# 1 Chapitre : REPRODUCTION DE FIGURES SIMPLES 1.1 Triangles

(1)

## 1 Chapitre : REPRODUCTION DE FIGURES SIMPLES

1.1 Triangles

1.1.1 Triangle quelconque : d´efinition et m´ethode de construction D´efinition : Un triangle est un polygone `a trois cot´es.

B C

A

!"#\$%"&#"\$'((#%"

)*+,-+).&"

/012"#\$%"&."3.\$#"

!"#\$%&'()*)+)'(\$',-.!&%,/)-()0%1.'(2)2%3\$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',\$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#\$%"8,")'&A6',#"B"%*'+\$"-C%;\$>""

"

04 D#\$"%*+.,6&#\$").*%+-8&+#*\$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+\$'-E&#"#\$%"8,"

%*+.,6&#"78+".":#8F"-C%;\$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#\$%"8,"

%*+.,6&#"78+"."\$#\$"%*'+\$"-C%;\$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#\$%"8,"

%*+.,6&#"78+")'\$\$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#\$ %!#&"""

D#"%*+.,6&#"!01"#\$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#\$"78#&-',78#\$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#\$%"8,")'&A6',#"B"78.%*#"-C%;\$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"\$',%"&#\$"\$'((#%\$":8"78.:*+&.%E*#>"

! /!02"#%"/012"\$',%":#\$"-C%;\$"-',\$;-8%+<\$>

## )

"

! /!02"#%"/1?2"\$',%":#\$"-C%;\$"'))'\$;\$>"

! /!12"#%"/0?2"\$',%"&#\$":+.6',.&#\$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"\$#",'((#*"!01?"'8"?10!"M#,"&+\$.,%"&#\$"&#%%*#\$":.,\$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8\$#"

M-C%;"'))'\$;"

!"#\$%&'#(")*+,-"

:.,\$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

1.1.2 Les triangles particuliers

D´efinition :

Un triangle isoc`ele est un triangle qui a deux cot´es de mˆeme lon- gueur.

B C

A

!"#\$%"&#"\$'((#%"

)*+,-+).&"

/012"#\$%"&."3.\$#"

!"#\$%&'()*)+)'(\$',-.!&%,/)-()0%1.'(2)2%3\$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',\$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#\$%"8,")'&A6',#"B"%*'+\$"-C%;\$>""

"

04 D#\$"%*+.,6&#\$").*%+-8&+#*\$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+\$'-E&#"#\$%"8,"

%*+.,6&#"78+".":#8F"-C%;\$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#\$%"8,"

%*+.,6&#"78+"."\$#\$"%*'+\$"-C%;\$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#\$%"8,"

%*+.,6&#"78+")'\$\$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#\$ %!#&"""

D#"%*+.,6&#"!01"#\$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#\$"78#&-',78#\$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#\$%"8,")'&A6',#"B"78.%*#"-C%;\$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"\$',%"&#\$"\$'((#%\$":8"78.:*+&.%E*#>"

! /!02"#%"/012"\$',%":#\$"-C%;\$"-',\$;-8%+<\$>

## )

"

! /!02"#%"/1?2"\$',%":#\$"-C%;\$"'))'\$;\$>"

! /!12"#%"/0?2"\$',%"&#\$":+.6',.&#\$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"\$#",'((#*"!01?"'8"?10!"M#,"&+\$.,%"&#\$"&#%%*#\$":.,\$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8\$#"

M-C%;"'))'\$;"

!"#\$%&'#(")*+,-"

:.,\$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

D´efinition :

Un triangle ´equilat´eral est un tri- angle qui a ses trois cot´es de mˆeme longueur.

B C

A

!"#\$%"&#"\$'((#%"

)*+,-+).&"

/012"#\$%"&."3.\$#"

!"#\$%&'()*)+)'(\$',-.!&%,/)-()0%1.'(2)2%3\$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',\$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#\$%"8,")'&A6',#"B"%*'+\$"-C%;\$>""

"

04 D#\$"%*+.,6&#\$").*%+-8&+#*\$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+\$'-E&#"#\$%"8,"

%*+.,6&#"78+".":#8F"-C%;\$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#\$%"8,"

%*+.,6&#"78+"."\$#\$"%*'+\$"-C%;\$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#\$%"8,"

%*+.,6&#"78+")'\$\$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#\$ %!#&"""

D#"%*+.,6&#"!01"#\$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#\$"78#&-',78#\$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#\$%"8,")'&A6',#"B"78.%*#"-C%;\$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"\$',%"&#\$"\$'((#%\$":8"78.:*+&.%E*#>"

! /!02"#%"/012"\$',%":#\$"-C%;\$"-',\$;-8%+<\$>

## )

"

! /!02"#%"/1?2"\$',%":#\$"-C%;\$"'))'\$;\$>"

! /!12"#%"/0?2"\$',%"&#\$":+.6',.&#\$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"\$#",'((#*"!01?"'8"?10!"M#,"&+\$.,%"&#\$"&#%%*#\$":.,\$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8\$#"

M-C%;"'))'\$;"

!"#\$%&'#(")*+,-"

:.,\$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

D´efinition :

Un triangle rectangle est un tri- angle qui poss`ede un angle droit.

B C

A

!"#\$%"&#"\$'((#%"

)*+,-+).&"

/012"#\$%"&."3.\$#"

!"#\$%&'()*)+)'(\$',-.!&%,/)-()0%1.'(2)2%3\$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',\$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#\$%"8,")'&A6',#"B"%*'+\$"-C%;\$>""

"

04 D#\$"%*+.,6&#\$").*%+-8&+#*\$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+\$'-E&#"#\$%"8,"

%*+.,6&#"78+".":#8F"-C%;\$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#\$%"8,"

%*+.,6&#"78+"."\$#\$"%*'+\$"-C%;\$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#\$%"8,"

%*+.,6&#"78+")'\$\$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#\$ %!#&"""

D#"%*+.,6&#"!01"#\$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#\$"78#&-',78#\$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#\$%"8,")'&A6',#"B"78.%*#"-C%;\$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"\$',%"&#\$"\$'((#%\$":8"78.:*+&.%E*#>"

! /!02"#%"/012"\$',%":#\$"-C%;\$"-',\$;-8%+<\$>

## )

"

! /!02"#%"/1?2"\$',%":#\$"-C%;\$"'))'\$;\$>"

! /!12"#%"/0?2"\$',%"&#\$":+.6',.&#\$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"\$#",'((#*"!01?"'8"?10!"M#,"&+\$.,%"&#\$"&#%%*#\$":.,\$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8\$#"

M-C%;"'))'\$;"

!"#\$%&'#(")*+,-"

:.,\$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

1.2 Les quadrilat`eres particuliers 1.2.1 Quadrilat`eres quelconques

B C

A

!"#\$%"&#"\$'((#%"

)*+,-+).&"

/012"#\$%"&."3.\$#"

!"#\$%&'()*)+)'(\$',-.!&%,/)-()0%1.'(2)2%3\$4(2) 56 &789:;<=>?)

!4 5*+.,6&#"78#&-',78#"9":;<+,+%+',"#%"(;%=':#":#"-',\$%*8-%+',>"

?;<+,+%+',"9"

@,"%*+.,6&#"#\$%"8,")'&A6',#"B"%*'+\$"-C%;\$>""

"

04 D#\$"%*+.,6&#\$").*%+-8&+#*\$>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"+\$'-E&#"#\$%"8,"

%*+.,6&#"78+".":#8F"-C%;\$":#"

(G(#"&',68#8*>"

"

"

"

"

"

"

"

"

!0"H"!1>"

"

"

?;<+,+%+',"9"

@,"%*+.,6&#";78+&.%;*.&"#\$%"8,"

%*+.,6&#"78+"."\$#\$"%*'+\$"-C%;\$":#"

(G(#"&',68#8*

"

!0"H"!1H01>"

"

?;<+,+%+',"9"

@,"%*+.,6&#"*#-%.,6&#"#\$%"8,"

%*+.,6&#"78+")'\$\$E:#"8,".,6&#"

:*'+%>"

"

"

"

"

"

"

"

!"#\$ %!#&"""

D#"%*+.,6&#"!01"#\$%"*#-%.,6&#"

#,"0>""

"

"

@6 4=>)AB9C78<9DE7=>)F97D8GB<8=7>?)

!4 I8.:*+&.%E*#\$"78#&-',78#\$>"

?;<+,+%+',"9"

@,"78.:*+&.%E*#"#\$%"8,")'&A6',#"B"78.%*#"-C%;\$>"

J'-.38&.+*#"9"

! !K"0K"1"#%"?"\$',%"&#\$"\$'((#%\$":8"78.:*+&.%E*#>"

! /!02"#%"/012"\$',%":#\$"-C%;\$"-',\$;-8%+<\$>)"

! /!02"#%"/1?2"\$',%":#\$"-C%;\$"'))'\$;\$>"

! /!12"#%"/0?2"\$',%"&#\$":+.6',.&#\$":8"78.:*+&.%E*#>"

!%%#,%+',"9"

D#"78.:*+&.%E*#"-+L-',%*#",#")#8%"\$#",'((#*"!01?"'8"?10!"M#,"&+\$.,%"&#\$"&#%%*#\$":.,\$"-#%"'*:*#K"',"

<.+%"&#"%'8*":8"78.:*+&.%E*#4>"

"

"

B C

A

NA)'%;,8\$#"

M-C%;"'))'\$;"

!"#\$%&'#(")*+,-"

:.,\$"8,"

%*+.,6&#"

*#-%.,6&#4>"

B C

A

D´efinition :

Un quadrilat`ere est un polygone `a quatre cot´es.

Vocabulaire :

– A, B, C et D sont les sommets du quadrilat`ere.

– [AB] et [BC] sont des cot´es cons´ecutifs.

– [AB] et [CD] sont des cot´es oppos´es.

– [AC] et [BD] sont les diagonales du quadrilat`ere.

Attention :

Le quadrilat`ere ci-contre ne peut se nommer ABCD ou DCBA (en lisant les lettres dans cet ordre, on fait le tour du quadrilat`ere).

1

(2)

1.2.2 Le cerf-volant !" #\$%&\$'()*+,-./0%

12(3.3/3+.%4%5.%&\$'()*+,-./%\$6/%7.%87-9'3,-/:'\$%;73%-%9\$7<%=-3'\$6%9\$%&>/26%&+.62&7/3(6%9\$%?@?\$%

,+.A7\$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&\$'()*+,-./%-,+'6%4%

! 5.\$%9\$%6\$6%93-A+.-,\$6%\$6/%,-%?293-/'3&\$%!"#\$%&'()"*%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

%

D" #\$%,+6-.A\$0%

12(3.3/3+.%4%5.%,+6-.A\$%\$6/%7.%87-9'3,-/:'\$%873%-%6\$6%87-/'\$%&>/26%9\$%?@?\$%,+.A7\$7'0%

E\$?-'87\$%4%5.%,+6-.A\$%\$6/%7.%&\$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%,+6-.A\$%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

1" #\$%'\$&/-.A,\$0%

12(3.3/3+.%4%5.%'\$&/-.A,\$%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$6%\$/%9\$%?@?\$%?\$67'\$0%

%

F" #\$%&-''20%

12(3.3/3+.%4%5.%&-''2%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/6%\$/%87-/'\$%&>/26%9\$%?@?\$%

?\$67'\$0%

E\$?-'87\$%4%5.%&-''2%\$6/%G%,-%(+36%7.%,+6-.A\$%\$/%7.%'\$&/-.A,\$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&-''2%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

!" #\$%&'()*\$)+\$,-'\$.))

% E\$=+'/\$'%7.\$%,+.A7\$7'%H!0%

I.%/'-&\$%7.\$%9\$?3)9'+3/\$%J17"0% I.%='\$.9%7.%2&-'/\$?\$./%

9\$%&+?=-6%2A-,%G%,-%

,+.A7\$7'%H!0%

I.%/'-&\$%7.%-'&%9\$%&\$'&,\$%9\$%&\$./'\$%1%

873%&+7=\$%,-%9\$?3)9'+3/\$%\$.%7.%=+3./%

F%/\$,%87\$%1FKH!0%

D´efinition :

Un cerf-volant est quadrilat`ere qui a deux paires de cot´es cons´ecutifs de mˆeme longueur.

Propri´et´e : Si un quadrilat`ere est un cerf-volant alors : – une de ses diagonales est la m´ediatrice de l’autre.

– ses diagonales sont perpendiculaires.

1.2.3 Le losange

!" #\$%&\$'()*+,-./0%

12(3.3/3+.%4%5.%&\$'()*+,-./%\$6/%7.%87-9'3,-/:'\$%;73%-%9\$7<%=-3'\$6%9\$%&>/26%&+.62&7/3(6%9\$%?@?\$%

,+.A7\$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&\$'()*+,-./%-,+'6%4%

! 5.\$%9\$%6\$6%93-A+.-,\$6%\$6/%,-%?293-/'3&\$%!"#\$%&'()"*%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

%

D" #\$%,+6-.A\$0%

12(3.3/3+.%4%5.%,+6-.A\$%\$6/%7.%87-9'3,-/:'\$%873%-%6\$6%87-/'\$%&>/26%9\$%?@?\$%,+.A7\$7'0%

E\$?-'87\$%4%5.%,+6-.A\$%\$6/%7.%&\$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%,+6-.A\$%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

1" #\$%'\$&/-.A,\$0%

12(3.3/3+.%4%5.%'\$&/-.A,\$%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$6%\$/%9\$%?@?\$%?\$67'\$0%

%

F" #\$%&-''20%

12(3.3/3+.%4%5.%&-''2%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/6%\$/%87-/'\$%&>/26%9\$%?@?\$%

?\$67'\$0%

E\$?-'87\$%4%5.%&-''2%\$6/%G%,-%(+36%7.%,+6-.A\$%\$/%7.%'\$&/-.A,\$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&-''2%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

!" #\$%&'()*\$)+\$,-'\$.))

% E\$=+'/\$'%7.\$%,+.A7\$7'%H!0%

I.%/'-&\$%7.\$%9\$?3)9'+3/\$%J17"0% I.%='\$.9%7.%2&-'/\$?\$./%

9\$%&+?=-6%2A-,%G%,-%

,+.A7\$7'%H!0%

I.%/'-&\$%7.%-'&%9\$%&\$'&,\$%9\$%&\$./'\$%1%

873%&+7=\$%,-%9\$?3)9'+3/\$%\$.%7.%=+3./%

F%/\$,%87\$%1FKH!0%

D´efinition :

Un losange est quadrilat`ere qui a ses cot´es de mˆeme longueur.

Remarque : Un losange est cerf-volant.

Propri´et´es : Si un quadrilat`ere est un losange alors : – ses diagonales se coupent en leur milieu.

– ses diagonales sont perpendiculaires.

– ses cot´es oppos´es sont parall`eles.

1.2.4 Le rectangle

!" #\$%&\$'()*+,-./0%

12(3.3/3+.%4%5.%&\$'()*+,-./%\$6/%7.%87-9'3,-/:'\$%;73%-%9\$7<%=-3'\$6%9\$%&>/26%&+.62&7/3(6%9\$%?@?\$%

,+.A7\$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&\$'()*+,-./%-,+'6%4%

! 5.\$%9\$%6\$6%93-A+.-,\$6%\$6/%,-%?293-/'3&\$%!"#\$%&'()"*%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

%

D" #\$%,+6-.A\$0%

12(3.3/3+.%4%5.%,+6-.A\$%\$6/%7.%87-9'3,-/:'\$%873%-%6\$6%87-/'\$%&>/26%9\$%?@?\$%,+.A7\$7'0%

E\$?-'87\$%4%5.%,+6-.A\$%\$6/%7.%&\$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%,+6-.A\$%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

1" #\$%'\$&/-.A,\$0%

12(3.3/3+.%4%5.%'\$&/-.A,\$%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$6%\$/%9\$%?@?\$%?\$67'\$0%

%

F" #\$%&-''20%

12(3.3/3+.%4%5.%&-''2%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/6%\$/%87-/'\$%&>/26%9\$%?@?\$%

?\$67'\$0%

E\$?-'87\$%4%5.%&-''2%\$6/%G%,-%(+36%7.%,+6-.A\$%\$/%7.%'\$&/-.A,\$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&-''2%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

!" #\$%&'()*\$)+\$,-'\$.))

% E\$=+'/\$'%7.\$%,+.A7\$7'%H!0%

I.%/'-&\$%7.\$%9\$?3)9'+3/\$%J17"0% I.%='\$.9%7.%2&-'/\$?\$./%

9\$%&+?=-6%2A-,%G%,-%

,+.A7\$7'%H!0%

I.%/'-&\$%7.%-'&%9\$%&\$'&,\$%9\$%&\$./'\$%1%

873%&+7=\$%,-%9\$?3)9'+3/\$%\$.%7.%=+3./%

F%/\$,%87\$%1FKH!0%

D´efinition :

Un rectangle est un quadrilat`ere qui a angles droits.

Propri´et´es : Si un quadrilat`ere est un rectangle alors : – ses diagonales se coupent en leur milieu.

– ses diagonales sont de mˆeme longueur.

– ses cot´es oppos´es sont parall`eles et de mˆeme mesure.

1.2.5 Le carr´e

!" #\$%&\$'()*+,-./0%

12(3.3/3+.%4%5.%&\$'()*+,-./%\$6/%7.%87-9'3,-/:'\$%;73%-%9\$7<%=-3'\$6%9\$%&>/26%&+.62&7/3(6%9\$%?@?\$%

,+.A7\$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&\$'()*+,-./%-,+'6%4%

! 5.\$%9\$%6\$6%93-A+.-,\$6%\$6/%,-%?293-/'3&\$%!"#\$%&'()"*%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

%

D" #\$%,+6-.A\$0%

12(3.3/3+.%4%5.%,+6-.A\$%\$6/%7.%87-9'3,-/:'\$%873%-%6\$6%87-/'\$%&>/26%9\$%?@?\$%,+.A7\$7'0%

E\$?-'87\$%4%5.%,+6-.A\$%\$6/%7.%&\$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%,+6-.A\$%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

1" #\$%'\$&/-.A,\$0%

12(3.3/3+.%4%5.%'\$&/-.A,\$%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$6%\$/%9\$%?@?\$%?\$67'\$0%

%

F" #\$%&-''20%

12(3.3/3+.%4%5.%&-''2%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/6%\$/%87-/'\$%&>/26%9\$%?@?\$%

?\$67'\$0%

E\$?-'87\$%4%5.%&-''2%\$6/%G%,-%(+36%7.%,+6-.A\$%\$/%7.%'\$&/-.A,\$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&-''2%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

!" #\$%&'()*\$)+\$,-'\$.))

% E\$=+'/\$'%7.\$%,+.A7\$7'%H!0%

I.%/'-&\$%7.\$%9\$?3)9'+3/\$%J17"0% I.%='\$.9%7.%2&-'/\$?\$./%

9\$%&+?=-6%2A-,%G%,-%

,+.A7\$7'%H!0%

I.%/'-&\$%7.%-'&%9\$%&\$'&,\$%9\$%&\$./'\$%1%

873%&+7=\$%,-%9\$?3)9'+3/\$%\$.%7.%=+3./%

F%/\$,%87\$%1FKH!0%

D´efinition :

Un carr´e est quadrilat`ere qui a quatre angles droits et quatres cot´es de mˆeme mesure.

Remarque : Un carr´e est `a la fois un losange et un rectangle.

Propri´et´es : Si un quadrilat`ere est un carr´e alors : – ses diagonales se coupent en leur milieu.

– ses diagonales sont de mˆeme longueur.

– ses diagonales sont perpendiculaires.

– ses cot´es oppos´es sont parall`eles.

1.3 Report de mesure

!" #\$%&\$'()*+,-./0%

12(3.3/3+.%4%5.%&\$'()*+,-./%\$6/%7.%87-9'3,-/:'\$%;73%-%9\$7<%=-3'\$6%9\$%&>/26%&+.62&7/3(6%9\$%?@?\$%

,+.A7\$7'0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&\$'()*+,-./%-,+'6%4%

! 5.\$%9\$%6\$6%93-A+.-,\$6%\$6/%,-%?293-/'3&\$%!"#\$%&'()"*%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

%

D" #\$%,+6-.A\$0%

12(3.3/3+.%4%5.%,+6-.A\$%\$6/%7.%87-9'3,-/:'\$%873%-%6\$6%87-/'\$%&>/26%9\$%?@?\$%,+.A7\$7'0%

E\$?-'87\$%4%5.%,+6-.A\$%\$6/%7.%&\$'()*+,-./0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%,+6-.A\$%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

1" #\$%'\$&/-.A,\$0%

12(3.3/3+.%4%5.%'\$&/-.A,\$%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/60%

Propriétés : Si un quadrilatère est un rectangle alors :

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$6%\$/%9\$%?@?\$%?\$67'\$0%

%

F" #\$%&-''20%

12(3.3/3+.%4%5.%&-''2%\$6/%7.%87-9'3,-/:'\$%873%-%87-/'\$%-.A,\$6%9'+3/6%\$/%87-/'\$%&>/26%9\$%?@?\$%

?\$67'\$0%

E\$?-'87\$%4%5.%&-''2%\$6/%G%,-%(+36%7.%,+6-.A\$%\$/%7.%'\$&/-.A,\$0%

B'+='32/26%4%C3%7.%87-9'3,-/:'\$%\$6/%7.%&-''2%-,+'6%4%

! C\$6%93-A+.-,\$6%6\$%&+7=\$./%\$.%,\$7'%?3,3\$70%

! C\$6%93-A+.-,\$6%6+./%9\$%?@?\$%,+.A7\$7'0%

! C\$6%93-A+.-,\$6%6+./%=\$'=\$.93&7,-3'\$60%

! C\$6%&>/26%+==+626%6+./%=-'-,,:,\$60%

%

!" #\$%&'()*\$)+\$,-'\$.))

% E\$=+'/\$'%7.\$%,+.A7\$7'%H!0%

I.%/'-&\$%7.\$%9\$?3)9'+3/\$%J17"0% I.%='\$.9%7.%2&-'/\$?\$./%

9\$%&+?=-6%2A-,%G%,-%

,+.A7\$7'%H!0%

I.%/'-&\$%7.%-'&%9\$%&\$'&,\$%9\$%&\$./'\$%1%

873%&+7=\$%,-%9\$?3)9'+3/\$%\$.%7.%=+3./%

F%/\$,%87\$%1FKH!0%

2

Updating...

## References

Related subjects :