1 Chapitre : REPRODUCTION DE FIGURES SIMPLES 1.1 Triangles

Download (0)

Full text

(1)

1 Chapitre : REPRODUCTION DE FIGURES SIMPLES

1.1 Triangles

1.1.1 Triangle quelconque : d´efinition et m´ethode de construction D´efinition : Un triangle est un polygone `a trois cot´es.

B C

A

!"#$%"&#"$'((#%"

)*+,-+).&"

/012"#$%"&."3.$#"

!"#$%&'()*)+)'($',-.!&%,/)-()0%1.'(2)2%3$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#$%"8,")'&A6',#"B"%*'+$"-C%;$>""

"

04 D#$"%*+.,6&#$").*%+-8&+#*$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+$'-E&#"#$%"8,"

%*+.,6&#"78+".":#8F"-C%;$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#$%"8,"

%*+.,6&#"78+"."$#$"%*'+$"-C%;$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#$%"8,"

%*+.,6&#"78+")'$$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#$ %!#&"""

D#"%*+.,6&#"!01"#$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#$"78#&-',78#$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#$%"8,")'&A6',#"B"78.%*#"-C%;$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"$',%"&#$"$'((#%$":8"78.:*+&.%E*#>"

! /!02"#%"/012"$',%":#$"-C%;$"-',$;-8%+<$>

)

"

! /!02"#%"/1?2"$',%":#$"-C%;$"'))'$;$>"

! /!12"#%"/0?2"$',%"&#$":+.6',.&#$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"$#",'((#*"!01?"'8"?10!"M#,"&+$.,%"&#$"&#%%*#$":.,$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8$#"

M-C%;"'))'$;"

!"#$%&'#(")*+,-"

:.,$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

1.1.2 Les triangles particuliers

D´efinition :

Un triangle isoc`ele est un triangle qui a deux cot´es de mˆeme lon- gueur.

B C

A

!"#$%"&#"$'((#%"

)*+,-+).&"

/012"#$%"&."3.$#"

!"#$%&'()*)+)'($',-.!&%,/)-()0%1.'(2)2%3$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#$%"8,")'&A6',#"B"%*'+$"-C%;$>""

"

04 D#$"%*+.,6&#$").*%+-8&+#*$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+$'-E&#"#$%"8,"

%*+.,6&#"78+".":#8F"-C%;$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#$%"8,"

%*+.,6&#"78+"."$#$"%*'+$"-C%;$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#$%"8,"

%*+.,6&#"78+")'$$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#$ %!#&"""

D#"%*+.,6&#"!01"#$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#$"78#&-',78#$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#$%"8,")'&A6',#"B"78.%*#"-C%;$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"$',%"&#$"$'((#%$":8"78.:*+&.%E*#>"

! /!02"#%"/012"$',%":#$"-C%;$"-',$;-8%+<$>

)

"

! /!02"#%"/1?2"$',%":#$"-C%;$"'))'$;$>"

! /!12"#%"/0?2"$',%"&#$":+.6',.&#$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"$#",'((#*"!01?"'8"?10!"M#,"&+$.,%"&#$"&#%%*#$":.,$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8$#"

M-C%;"'))'$;"

!"#$%&'#(")*+,-"

:.,$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

D´efinition :

Un triangle ´equilat´eral est un tri- angle qui a ses trois cot´es de mˆeme longueur.

B C

A

!"#$%"&#"$'((#%"

)*+,-+).&"

/012"#$%"&."3.$#"

!"#$%&'()*)+)'($',-.!&%,/)-()0%1.'(2)2%3$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#$%"8,")'&A6',#"B"%*'+$"-C%;$>""

"

04 D#$"%*+.,6&#$").*%+-8&+#*$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+$'-E&#"#$%"8,"

%*+.,6&#"78+".":#8F"-C%;$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#$%"8,"

%*+.,6&#"78+"."$#$"%*'+$"-C%;$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#$%"8,"

%*+.,6&#"78+")'$$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#$ %!#&"""

D#"%*+.,6&#"!01"#$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#$"78#&-',78#$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#$%"8,")'&A6',#"B"78.%*#"-C%;$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"$',%"&#$"$'((#%$":8"78.:*+&.%E*#>"

! /!02"#%"/012"$',%":#$"-C%;$"-',$;-8%+<$>

)

"

! /!02"#%"/1?2"$',%":#$"-C%;$"'))'$;$>"

! /!12"#%"/0?2"$',%"&#$":+.6',.&#$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"$#",'((#*"!01?"'8"?10!"M#,"&+$.,%"&#$"&#%%*#$":.,$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8$#"

M-C%;"'))'$;"

!"#$%&'#(")*+,-"

:.,$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

D´efinition :

Un triangle rectangle est un tri- angle qui poss`ede un angle droit.

B C

A

!"#$%"&#"$'((#%"

)*+,-+).&"

/012"#$%"&."3.$#"

!"#$%&'()*)+)'($',-.!&%,/)-()0%1.'(2)2%3$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#$%"8,")'&A6',#"B"%*'+$"-C%;$>""

"

04 D#$"%*+.,6&#$").*%+-8&+#*$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+$'-E&#"#$%"8,"

%*+.,6&#"78+".":#8F"-C%;$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#$%"8,"

%*+.,6&#"78+"."$#$"%*'+$"-C%;$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#$%"8,"

%*+.,6&#"78+")'$$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#$ %!#&"""

D#"%*+.,6&#"!01"#$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#$"78#&-',78#$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#$%"8,")'&A6',#"B"78.%*#"-C%;$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"$',%"&#$"$'((#%$":8"78.:*+&.%E*#>"

! /!02"#%"/012"$',%":#$"-C%;$"-',$;-8%+<$>

)

"

! /!02"#%"/1?2"$',%":#$"-C%;$"'))'$;$>"

! /!12"#%"/0?2"$',%"&#$":+.6',.&#$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"$#",'((#*"!01?"'8"?10!"M#,"&+$.,%"&#$"&#%%*#$":.,$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8$#"

M-C%;"'))'$;"

!"#$%&'#(")*+,-"

:.,$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

1.2 Les quadrilat`eres particuliers 1.2.1 Quadrilat`eres quelconques

B C

A

!"#$%"&#"$'((#%"

)*+,-+).&"

/012"#$%"&."3.$#"

!"#$%&'()*)+)'($',-.!&%,/)-()0%1.'(2)2%3$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#$%"8,")'&A6',#"B"%*'+$"-C%;$>""

"

04 D#$"%*+.,6&#$").*%+-8&+#*$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+$'-E&#"#$%"8,"

%*+.,6&#"78+".":#8F"-C%;$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#$%"8,"

%*+.,6&#"78+"."$#$"%*'+$"-C%;$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#$%"8,"

%*+.,6&#"78+")'$$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#$ %!#&"""

D#"%*+.,6&#"!01"#$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#$"78#&-',78#$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#$%"8,")'&A6',#"B"78.%*#"-C%;$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"$',%"&#$"$'((#%$":8"78.:*+&.%E*#>"

! /!02"#%"/012"$',%":#$"-C%;$"-',$;-8%+<$>)"

! /!02"#%"/1?2"$',%":#$"-C%;$"'))'$;$>"

! /!12"#%"/0?2"$',%"&#$":+.6',.&#$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"$#",'((#*"!01?"'8"?10!"M#,"&+$.,%"&#$"&#%%*#$":.,$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8$#"

M-C%;"'))'$;"

!"#$%&'#(")*+,-"

:.,$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

D´efinition :

Un quadrilat`ere est un polygone `a quatre cot´es.

Vocabulaire :

– A, B, C et D sont les sommets du quadrilat`ere.

– [AB] et [BC] sont des cot´es cons´ecutifs.

– [AB] et [CD] sont des cot´es oppos´es.

– [AC] et [BD] sont les diagonales du quadrilat`ere.

Attention :

Le quadrilat`ere ci-contre ne peut se nommer ABCD ou DCBA (en lisant les lettres dans cet ordre, on fait le tour du quadrilat`ere).

1

(2)

1.2.2 Le cerf-volant !" #$%&$'()*+,-./0%

12(3.3/3+.%4%5.%&$'()*+,-./%$6/%7.%87-9'3,-/:'$%;73%-%9$7<%=-3'$6%9$%&>/26%&+.62&7/3(6%9$%?@?$%

,+.A7$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&$'()*+,-./%-,+'6%4%

! 5.$%9$%6$6%93-A+.-,$6%$6/%,-%?293-/'3&$%!"#$%&'()"*%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

%

D" #$%,+6-.A$0%

12(3.3/3+.%4%5.%,+6-.A$%$6/%7.%87-9'3,-/:'$%873%-%6$6%87-/'$%&>/26%9$%?@?$%,+.A7$7'0%

E$?-'87$%4%5.%,+6-.A$%$6/%7.%&$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%,+6-.A$%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

1" #$%'$&/-.A,$0%

12(3.3/3+.%4%5.%'$&/-.A,$%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$6%$/%9$%?@?$%?$67'$0%

%

F" #$%&-''20%

12(3.3/3+.%4%5.%&-''2%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/6%$/%87-/'$%&>/26%9$%?@?$%

?$67'$0%

E$?-'87$%4%5.%&-''2%$6/%G%,-%(+36%7.%,+6-.A$%$/%7.%'$&/-.A,$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&-''2%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

!" #$%&'()*$)+$,-'$.))

% E$=+'/$'%7.$%,+.A7$7'%H!0%

I.%/'-&$%7.$%9$?3)9'+3/$%J17"0% I.%='$.9%7.%2&-'/$?$./%

9$%&+?=-6%2A-,%G%,-%

,+.A7$7'%H!0%

I.%/'-&$%7.%-'&%9$%&$'&,$%9$%&$./'$%1%

873%&+7=$%,-%9$?3)9'+3/$%$.%7.%=+3./%

F%/$,%87$%1FKH!0%

D´efinition :

Un cerf-volant est quadrilat`ere qui a deux paires de cot´es cons´ecutifs de mˆeme longueur.

Propri´et´e : Si un quadrilat`ere est un cerf-volant alors : – une de ses diagonales est la m´ediatrice de l’autre.

– ses diagonales sont perpendiculaires.

1.2.3 Le losange

!" #$%&$'()*+,-./0%

12(3.3/3+.%4%5.%&$'()*+,-./%$6/%7.%87-9'3,-/:'$%;73%-%9$7<%=-3'$6%9$%&>/26%&+.62&7/3(6%9$%?@?$%

,+.A7$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&$'()*+,-./%-,+'6%4%

! 5.$%9$%6$6%93-A+.-,$6%$6/%,-%?293-/'3&$%!"#$%&'()"*%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

%

D" #$%,+6-.A$0%

12(3.3/3+.%4%5.%,+6-.A$%$6/%7.%87-9'3,-/:'$%873%-%6$6%87-/'$%&>/26%9$%?@?$%,+.A7$7'0%

E$?-'87$%4%5.%,+6-.A$%$6/%7.%&$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%,+6-.A$%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

1" #$%'$&/-.A,$0%

12(3.3/3+.%4%5.%'$&/-.A,$%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$6%$/%9$%?@?$%?$67'$0%

%

F" #$%&-''20%

12(3.3/3+.%4%5.%&-''2%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/6%$/%87-/'$%&>/26%9$%?@?$%

?$67'$0%

E$?-'87$%4%5.%&-''2%$6/%G%,-%(+36%7.%,+6-.A$%$/%7.%'$&/-.A,$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&-''2%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

!" #$%&'()*$)+$,-'$.))

% E$=+'/$'%7.$%,+.A7$7'%H!0%

I.%/'-&$%7.$%9$?3)9'+3/$%J17"0% I.%='$.9%7.%2&-'/$?$./%

9$%&+?=-6%2A-,%G%,-%

,+.A7$7'%H!0%

I.%/'-&$%7.%-'&%9$%&$'&,$%9$%&$./'$%1%

873%&+7=$%,-%9$?3)9'+3/$%$.%7.%=+3./%

F%/$,%87$%1FKH!0%

D´efinition :

Un losange est quadrilat`ere qui a ses cot´es de mˆeme longueur.

Remarque : Un losange est cerf-volant.

Propri´et´es : Si un quadrilat`ere est un losange alors : – ses diagonales se coupent en leur milieu.

– ses diagonales sont perpendiculaires.

– ses cot´es oppos´es sont parall`eles.

1.2.4 Le rectangle

!" #$%&$'()*+,-./0%

12(3.3/3+.%4%5.%&$'()*+,-./%$6/%7.%87-9'3,-/:'$%;73%-%9$7<%=-3'$6%9$%&>/26%&+.62&7/3(6%9$%?@?$%

,+.A7$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&$'()*+,-./%-,+'6%4%

! 5.$%9$%6$6%93-A+.-,$6%$6/%,-%?293-/'3&$%!"#$%&'()"*%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

%

D" #$%,+6-.A$0%

12(3.3/3+.%4%5.%,+6-.A$%$6/%7.%87-9'3,-/:'$%873%-%6$6%87-/'$%&>/26%9$%?@?$%,+.A7$7'0%

E$?-'87$%4%5.%,+6-.A$%$6/%7.%&$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%,+6-.A$%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

1" #$%'$&/-.A,$0%

12(3.3/3+.%4%5.%'$&/-.A,$%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$6%$/%9$%?@?$%?$67'$0%

%

F" #$%&-''20%

12(3.3/3+.%4%5.%&-''2%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/6%$/%87-/'$%&>/26%9$%?@?$%

?$67'$0%

E$?-'87$%4%5.%&-''2%$6/%G%,-%(+36%7.%,+6-.A$%$/%7.%'$&/-.A,$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&-''2%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

!" #$%&'()*$)+$,-'$.))

% E$=+'/$'%7.$%,+.A7$7'%H!0%

I.%/'-&$%7.$%9$?3)9'+3/$%J17"0% I.%='$.9%7.%2&-'/$?$./%

9$%&+?=-6%2A-,%G%,-%

,+.A7$7'%H!0%

I.%/'-&$%7.%-'&%9$%&$'&,$%9$%&$./'$%1%

873%&+7=$%,-%9$?3)9'+3/$%$.%7.%=+3./%

F%/$,%87$%1FKH!0%

D´efinition :

Un rectangle est un quadrilat`ere qui a angles droits.

Propri´et´es : Si un quadrilat`ere est un rectangle alors : – ses diagonales se coupent en leur milieu.

– ses diagonales sont de mˆeme longueur.

– ses cot´es oppos´es sont parall`eles et de mˆeme mesure.

1.2.5 Le carr´e

!" #$%&$'()*+,-./0%

12(3.3/3+.%4%5.%&$'()*+,-./%$6/%7.%87-9'3,-/:'$%;73%-%9$7<%=-3'$6%9$%&>/26%&+.62&7/3(6%9$%?@?$%

,+.A7$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&$'()*+,-./%-,+'6%4%

! 5.$%9$%6$6%93-A+.-,$6%$6/%,-%?293-/'3&$%!"#$%&'()"*%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

%

D" #$%,+6-.A$0%

12(3.3/3+.%4%5.%,+6-.A$%$6/%7.%87-9'3,-/:'$%873%-%6$6%87-/'$%&>/26%9$%?@?$%,+.A7$7'0%

E$?-'87$%4%5.%,+6-.A$%$6/%7.%&$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%,+6-.A$%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

1" #$%'$&/-.A,$0%

12(3.3/3+.%4%5.%'$&/-.A,$%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$6%$/%9$%?@?$%?$67'$0%

%

F" #$%&-''20%

12(3.3/3+.%4%5.%&-''2%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/6%$/%87-/'$%&>/26%9$%?@?$%

?$67'$0%

E$?-'87$%4%5.%&-''2%$6/%G%,-%(+36%7.%,+6-.A$%$/%7.%'$&/-.A,$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&-''2%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

!" #$%&'()*$)+$,-'$.))

% E$=+'/$'%7.$%,+.A7$7'%H!0%

I.%/'-&$%7.$%9$?3)9'+3/$%J17"0% I.%='$.9%7.%2&-'/$?$./%

9$%&+?=-6%2A-,%G%,-%

,+.A7$7'%H!0%

I.%/'-&$%7.%-'&%9$%&$'&,$%9$%&$./'$%1%

873%&+7=$%,-%9$?3)9'+3/$%$.%7.%=+3./%

F%/$,%87$%1FKH!0%

D´efinition :

Un carr´e est quadrilat`ere qui a quatre angles droits et quatres cot´es de mˆeme mesure.

Remarque : Un carr´e est `a la fois un losange et un rectangle.

Propri´et´es : Si un quadrilat`ere est un carr´e alors : – ses diagonales se coupent en leur milieu.

– ses diagonales sont de mˆeme longueur.

– ses diagonales sont perpendiculaires.

– ses cot´es oppos´es sont parall`eles.

1.3 Report de mesure

!" #$%&$'()*+,-./0%

12(3.3/3+.%4%5.%&$'()*+,-./%$6/%7.%87-9'3,-/:'$%;73%-%9$7<%=-3'$6%9$%&>/26%&+.62&7/3(6%9$%?@?$%

,+.A7$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&$'()*+,-./%-,+'6%4%

! 5.$%9$%6$6%93-A+.-,$6%$6/%,-%?293-/'3&$%!"#$%&'()"*%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

%

D" #$%,+6-.A$0%

12(3.3/3+.%4%5.%,+6-.A$%$6/%7.%87-9'3,-/:'$%873%-%6$6%87-/'$%&>/26%9$%?@?$%,+.A7$7'0%

E$?-'87$%4%5.%,+6-.A$%$6/%7.%&$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%,+6-.A$%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

1" #$%'$&/-.A,$0%

12(3.3/3+.%4%5.%'$&/-.A,$%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$6%$/%9$%?@?$%?$67'$0%

%

F" #$%&-''20%

12(3.3/3+.%4%5.%&-''2%$6/%7.%87-9'3,-/:'$%873%-%87-/'$%-.A,$6%9'+3/6%$/%87-/'$%&>/26%9$%?@?$%

?$67'$0%

E$?-'87$%4%5.%&-''2%$6/%G%,-%(+36%7.%,+6-.A$%$/%7.%'$&/-.A,$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'$%$6/%7.%&-''2%-,+'6%4%

! C$6%93-A+.-,$6%6$%&+7=$./%$.%,$7'%?3,3$70%

! C$6%93-A+.-,$6%6+./%9$%?@?$%,+.A7$7'0%

! C$6%93-A+.-,$6%6+./%=$'=$.93&7,-3'$60%

! C$6%&>/26%+==+626%6+./%=-'-,,:,$60%

%

!" #$%&'()*$)+$,-'$.))

% E$=+'/$'%7.$%,+.A7$7'%H!0%

I.%/'-&$%7.$%9$?3)9'+3/$%J17"0% I.%='$.9%7.%2&-'/$?$./%

9$%&+?=-6%2A-,%G%,-%

,+.A7$7'%H!0%

I.%/'-&$%7.%-'&%9$%&$'&,$%9$%&$./'$%1%

873%&+7=$%,-%9$?3)9'+3/$%$.%7.%=+3./%

F%/$,%87$%1FKH!0%

2

Figure

Updating...

References

Related subjects :