 7→ u ∗ (s) = inf { τ ≥ 0 : µ(t, τ ) ≤ s } .

1

For every measurable function F : R + 7→ R + , we have Z

R

2

F(u) dx = Z

R

+

F(u ∗ ) ds

2

If uW 1,q (0, T ; L p (R N )) is a nonnegative function, with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ , then u ∗ ∈ W 1,q (0, T ; L p (0, ∞ )) and the formula

Z µ(t,τ ) 0

∂u ∗

∂t (t, σ) = Z

{u(t,·)>τ }

∂u

∂t (t , x ) dx holds for almost every t ∈ (0, T ) [J.I. D´ıaz, T. Nagai, J.M. Rakotoson]

J. Dolbeault Rates for the subcritical Keller-Segel model

(49)

Step 1: symmetrization (2/2)

Lemma

If n is a solution, then the function k (t , s) :=

Z s 0

n ∗ (t, σ) satisfies kL ([0, + ∞ ) × (0, + ∞ )) ∩ H 1

[0, + ∞ ); W loc 1,p (0, + ∞ )

L 2

[0, + ∞ ); W loc 2,p (0, + ∞ ) and

 

 

∂k

∂t − 4 π s ∂s

2

k

2

− (k + 2 s) ∂k ∂s ≤ 0 a.e. in (0, + ∞ ) × (0, + ∞ ) k (t , 0) = 0 , k (t , + ∞ ) = R

R

2

n 0 dx for t ∈ (0, + ∞ ) k (0, s) = R s

0 (n 0 ) ∗ for s ≥ 0

J. Dolbeault Rates for the subcritical Keller-Segel model

(50)

Step 2: Uniform estimates

Proposition (J.I. D´ıaz, T. Nagai, J.M. Rakotoson)

Let f , g be two continuous functions on Q = R + × (0, + ∞ ) such that ...

 

 

∂f

∂t − 4 π s ∂s

2

f

2

− (f + 2 s) ∂f ∂s∂g ∂t − 4 π s ∂s

2

g

2

− (g + 2 s) ∂g ∂s a.e. in Q f (t , 0) = 0 = g (t, 0) and f (t , + ∞ ) ≤ g (t, + ∞ ) for any t ∈ (0, + ∞ )

f (0, s)g (0, s) for s ≥ 0 , and g (t , s) ≥ 0 in Q then fg on Q

Corollary

Assume that n 0 ∈ L 2 + (n −1 dx) satisfies (H) and M := R

R

2

n 0 dx < 8 π.

Then there exist positive constants C 1 = C 1 (M , p) and C 2 = C 2 (M , p) such that

k n k L

p

( R

2

) ≤ C 1 and k∇ c k L

( R

2

) ≤ C 2

J. Dolbeault Rates for the subcritical Keller-Segel model

(51)

Step 3: Estimates based on Duhammel’s formula

Consider the kernel associated to the Fokker-Planck equation

K (t, x, y) := 1

2π (1 − e 2 t ) e

12

|x−e−t y|2

1−e−2t

x ∈ R 2 , y ∈ R 2 , t > 0 If n is a solution, then

n(t , x ) = Z

R

2

K (t , x , y ) n 0 (y) dy + Z t

0

Z

R

2

∇ x K (t − s, x, y) · n(s, y ) ∇ c(s, y) dy ds

Corollary

Assume that n is a solution. Then

t→∞ lim k n(t, · ) − n ∞ k L

p

( R

d

) = 0 and lim

t→∞ k∇ c(t, · ) − ∇ c ∞ k L

q

( R

d

) = 0 for any p ∈ [1, ∞ ] and any q ∈ [2, ∞ ]

J. Dolbeault Rates for the subcritical Keller-Segel model

(52)

Step 4: Spectral estimates can be incorporated

With Q 1 [f ] = h f , f i and Q 2 [f ] = h f , L f i

1

For any function f in the orthogonal of the kernel of L , we have Q 1 [f ] ≤ Q 2 [f ]

2

For any radial function f ∈ D (L 2 ), we have 2 Q 1 [f ] ≤ Q 2 [f ]

J. Dolbeault Rates for the subcritical Keller-Segel model

(53)

Step 5: Exponential convergence of the relative entropy

∂f

∂t = L f − 1

n ∞ ∇ [n ∞ f ∇ (g c ∞ )]

d

dt Q 1 [f (t, · )] = − 2 Q 2 [f (t , · )] + Z

R

2

∇ (f − g c ∞ ) f n ∞ · ∇ (g c ∞ ) dx d

dt Q 1 [f (t, · )] ≤ − 2 Q 2 [f (t , · )] + δ(t, ε) p

Q 1 [f (t , · )] Q 2 [f (t, · )]

Q 1 [f (t , · )] ≤ Q ∀ t ≥ 0 d

dt Q 1 [f (t, · )] ≤ − Q 1 [f (t, · )] h

2 − δ(t, ε)

Q 1 [f (t , · )])

1−ε2−ε

+ Q 1 [f (t, · )])

2+ε1

i As a consequence, we finally get that

lim sup

t→∞

e 2 t Q 1 [f (t, · )] < ∞

J. Dolbeault Rates for the subcritical Keller-Segel model

(54)

J. Dolbeault Rates for the subcritical Keller-Segel model

(55)

Some key ideas

1

Lyapunov / Entropy functionals and functional inequalities

2

Linearization and best constants

3

Functional framework for linearized operators can be deduced from the entropy functional

J. Dolbeault Rates for the subcritical Keller-Segel model

(56)

Thank you for your attention !

J. Dolbeault Rates for the subcritical Keller-Segel model

Références

Documents relatifs

We presented the application of scalar auxiliary variable method to the parabolic-parabolic Keller- Segel with volume filling using the gradient flow structure of the model.. The

Keller-Segel equations, non compact Riemannian manifolds, negative cur- vature, hyperbolic space, Green function, logarithmic Hardy-Littlewood-Sobolev inequality, entropy

In mathematical terms this is expected to correspond to the finite time blow-up of the cell density u near one or several points, along with the formation of one or several

The proofs are thus sometimes very similar to those in [8] but there are some differences due to the facts that (i) there are no circulation parameter ( M N i in [8]): this simplify

The aim of the paper is to prove uniqueness of “free energy” weak solutions to the the so-called parabolic-elliptic Keller-Segel equation in the plane associated to initial datum

Key words: Keller-Segel model, chemotaxis, drift-di ff usion, self-similar solution, intermediate asymptotics, entropy, free energy, rate of convergence, heat kernel.. 2000 MSC:

By formal asymptotics the dynamics of solutions of the regularized problem is studied under the assumption that in the limit the cell density is the sum of a smooth part and of a

If the initial data is radially symmetric decreasing and compactly supported, the solution will converge to the compactly supported steady state solution with the same mass and