• Aucun résultat trouvé

CHRISTEI~ BORELL Convex measures on locally convex spaces

N/A
N/A
Protected

Academic year: 2022

Partager "CHRISTEI~ BORELL Convex measures on locally convex spaces"

Copied!
14
0
0

Texte intégral

(1)

C o n v e x m e a s u r e s o n l o c a l l y c o n v e x spaces

CHRISTEI~ BORELL

1. Introduction

T h e p u r p o s e of this p a p e r is n o t to give a c o m p l e t e t r e a t m e n t o f so-called c o n v e x m e a s u r e s b u t m e r e l y to p o i n t o u t a n e w t e c h n i q u e . I t will be p r o v e d t h a t a Gauss m e a s u r e is a c o n v e x measure, a n d using t h e i n e q u a l i t y (Is) below, we get v e r y n e a t proofs o f results a l r e a d y k n o w n for Gauss measures. On t h e o t h e r h a n d o u r results a p p l y to all c o n v e x measures.

T h r o u g h o u t this p a p e r E d e n o t e s a locally c o n v e x t i a u s d o r f f v e c t o r space, a n d ~ ( E ) is t h e set o f all B o r e l sets in E . G i v e n a B o r e l p r o b a b i l i t y m e a s u r e # on E we d e f i n e t h e i n n e r /t-measure # . ( A ) o f a subset A o f E b y

# . ( A ) = sup { # ( K ) I K c o m p a c t ~ A}.

W e shall s a y t h a t # is a R a d o n p r o b a b i l i t y m e a s u r e if # . ( A ) --~ #(A) for all A E ~ ( E ) . I t is k n o w n t h a t all B o r e l p r o b a b i l i t y measures on E are R a d o n p r o b a b i l i t y measures, if E is a Souslin space. (See e.g. [3, p. 132].) F u r t h e r , we d e f i n e M ~ ( u , v ) = (~u ~ + ( 1 - - ~)vS) 1/~, - - ~ < s < 0 , ~ m i n ( u , v ) , s ~ - - ~ , a n d u~v I ~, s ~-- O, for u, v > 0 . H e r e 0 ~ 0.

Definition 1.1. L e t # be a R a d o n p r o b a b i l i t y m e a s u r e on E a n d a s s u m e s E [ - - ~ , 0]. T h e n we shall s a y t h a t # belongs t o t h e class ~ , ( E ) if t h e i n e q u a l i t y

~ , ( ~ A + (1 - - ~)B) >_ M~(~(A), ~(B)) (L)

holds for all 0 < 2 < 1, a n d all A, B E ~ ( E ) .

A m e a s u r e belonging t o t h e class TX_+(E) will be called a c o n v e x m e a s u r e . B y definition, hA -~ (1 - - 2)B = {2x + (1 - - ~)ylx E A , y E B}. N o t e t h a t this set n e e d n o t be a Borel set e v e n if A a n d B are so. (See [7].) N o t e also t h a t ~,~(E) ~ ~ , ( E ) , if s 1 > s2, a n d t h e r e f o r e t h e class ~ _ + ( E ) is t h e largest one.

I n a r e c e n t p a p e r [4] t h e a u t h o r gives a c o m p l e t e d e s c r i p t i o n o f t h e classes 9X,(R")( - ~ < s < 0) a n d for t h e r e a d e r s c o n v e n i e n c y we r e c a p i t u l a t e t h e r e s u l t here

(2)

2 4 0 C I I R I S T E R B O R E L L

T~EORE~ 1.1. A Radon probability measure it on R n belongs to the class ~ ( R n) i f and only i f there are an integer k, 0 < k < n, a Radon probability measure on R k, absolutely continuous with respect to Lebesgue measure ink, and an affine m a p p i n g h: Rk--+ R n such that # = rh -1 and such that the function e,,k(dv/dmk)

i 8 c o n v e x , s

H e r e e~,k(u) = u -lj~, s = - - ~ , = u 1 ~, - - ~ < s < 0 , a n d ~ - - l o g u , s = 0 , for u _ ~ 0 , k > 0. W e recall t h a t a c o n t i n u o u s m a p p i n g h : E - - ~ F , for e a c h B o r e l p r o b a b i l i t y m e a s u r e r on E , i n d u c e s a Borel p r o b a b i l i t y m e a s u r e

~h -1 on F (a t o p o l o g i c a l space), d e f i n e d b y rh-l(C) = v(h-l(C)), w h e n C E ~ ( F ) . N o t e t h a t vh -~ is a R a d o n p r o b a b i l i t y m e a s u r e i f v is so.

T h e " i f " p a r t o f T h e o r e m 1.1 is r a t h e r e a s y to p r o v e a n d let us n o w b r i e f l y i n d i c a t e h o w t h i s c a n be done.

Proof of Theorem 1.1. U s i n g L e m m a 2.1 below, it is r e a d i l y seen t h a t we o n l y n e e d to consider t h e case w h e n # = fm~ a n d es,=(f) is a c o n v e x f u n c t i o n on R ~.

A n a p p l i c a t i o n o f H S l d e r ' s i n e q u a l i t y (several t i m e s ) t h e n yields

n n n

f ( ~ x + (1 - - 2)y) ~ (Xa~ @ (1 - - X)bi) ~ M~(f(x) " H a , f ( y ) - ~ b~) ( ] . l )

1 1 1

for all x, y E R N, al . . . . , a , , b x . . . b ~ > 0, a n d 0 < ~ < 1. L e t ~ be t h e f a m i l y of all f i n i t e disjoint u n i o n s o f c o m p a c t n o n - d e g e n e r a t e d n - d i m e n s i o n M i n t e r v a l s , w i t h sides parallel to t h e c o o r d i n a t e axes, a n d w h i c h are i n c l u d e d in t h e i n t e r i o r of s u p p (f). I t is e n o u g h to s h o w t h e i n e q u a l i t y (L) w h e n A, B E ~ a n d 0 < ~ < 1.

L e t n ( A ) be t h e n u m b e r o f disjoint i n t e r v a l s d e f i n i n g A E ~. S u p p o s e f i r s t t h a t t h e i n e q u a l i t y (Is) is t r u e w h e n n ( A ) + n(B) ~ p, w h e r e p _~ 2 is a f i x e d n a t u r a l n u m b e r . W e will t h e n p r o v e t h a t t h e i n e q u a l i t y (Is) is still t r u e w h e n n ( A ) + n(B) -~

p @ 1. T o see t h i s we c a n a s s u m e t h a t n ( A ) > 2. W e t h e n choose a h y p e r p l a n e x~ = c, w i t h a n o r m a l v e c t o r p a r a l l e l to t h e i : t h basis v e c t o r , so t h a t n ( A ' ) < n ( A ) a n d n(A") < n ( A ) , i f A ' = A Cl {xi < c} a n d A" = A N {xi > c} r e s p e c t i v e l y .

Set

~,(A') --~ O~(A), N A " ) = (1 -- O)~(A), (1.2) w h e r e 0 < 0 < 1.

Since # << m,, we c a n f i n d a h y p e r p l a n e x~ ~ d so t h a t

tt(B') = O#(B), /~(B") = (1 - - O)tt(B), (1.3) w h e r e B ' - - B N { x ~ d } a n d B " = B f l { x ~ > _ d } .

U s i n g t h a t t h e i n e q u a l i t y (L) is t r u e w h e n e v e r A, B E ~ a n d n(A) + n(B) < p, we g e t

#(2A @ (1 - - ).)B) > #(;tA' + (1 - - ~t)B') U (2A" + (1 - - ;t)B") =

# ( 2 A ' + (1 - - 2)B') + #(2A" @ (1 - - 2)B") > M~(#(A'), tt(B')) + M~(#(A"), #(B")) OM~,(#(A), #(B)) + (1 - - O)M~(/t(A), #(B) = M~,(#(A), #(B)), 0 < ~ < 1.

(3)

C O N V E X M E A S U R E S O N L O C A L L Y C O N V E X S P A C E S 241 F r o m now on let 2, 0 < 2 < 1, be fixed. I t o n l y remains to be proved t h a t t h e inequality (I~) is t r u e w h e n A, B E ~ a n d n ( A ) = n ( B ) = 1. I f n o t there is a positive n u m b e r e such t h a t

#~(2A @ (1 -- 2)B) < M~(#(A), #(B)), (1.4)

where #, = ( f + o(e))mn, a n d

~o(e) = sup If(x) -- f(y)].

ix yl <~"

x, y e ~ t A + ( 1 2 ) B

Now let us divide A into two congruent intervals A ' = A N {x~ _< c} a n d A" = A N {x I > c}, respectively, a n d choose 0 so t h a t (1.2) holds. I n t h e n e x t step we choose d such t h a t ( 1 . 3 ) h o l d s w i t h B' = B g l { x I <_d} a n d B " = B fl {x 1 >_ d}. Using t h e same technique as above, we conclude t h a t the i n e q u a l i t y (1.4) c a n n o t be wrong for b o t h the pairs (A', B') a n d (A", B"). B y repetition we conclude t h a t

~ ( 2 C + (1 -- 2)D) < ~i~(~(C); ~(D))

where C ~ A, D _c B, a n d where diam (C) a n d d i a m (D) can be m a d e arbitrarily small. Setting

n t~

C = ] ~ [ u ~ - - ( 1 / 2 ) a , u ~ @ (1/2)a~], D = I I [ v - - (1/2)b~,v,-~ (1/2)b~], ( a , b ~ > 0),

1 1

we conclude t h a t there are points x E C , y E D , a n d z C 2 C + ( 1 - - 2)D such t h a t

n n n

(f(z) + ~o(s)) I--~ (2a~ § (1 -- 2)b,) < M~(f(x) - ~ a,,f(y) ~ b,).

1 1 1

B y choosing C a n d D small enough, we have f(z) @ og(e) ~_f(2x ~ (1 -- 2)y), a n d we have got a n i n e q u a l i t y opposite to (1.1). This contradiction proves t h a t t h e i n e q u a l i t y (L) m u s t be t r u e when A, B E ~ a n d n(A) 4- n(B) = 2. This proves the "if" p a r t of Theorem 1.1.

2. Characterization of the classes ~ l t s ( E ) ( - - oo < s < 0)

Suppose ~1 . . . G E E', t h e topological dual of E. W e shall write #h -1 =

w h e n /~1. 9 Z ~ '

h(x) = (~l(x), . .., G(x)), x E E. (2.1)

THEOIiEM 2.1. A Radon probability measure # on E belongs to the class ~J~s(E) if and only if #21...~n E ~J~(R n) for all ~1 . . . G E E', and all positive integers n.

(4)

242 C t t l : t l S T E I ~ B O I ~ E L L

W e n e e d

LE~MA 2.1. Let E and F be locally convex Hausdorff vector spaces and let h: E --> 2' be a continuous linear mapping. Then #h -1 E ?~(F), i f # E ~ ( E ) .

Proof of Lemma 2.1. W e h a v e

Xh-~(C) § (1 - - ~)h-~(D) = h-~[2(C N h(E)) § (1 - - X)(D N h(E))] (2.2) for all 0 < 2 < 1 , a n d all C, D c F .

U s i n g t h a t (#h-1),(C)~ tt,(h-l(C)), C E F, t h e p r o o f of L e m m a 2.1 follows a t once f r o m t h e i n e q u a l i t y (L).

Proof of Theorem 2.1. L e m m a 2.1 p r o v e s t h e " o n l y i f " p a r t . T o p r o v e t h e "if"

p a r t let h be o f t h e f o r m (2.1). T h e a s s u m p t i o n s a n d t h e i d e n t i t y (2.2) t h e n yield

#,(,~h-~(C) § (1 - - 2)h-~(D)) ~ M~(#(h-~(C)), #(h-~(D))) (2.3) for all 0 < ~ < 1, a n d all C, D E ~ ( R " ) .

N o w choose 2, E [0, 1], ~nd c o m p a c t sets A a n d B in E . H o l d i n g ~ , A , a n d B fixed, we shall p r o v e t h e i n e q u a l i t y (I,), w h i c h will p r o v e t h e t h e o r e m . To this e n d let 0 be a n o p e n set c o n t a i n i n g ~A + (1 - - ~)B. Since 2A § (1 - - ~)B is c o m p a c t t h e r e is a n o p e n c o n v e x n e i g h b o u r h o o d V of t h e origin so t h a t

O p e r a + ( 1 - - ~ ) B + 2V.

F u r t h e r , choose Xl . . . . , x~ (~ _/1 a n d y1 . . . . , y~ E B such t h a t

nt n

O (x,§ V) 2 A , U ( y j § V) ~__B, (2.4)

1 1

a n d set

F = U (~x, § (~ - X)yj + 17).

i , ]

N o t e t h a t 0 2 F . F o r each z ~ F , i C { 1 , . . . , m } , a n d j E ( 1 . . . n}, t h e H a h n - B a n a c h s e p a r a t i o n t h e o r e m gives us a kqz C R, a n d a ~q~ E E ' such t h a t

z ~ ~x, + (1 - ~)yj + ~,jol([ki~., § ~ [ ) , ~jo ([~jo, + ~ [ ) 2 17. -1 (2.5) Set

- 1

"~z = U (~Xi -~ ( 1 - - ~)yj ~- ~ijz ([]Cijz, -~ 0 0 D ) "

i , j

Clearly, F = f'lz ~ F Fz,

/~(F) ---- i n f #(F,~ N . . . N F ~ ) . (2.6)

z 1 . . . Z p ~ F p E Z +

a n d since # is a R a d o n p r o b a b i l i t y m e a s u r e we h a v e

F u r t h e r m o r e , it holds t h a t

(5)

CON~EX ~ E A S U ~ E S ON LOCALLY CONVEX SPACES 243

~,j i,j,r

= ' ~ [ U (Xl -Jr- f~ ~jzXr([~ijZr, ~- 00[)2 -t- (1 - - ~ ) [ U (Yj -~- ~ ~Zlr(El~ijZr , -~ 0 0 [ ) ] .

i i,j,r j i,j.r

t I e r e t h e r i g h t - h a n d side is o f t h e f o r m

2h-a(C) + (1 - - 2)h-~(D)

C, D E 1t ~'~, a n d h ~ (E') m"e. T h e e q u a t i o n s (2.3)--(2.6) t h e r e f o r e for suitable

y i e l d

tt(O) > Ms(#(A), #(B)).

Since 0 is a n a r b i t r a r y o p e n set c o n t a i n i n g 2A + (1 - - 2)B, we get t h e i n e q u a l i t y (I,). This p r o v e s T h e o r e m 2.1.

A R a d o n p r o b a b i l i t y m e a s u r e # on E is said t o be a Gauss measure, if #~

is a Gauss m e a s u r e on R for all ~ C E ' . T h e set of all Gauss measures on E will b e d e n o t e d b y ~ ( E ) . Assuming t h a t # is a Gauss measure, it is well k n o w n t h a t

#~1--. r E ffr ") for all ~1 . . . . , ~n E E ' , a n d all positive integers n.

T h e o r e m s 1.1 a n d 2.1 t h u s give COROLLARY 2.1. ~ ( E ) C_ ~YJ~0(E).

I n particular, t h e W i e n e r m e a s u r e W on C[0, 1], e q u i p p e d w i t h t h e u n i f o r m t o p o l o g y , satisfies t h e i n e q u a l i t y (I0).

N o w a d a y s t h e r e is no real p r o b l e m to c o n s t r u c t R a d o n p r o b a b i l i t y measures o n o u r m o s t i m p o r t a n t v e c t o r spaces. W e recall t h e f u n d a m e n t a l t h e o r e m s due t o K o l m o g o r o v , Minlos, a n d Sazonov. (See e.g. [16], [15], a n d [21].) T h e so-called R a d o n i f y i n g mappings, i n t r o d u c e d b y L. S c h w a r t z (see e.g. [2]), also m a k e i m p o r t a n t c o n t r i b u t i o n s t o this area.

To check t h a t a given m e a s u r e # belongs to ~J~(E), it is n o t n e c e s s a r y to p r o v e t h a t #sl...en belongs t o g)~s(R n) for all ~ 1 . . . ~n E E ' , a n d all n E Z + . R a t h e r t h a n giving a general t h e o r e m , we will illustrate this in a few examples. Suppose tt is a l~adon p r o b a b i l i t y m e a s u r e on RZ+, e q u i p p e d w i t h t h e p r o d u c t t o p o l o g y , a n d let H , : RZ+ - + R ~ be t h e n a t u r a l p r o j e c t i o n . W e claim t h a t # C ~J~,(RZ+), i f

/~H21 C

g2~(R n) for all n C Z+. T o see this, let

e,,(x)

= xn, x = {xn}[, a n d n o t e t h a t each b o u n d e d linear f u n c t i o n a l on Rz+ is a f i n i t e linear c o m b i n a t i o n o f t h e % Therefore, given $1 . . . . , ~n E

E',

t h e r e are m E Z+, a n d a linear m a p p i n g h: R m - + R ~ such t h a t

_ h-1 ( # H 2 l ) h -1.

~ 1 . . " ~n - - [~1... ~,~ ="

Using L e m m a 2.1, we conclude t h a t /~1 ..-~, E ~J~(Rn). This p r o v e s t h e assertion.

N o w let # be a R a d o n p r o b a b i l i t y m e a s u r e on a separable H i l b e r t space H , a n d let {e~}~ ~ be an o r t h o n o r m a l basis in H . W e claim t h a t # E ~J~(E), if

(6)

244 C HI:~I S T E I : t B OI:~ELL

# ~ . . . . ~ ~ Tdt~(R ~) for all p o s i t i v e i n t e g e r s n. As a b o v e , we conclude t h a t ffYt~(R~), i f e a c h ~ is a f i n i t e l i n e a r c o m b i n a t i o n of t h e G. H e n c e it /~1- 9 9 t~

suffices t o p r o v e t h a t t h e class ~Jt~(R") is w e a k l y closed.

TheOREM 2.2. L e t E be metrizable ~) a n d let #~, n ~ N, be R a d o n p r o b a b i l i t y m e a s u r e s on E such that #~ ~ #o, as n - + -~ ~ . T h e n #o ~ ~t~(E), i f ~ ~ ~J~(E) f o r each n ~ Z+.

Proof. L e t d b e a t r a n s l a t i o n - i n v a r i a n t m e t r i c on E. F o r e > 0, a n d C c E , let C~ = {x]d(x, C ) ~ e}, a n d let q0~ b e a c o n t i n u o u s f u n c t i o n = 1 on C, a n d

= 0 on E ~ C . N o w choose 2 C [ 0 , 1 ] , a n d c o m p a c t s u b s e t s A a n d B o f E . W e h a v e

M 2 ( t t ( A ) , # ~ ( B ) ) >

s[jVA

#n, V , #,, , n E Z+.

B y l e t t i n g n - - ~ - ~ ~ , a n d m a k i n g use of t r i v i a l inequalities, we g e t /~0((~A + (1 - - ~)B):~) ~_ M~(~o(A), #0(B)).

I f ~ t e n d s to zero, we o b t a i n t h e i n e q u a l i t y (I,) a n d t h e p r o o f is clear

F i n a l l y we shall s a y a f e w w o r d s a b o u t t h e s p a c e 1310, 1], e q u i p p e d w i t h t h e s u p - n o r m t o p o l o g y . G i v e n a R a d o n p r o b a b i l i t y m e a s u r e # on 1310, 1], we h a v e E~YJ~,(R ~) for all 0 < tl ~ t2 ~ ~ t, ~ 1,

t h a t # E ~J~(13[0, 1]), if # , h ~ . . . ~ - - . . . .

a n d all p o s i t i v e i n t e g e r s n. H e r e ~, is t h e D i r a c m e a s u r e a t t h e p o i n t t. F o r e x a m p l e , s e t S~ = ( ~ @ W)h -1, w h e r e h(O, x) = Ox, 0 > 0, x E C[0, 1], a n d w h e r e a~ is t h e p r o b a b i l i t y d i s t r i b u t i o n of a r e a l - v a l u e d r a n d o m v a r i a b l e X, such t h a t

~ / X 2 h a s a c h i - s q u a r e d i s t r i b u t i o n w i t h ~ degrees of f r e e d o m . A s t r a i g h t - f o r w a r d 9 E ~ ~/~(R ~) a n d so S~ E g2_~/~(13[0, 1]).

c o m p u t a t i o n shows t h a t (S~)%.. %

T h e m e a s u r e S~ will be called a S t u d e n t m e a s u r e on 1310, 1], a n d in t h e special case a = t we h a v e t h e C a u e h y m e a s u r e on 1310, 1]. I t is n o t h a r d to p r o v e t h a t S ~ IV, w h e n ~ - + q - co.

3. Integrability for certain functions of seminorms

F o r a long t i m e it w a s a n o p e n q u e s t i o n w h e t h e r t h e n o r m in a s e p a r a b l e B a n a c h s p a c e E m u s t be L P - i n t e g r a b l e for e a c h 1 ~ p ~ ~), w i t h r e s p e c t to a n a r b i t r a r y Gauss m e a s u r e . T h e q u e s t i o n w a s solved in t h e a f f i r m a t i v e b y V a k h a n i a in case E - - I q, 1 ~ q ~ ~- ~ . (See e.g. [3, p. 184].) L a t e r , a m u c h s t r o n g e r r e s u l t w a s

2) This condition can easily be omitted.

(7)

CONVEX MEASURES O~ LOCALLY CO:NVEX SI~ACES 245 given b y Fernique [811). Given a Gauss measure # on E, which now m a y be a r b i t r a r y , a n d a /t-measurable seminorm 9, which is finite a.e. [#], F e r n i q u e proves t h a t exp (s~02) C L~(/~), i f ~ > 0 is small enough. Other, less precise results, m a y be f o u n d in [17] a n d [3, p. 187].

W e have

THEOREM 3.1. Let tt C ?~(E) and assume that q~ is a re-measurable seminorm on E, which is finite a.e. [#]. Then in case s ~ O, the function exp (sq~) C Ll(/t), if ~ ~ 0 is small enough, and in case s ~ O, the function q~e Le(#) for all O ~ p ~ -- 1Is.

We need

LEMMA 3.1. Let [~ E ~;~(E) and let A be a convex, symmetric about the origin. Assume #(A) - - 0 ~ 1/2. Then

in case s = O : # . ( E ~ t A ) < 0 \ ~ - ] , t ~ l ,

in case -- + < s < 0: # , ( E ~ t A ) ~ / t - ~ 1 [ ( 1 - - 0 ) ' - - 0 " ]

( ~

#-measurable, subset of E,

1/s

+ 0 ~ / , t > _ l .

Proof of Lemma 3.1. We have

2 t - - 1

E ~ A 2 ~ - - I ( E ~ t A ) + t ~ A , t _ ~ l . (3.1) 2 t - - 1

I n fact, assume a' -- x @ ~ a", where a , ' a" E A. This yields t + 1

(t + I a' t - - l~ ) x = t \ ~ - + (--a") E t A , which proves (3.1).

Now let -- Go < s < 0. The i n e q u a l i t y (I,) gives

2 t - - 1

S ( E ~ A) ~ (t + 1) y , ( W ~ tA) + : t - ~ i #'(A),

a n d a n easy c o m p u t a t i o n yields t h e desired estimate. The ease s = 0 can be t r e a t e d similarly.

Proof of Theorem 3.1. W e only consider the case -- 0o < s < 0. B y definition,

l) S e e a l s o L a n d a u & S h e p p , O n t h e s u p r e m u m o f a G a u s s i a n p r o c e s s , S a n k h y a , S e r . A . 32, 3 6 9 - - 3 7 8 ( 1 9 7 t ) .

(8)

246 C ~ I R I S T E R B O R E L L

oo

0

Since ~o < -t- oe a.e. [~], t h e r e is a 2 > 0 such t h a t #{xl~(x ) < ~t} > 1/2. L e m m a 3.1 implies t h a t #{xIq)(x ) > ~tt} = O(tl/s), t--~ + o% a n d this p r o v e s t h e t h e o r e m .

4. A z e r o - o n e l a w for c o n v e x m e a s u r e s

L e t /~ be a Gauss m e a s u r e on E, a n d assume t h a t G is a n a d d i t i v e ,

# - m e a s u r a b l e , s u b g r o u p o f E. T h e n K a l l i a n p u r [11] 1) p r o v e s t h a t G is #-trivial, t h a t is #(G) = 0 o r 1. K a l l i a n p u r ' s p r o o f has b e e n simplified b y L e P a g e [14J.

T h e r e are several o t h e r p a p e r s in t h e l i t e r a t u r e , p r o v i n g less precise zero-one laws, a n d t h e i n t e r e s t e d r e a d e r m a y consult [5], [20], a n d [10].

W e h a v e

THEOREm 4.1. Let # be a convex measure on E and G an additive subgroup of E. Then # . ( G ) = O or 1.

P r o @ Suppose # . ( G ) > 0, a n d let K 0 be a c o m p a c t subset o f G such t h a t

#(K0) > 0. Set K = K 0 U ( - - K0), a n d let H be t h e least a d d i t i v e s u b g r o u p o f E c o n t a i n i n g K , t h a t is

H = (.J ( K + K + . . . q - K ) .

n E Z + ~ ,,"

n t e r m s

W e will p r o v e t h a t # , ( G ) ---- 1 a n d t h e r e f o r e it suffices to p r o v e # ( H ) ---- 1. S u p p o s e t o t h e c o n t r a r y t h a t # ( H ) < 1, a n d choose e > 0 so t h a t

s < min (1 - - #(H), #(K)).

F u r t h e r , choose a c o m p a c t subset L o f E ~ H such t h a t

#(L) > 1 - - # ( H ) - - e.

N o w o b s e r v e t h a t

E \ ( H U L ) ~ - - { E \ [ H U ( ( n - - 1 ) K + n L ) ] } +

(1)

1 - - K, n e Z + .

- - n

This r e l a t i o n can be p r o v e d in t h e same m a n n e r as (3.1). Using t h e i n e q u a l i t y ( I _ ~ ) , we get

# ( E ~ , ( H U L)) > rain (#(E ~ [ g tJ ((n - - 1)K + nL)]), #(K)).

1) See also footnote 1), p. 245.

(9)

C O I ~ V E X :IVIEASLrRES O:N L O C A L L Y C O I ~ V E X S P A C E S 2 4 7

B u t

H e n c e

be(E ~ ( H U L)) ---- 1 -- be(H) -- be(L) < s < be(K).

s > be(E ~ ( H U L)) ~ be(E ~ [ H U ((n - - 1)K -}- nL)]), n CZ+.

This yields

be((n-- 1 ) K - ~ n L ) ~_ 1 - - be(H) - - s ~ O, n E Z + . (4.1) N o w choose a c o m p a c t subset A o f E such t h a t

be(E ~ A) < 89 - - be(H) - - s). (4.2)

Since K a n d L are c o m p a c t sets, a n d 0 ~ K ~ L, we can f i n d a positive i n t e g e r n so t h a t

(n - - 1)K -~ n L c E ~ A . (4.3)

Clearly, (4.1)--(4.3) give a c o n t r a d i c t i o n . H e n c e be(H)--~ 1, which p r o v e s t h e t h e o r e m .

G i v e n a c o n v e x m e a s u r e be, a n d a n additive, be-measurable, s u b g r o u p G o f E, it is i n t e r e s t i n g t o k n o w w h e t h e r G is o f p r o b a b i l i t y zero or one. R a t h e r t h a n giving a general t h e o r e m of this kind, we p r e f e r to i l l u s t r a t e t h e m e t h o d in a simple

c a s e .

L e t D o ---- [0, 1], a n d D n ~-- {(t, u)lt, u ~_ O, t ~- n u ~_ 1}, n E Z+. F o r

x E R [~ set Aox(t ) = x(t), t E D o, Z]ix(t , U) : x ( t -~- U) - - x(t), (t, U) E D~, a n d A~x(t, u) = A~(An_ax(', u))(t, u), (t, u) E Dn, n ~ 2.

W e h a v e

T H E O R E M 4.2..Let

be C ~s(C[0, 1]), T h e n

where

(~ be a a-finite p o s i t i v e B o r e l m e a s u r e on Dn, a n d let 0 ~ s > - - l / p , where l ~ p ~ + ~) is a f i x e d real n u m b e r .

be{x E C[0, 1]

IA,~x e

LP(~)} = 1

iff e e

L~(~),

e(')=(flAox(.)Iedbe(x)) lIP .

S h e p p [18, Section 19] p r o v e s t h e special case n = 0, a << ml, p = 2, be ~-- W, a n d V a r b e r g [22, T h e o r e m 3] t h e special case n = 0, a < < m l , p = 2, be e ~ ( c [ 0 , 1]).

Proof. F u b i n i ' s t h e o r e m gives

f ePd~ = f ( f lAox]'d~) dbe(x).

(4.4)

(10)

2 4 8 C I I R I STEll, B O R E L 5

T h e " i f " p a r t is trivial. To p r o v e t h e o t h e r direction, set

(f T

q~(x) = [A~x[Pd(~ , x E 1310, 1].

T h e n ~ is a # - m e a s u r a b l e s e m i n o r m , a n d qv < -~ oo a.e. [#], b y a s s u m p t i o n . T h e o r e m 3.1 n o w tells us t h a t ~ E LP(#), a n d (4.4) gives t h e result.

F o r e x a m p l e , let S~ b e t h e S t u d e n t m e a s u r e i n t r o d u c e d a t t h e v e r y e n d o f S e c t i o n 2, a n d a s s u m e ~ > p, n > 1. T h e n a s t r a i g h t - f o r w a r d c o m p u t a t i o n shows t h a t S~{x C {J[0, 1][A,~x C LP(Itl-~dtdu)} = 1 if a n d o n l y if a < p/2 @ 1.

N o w let # C g J ~ ( R Z + ) , 0 > s > - - 1/19, w h e r e 1 < p < q- oo is a f i x e d real n u m b e r , a n d l e t 0k >_ 0, /c E Z+. T h e s a m e t e c h n i q u e as in t h e p r o o f of T h e o r e m 4.2. t h e n yields

#{x I ~ Okixk] p < @ oo} = 1 i f f ~ Ok f ]xkl'd#(x) < + oo. (4.5)

1 J

1

F o r i n s t a n c e , let 2k _> 0, S: l 2 --> l 2, b y s e t t i n g

k E Z+, X 2 k < q- 0% a n d d e f i n e a linear o p e r a t o r

S{x~}

= {~k~k}, { ~ } e l~.

B y S a z o n o v ' s t h e o r e m [16, p. 160], t h e r e is a Gauss m e a s u r e # on l 2 such t h a t fei<X'y>d~(x) e - <sy' y>, Y E 12 .

U s i n g (4.5), we conclude t h a t

~{m/~

Oklxkl p <

§ oo}

= 1 i f f ~ 0k2~/2 < @ oo.

F i n a l l y we shall discuss H S l d e r conditions. L e t o~: ]0, 1 ] - ~ ] 0 , - ~ oo[ b e a c o n t i n u o u s f u n c t i o n . W e shall s a y t h a t a c o n t i n u o u s f u n c t i o n x: [0, 1] --~ I I b e l o n g s to H,(m), n > 1, if

]A.x(t, u) l

s u p < ~- oo.

(,, u) e b . o ( u )

THEORE)% 4.3. Let tt, p, and e be as in Theorem 4.2. Then

e(t, u)

sup ~(u)

- - ~ o o implies #(H~(co)) = O.

Proof. L e t y be a n o n n e g a t i v e L e b e s g u e i n t e g r a b l e f u n c t i o n on D , ,

f a,,x(t, _~) ~ 11/~

~(x) = o(u) y(t, u)dt du] , x c

0[0, ]].

a n d set

(11)

COINVEX M E A S U R E S Ol~ L O C A L L Y CO:NVEX SPACES 2 4 9

Suppose #(H~(~o))> 0, t h a t is # ( H , ( o ~ ) ) = 1. T h e n ~s < + c~ a.e. [#], a n d T h e o r e m 3.1 gives 9 E LP(#). H e n c e , b y F u b i n i ' s t h e o r e m ,

Since y ~ 0 is a n a r b i t r a r y L e b e s g u e i n t e g r a b l e function, we h a v e

e s s s u p (o~(u))-l~(t, u) < § co.

T h e o r e m 3.1 implies t h a t ~ is continuous, a n d t h e r e f o r e we h a v e a c o n t r a d i c t i o n . H e n c e #(H~(o~)) = 0, which p r o v e s t h e t h e o r e m .

T h e converse o f T h e o r e m 4.3 is, of course, wrong. T a k e # = W, ~(u) -~ u ~/2, a n d n : 1. I t is well k n o w n t h a t W(HI(u~/2)) : O.

5. The support of a convex measure

T h e s u p p o r t supp (#) o f a R a d o n p r o b a b i l i t y m e a s u r e # is, b y definition, t h e least closed set w h i c h carries t h e t o t a l mass one. I t is well k n o w n t h a t t h e s u p p o r t o f a Gauss m e a s u r e on E is a closed linear s u b v a r i e t y , at least if t h e space E is n o t t o o c o m p l i c a t e d . (See [9], [12], a n d [13].)

W e h a v e

THEOREIV[ 5.1. Let # be a convex measure on E and assume that

supp (#~) ~- singleton set or R, all ~ E E'. (5.1)

Then supp (#) is a closed linear subvariety of E. Especially, it holds that

supp (#) ~- N { H I H e 3}, (5.2)

where ~ is the f a m i l y of all closed hyperplanes in E with #-measure one.

Proof. T h e i n e q u a l i t y ( I _ ~ ) implies t h a t supp (#) is convex. F u r t h e r m o r e , we

h a v e

supp (#) c

n

{HI e 3}

since /~ is a l~andon p r o b a b i l i t y measure.

Suppose

Xo C [N { H [ H E 3}] ~ supp (S). (5.3)

T h e H a h n - B a n a c h s e p a r a t i o n t h e o r e m gives us a ~ C E ' such t h a t k: = sup ~(supp (~)) < ~(x0).

B u t #~(]k, ~- oo[) ~-- #(~-l(]k, -~- oo[)) = 0, a n d t h e r e f o r e (5.1) says t h a t ~ is constant: = l a.e. [#]. Clearly, 1 ~ k a n d ~-1({l}) C 3- F r o m (5.3) we h a v e

(12)

250 cRmSTE~ BorEaL

} ( X 0 ) - l, which implies t h a t 1 > / c . This contradiction proves (5.2) and the theorem.

Note that a Gauss measure /~ satisfies (5.1).

6. Some properties of convolutions

We shall conclude this paper with a brief discussion of convolutions. First, we give a generalization of the important inequMity due to Anderson [1]. (See also

[19].)

A measure # is said to be symmetric if #(A) ---- # ( - - A) for all A e ~(E).

TI~EO~EM 6.1. Let /~ be a symmetric and convex measure on E, and let f , g be nonnegative Borel functions such that the sets

{xlf(x) >_ t} and {xlg(x) ~_ t}

are convex and symmetric about the origin for all t ~ O. Then ( f , g)~(2x) ~ ( f * g),Ax), ]~t ~ 1, x e E, where

( f . g),(x) ~-

ff(x-y)g(y)d~(y),

x E E .

Proof. W i t h o u t loss of generality it can be assumed t h a t

f

and g are characteristic functions of convex sets A and B, respectively, b o t h symmetric about the origin. Then

(A + ~x) n B 2 - - ~ [(A -- x) n B] + - ~ [(A + x) n Z], L~I <-- 1, x e E.

I-~enee

# ( ( A + ~ x ) A B ) > # ( ( A + x ) P ~ ) , ]~l ~ 1 , x e E , which proves the theorem.

THEOREM 6.2. Let # C ~)~o(E) and v C 9~o(F). Then the product measure

# Q v E Tf~o(E | F). Especially, the convolution # * ~ E ?)~o(E) in case F -~ E.

Note here t h a t u (~ v extends to a R a d o n probability measure on E Q F, equipped with the product topology. (See [3, p. 94].)

Proof. The product measure # Q v clearly satisfies the inequality (I0) when A and B are rectangles in E | F. The first assertion therefore follows from Theorem

(13)

CONVEX ~EASURES ON LOCALLY CO~VEX SPACES 251

2.1. a n d [4, Cor. 3.1]. T h e s e c o n d a s s e r t i o n follows f r o m t h e f i r s t a n d L e m m a 2.1, s i n c e # * v --~ (/~ if9 v)h -1, w h e r e h ( x , y ) = x -ff y, x, y E E . T h i s p r o v e s t h e t h e o r e m . F r o m T h e o r e m 6.2 i t is n o t h a r d t o p r o v e t h a t ( f . g ) . is a l o g a r i t h m i c a l l y c o n c a v e f u n c t i o n o n E , w h e n e v e r # C ~ 0 ( E ) , a n d f , g a r e n o n n e g a t i v e , l o g a - r i t h m i c a l l y c o n c a v e , B o r e l m e a s u r a b l e f u n c t i o n s . T h i s e x t e n d s [6], w h i c h p r o v e s t h e r e s u l t w h e n E = R" a n d # = m , .

References

1. ANDEI~SO~, T. W., The integral of a symmetric unimodal function over a symmetric convex sot a n d some probability inequalities. Proc. A m e r . Math. Soc. 6, 170--176 (1955).

2. ARTZ~E~, PH., Extension du thdor6me de Sazonov-Milos d'apr~s L. Schwartz. S6minairo de Prob. I I I . Universitd de Strasbourg. Lecture Notes in Math. 8, 1--23. Springer- Verlag 1969.

3. BADlCIKIAN, A.: Sdminaire sur les fonctions aldatoires lingaires et los mesures cylindrique8.

Lecture Notes in Math. 139. Springer-u 1970.

4. BO~ELL, C.: Convex set functions in d-space. Uppsala Univ. Dept. of Math. Report No. 8, 1973. (To appear in Pericd. Math. Hungar., Vol. 5 (1975)).

5. C ~ E ~ O ~ , 1%. H. & G~AVE, 1%. E.: Additive funetionals on a space of continuous functions.

I. Trans. A m e r . M a t h . Soc. 70, 160--176 (1951).

6. DAYIDOVI~, J u . S., KORE~BLJU~, B. I. & HACET, I.: A property of logarithmically concave functions. Soviet M a t h . Dokl. 10, 477--480 (1969).

7. EI~,DSS, P. & STONE, A. H., On the sum of two Borel sets. Proc. A m e r . Math. Soc. 25, 304-- 306 (1970).

8. FE~NIQUE, X., Intdgrabilit6 d e s vecteurs gaussiens. C. R . Acad. Sci. Paris. Set. A . 270, 1698-- 1699 (1970).

9. Iwo, IK., The topological support of Gauss measure on t t i l b e r t space. Nagoya Math. J . 38, 181--183 (1970).

10. JAMISON, B., 0~Eu S., Subgroups of sequences a n d paths. Proc. A m e r . Math. Soc. 24, 739--744 (1970).

11. XALLIA:NI~, G., Zero-one laws for Gaussian processes. Trans. A m e r . Math. Soc. 149, 199--211 (1970).

12. --~>-- Abstract Wiener spaces ~nd their reproducing kernel IKilbert spaces. Z. W~hrschein- lichkeitstheorie u n d Verw. Gebiete. 17, 113--123 (1971).

13. --))-- NADKKR~I, M., Support of Ganssian Measures. Proc. of the Sixth Berkeley Sym- posium on Math. star. a n d Probability. Vol. I I , 375--387. Berkeley 1972.

14. LE PAGE, 1%.: Subgroups of paths a n d reproducing kernels. A n n a l s of Prob. 1, 345--347 (1973).

15. MINLOS, I~. A.: Generalized r a n d o m processes a n d their extension to a measure. Selected Transl. in M a t h . Statist. and Prob. 3, 291--313 (1962).

16. PAI~TItASAI~ATHY, K . ~ . , Probability Measures on Metric Spaces. New York: Academic Press 1967.

17. SATO, H., A remark on Landau-Shepp's theorem, S a n k h y a , Set. A . 33, 227--228 (1971).

18. SHEPP, L. A., 1%adon-Nikodym derivatives of Gaussian measures. A n n . Math. Statist. 37, 321--354 (1966).

19. S~:EI%MA:bT, S., A theorem on convex sets with applications. A n n . Math. Statist. 26, 763--767 (1955).

(14)

252 C t t R I S T E I ~ B O R E L ] 5

20, SVDAKOV, V. N:, Problems related to distributions in infinite-dimensionM linear spaces.

Dissertation Leningrad Stat e Univ. 1962 (in l~ussian).

21. UMF.3~URA, Y., Measures on infiiii~e dimensional vector spaces. P u b l . Res. I n s t . M a t h . Sei.

S e t . A. 1, 1--47 (1965).

22. VA~BERG, D. E., E q u i v a l e n t Gaussian measures with a particularly simple t~adon-Nikodym derivative. A n n . M a t h . Statist: 38, 1027--1030 (1967).

Received December 6, 1973 Christer Borell

D e p a r t m e n t of Mathematics Sysslomansgatan 8

Uppsala, Sweden

Références

Documents relatifs

For each non-empty metrizable Choquet simplex C there is a parameter λ ∈ (0, 4] such that the post-critical set of the logistic map f λ is a Cantor set, the restriction of f λ to

Mixtures of gaussian cylinder set measures and abstract Wiener spaces as models for detection.. Annales

of separable standard Borel spaces and Kolmogorov’s consistency theorem.. Let X be a complex Banach space with =

Infinitely divisible measures on the cone of an ordered locally convex vector spaces.. Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 61, série Mathéma- tiques, n

In [9] the authors extended the theory of fractional powers of non-negative operators, a classical topic in Banach spaces, to sequentially locally

— The collection of locally convex spaces in which the finitely polynomially convex open subsets are domains of holomorphy (resp. domains of existence of holomorphic functions)

gested to study topologies on totally convex spaces in the same way as it has been done for Banach spaces, endowing them with a Saks space structure.. We have

technical reasons discussed in Section 1 all measures used here will be Baire measures, and we note that Baire measures are general enough for... all