• Aucun résultat trouvé

36. Clebsch-Gordan coefficients 1

N/A
N/A
Protected

Academic year: 2022

Partager "36. Clebsch-Gordan coefficients 1"

Copied!
1
0
0

Texte intégral

(1)

36. Clebsch-Gordan coefficients 1

36. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for 8 / 15 read 8 / 15.

Y

10

=

3

4 π cos θ Y

11

=

3

8 π sin θ e

Y

20

=

5

4 π 3

2 cos

2

θ 1 2 Y

21

=

15

8 π sin θ cos θ e

Y

22

= 1

4

15

2 π sin

2

θ e

2iφ

Y

−m

= ( 1)

m

Y

m∗

j

1

j

2

m

1

m

2

|j

1

j

2

JM

= ( 1)

J−j1−j2

j

2

j

1

m

2

m

1

|j

2

j

1

JM d

m,0

=

4 π

2 + 1 Y

m

e

−imφ

d

jm,m

= ( 1)

m−m

d

jm,m

= d

j−m,−m

d

10,0

= cos θ d

1/21/2,1/2

= cos θ 2 d

1/21/2,−1/2

= sin θ

2

d

11,1

= 1 + cos θ 2 d

11,0

= sin θ

2 d

11,−1

= 1 cos θ

2

d

3/23/2,3/2

= 1 + cos θ 2 cos θ

2 d

3/23/2,1/2

=

3 1 + cos θ 2 sin θ

2 d

3/23/2,−1/2

=

3 1 cos θ 2 cos θ

2 d

3/23/2,−3/2

= 1 cos θ

2 sin θ 2 d

3/21/2,1/2

= 3 cos θ 1

2 cos θ 2 d

3/21/2,−1/2

= 3 cos θ + 1

2 sin θ 2

d

22,2

= 1 + cos θ 2

2

d

22,1

= 1 + cos θ

2 sin θ d

22,0

=

6 4 sin

2

θ d

22,−1

= 1 cos θ

2 sin θ d

22,−2

=

1 cos θ 2

2

d

21,1

= 1 + cos θ

2 (2 cos θ 1) d

21,0

=

3

2 sin θ cos θ d

21,−1

= 1 cos θ

2 (2 cos θ + 1) d

20,0

= 3

2 cos

2

θ 1 2

+1

5/2 5/2 +3/2 3/2

+3/2 1/54/5 4/5

−1/5 5/2

5/2

−1/2 3/52/5

−1−2 3/2

−1/2

2/5 5/2 3/2

−3/2

−3/2 4/51/5−4/51/5

−1/2

−2 1

−5/25/2

−3/5

−1/2+1/2 +1−1/2 2/5 3/5

−2/5

−1/2 +22

+3/2 +3/2

+5/2 5/25/2

5/2 3/2 1/2

−1/31/2

−1 +10 1/6 +1/2

+1/2−1/2

−3/2 +1/2 1/152/5

−8/15 +1/2 1/10

3/103/5 5/2 3/2 1/2

−1/2

−1/3 5/21/6

−5/25/2 1

−3/23/2

−3/52/5

−3/2

−3/2 3/52/5 1/2

−1

−1 0

−1/2

−1/158/15

−2/5

−1/2−3/2

−1/2 3/103/5 1/10 +3/2

+3/2+1/2

−1/2 +3/2+1/2

+2+1

+2+1 0

+1 2/5 3/5

3/2 3/5

−2/5

−1 +10 +3/2 +1 1

+3 +1 1 0

3 1/3 +2 2/3

2 3/2 3/2

1/32/3 +1/2

−10 1/2 +1/2

−1/32/3

−1/2+1/2 1

+1 1 0 1/21/2

−1/2 0 0 1/2

−1/2 1 1

−1

−1/2 1 1

−1/2 +1/2 +1/2+1/2

+1/2

−1/2

−1/2+1/2 −1/2

−1 3/2

2/3 3/2

−3/2 1 1/3

−1/2

−1/2 1/2

−2/31/3 +1+1/2

+10 +3/2

2/3 3

3

3

3 3

−1 1

−2

−3 2/3 1/3

−2 2 1/3

−2/3

−2 0

−1

−2

−10 +1

−1 8/152/5 1/15

2

−1

−1−2−1 0 1/2

−1/6

−1/3 1

−1 1/10

−3/10 3/5

0 2

0 1

0 3/10−2/5 3/10 1/20

−1/2 1/5 1/5 3/5 +1

+1

−10 0−1 +1 1/15

8/152/5 2

+2 2 +1 1/21/2

1 1/2 2

0 1/6 1/6 2/3

1 1/2

−1/2 0

0 2

2

−2

−1 1

−1 1

−1 1/2

−1/2

−1 1/2 1/2 00

0

−1 1/3

−1/31/3

−1/2 +1

−1

−1 0 +10 0

+1

−1 2 1 0+10 +1 +1

+1 1/3

−1/21/6 1 +1 3/5

−3/10 1/10

−1/3

−1 +1 0

0 +2

+1 +2 3

+3/2

+1/2 +1

1/4 2

2

−1 1

2

−2 1

−1 1/4

−1/2 1/2

1/2

−1/2−1/2 +1/2

−3/2

−3/2 1/2

10 0 3/4 +1/2

−1/2 −1/2

2 +1 3/4

3/4

−3/4 1/4

−1/2 +1/2

−1/4 1

+1/2−1/2 +1/2 1

+1/2 3/5

−10 +1/2 0

+1/2 3/2 +1/2 +5/2

+2 −1/2 +2+1/2

+1 +1/2 1

2× 1/2

3/2 × 1/2 3/2 × 1

2 × 1 1 × 1/2 1/2 × 1/2

1× 1

Notation: J J M M

. . . . . .

. . . . . .

m1 m2

m1 m2 Coefficients

−1/5 2

2/7

−3/72/7 3 1/2

−1/2

−1−2 −2

−1

0 4

1/21/2

−3 3

−1/21/2

−2 1

−44

−2 1/5

−27/70 +1/2 +7/2 7/27/2

+5/2 3/74/7 +2+1 0 1 +2+1

+4 1 4

4 +2 3/14 3/144/7

+2 1/2

−1/20 +2

−10 +1+2 +2+1

−10

3 2

4 1/14 1/14 3/73/7

+1 3

−1/51/5 3/10

−3/10

+1 2

+2+1

−10

−2

−2−1 +10 +2 3/7 3/7

−1/14

−1/14

+1 1

4 3 2

2/7

2/7

−2/71/14

1/14 4

1/14 1/143/73/7

3 3/10

−3/10

−1/51/5

−1

−2

−2−1 0

−10

−2

−10 +1 +10

−1−2

−1 2

4 3/14 3/144/7

−2 −2 −2 3/7

3/7

−1/14

−1/14

−1 1

−3/101/5 3/10

−1

1 0

0 1/70

1/70 18/358/35 8/35

0 1/10

−1/10 2/5

−2/50

0 0

0 2/5

−2/5

−1/10 1/10

0 1/5

−1/51/5

−1/5 1/5

−1/5

−3/10 3/10 +1 2/7

−3/72/7 +3

1/2 +2+1

0 1/2 +2+2

+2

+1+2+1 +3 1/2

−1/2 +10 +2 4 3

+1/2+3/2 +3/2

+2 +5/2

4/7 7/2 +3/2 1/74/7 2/7

+3/25/2

+2+1

−10 16/35

−18/351/35

12/351/35 18/35 4/35 3/2

+3/2 +3/2

−3/2−1/2 +1/2

−2/52/5 7/2

7/2 18/354/35 12/35 1/35

−1/2 5/2 27/70

−5/143/35

−6/35

−1/2 3/2

7/2

7/2

−5/2 4/73/7

5/2

−5/2

−4/73/7

−3/2

−2 2/74/7

1/7

−3/25/2

−1−2 18/35

−1/35

−16/35

−3/2

−2/51/5 2/5

−3/2−1/2

−3/2 3/2

7/2 1

−7/2

−1/2

−1/52/5 0

−10

−2 2/5

−1/21/2 1/10 3/10−1/5

−2/5

−3/2−1/2 +1/2 5/2 3/2 1/2

+1/2 2/5 1/5

−3/2−1/2 +1/2+3/2

−1/10

−3/10 +1/2

2/5 2/5 +10

−1−2 0 +33

+23 2 +2 +3/2 1

+3/2+1/2+1/2 1/2

−1/2

−1/2+1/2 +3/2

1/2 3 2

3 0 1/20

1/20 9/209/20

2 1

3

−1 1/5 1/53/5

2

3 3 1

−3

−2 1/21/2

−3/2 2

−1/21/2

−3/2

−2

−1 1/2

−1/2

−1/2−3/2 0

1

−1 3/10 3/10−2/5

−3/2−1/2 0

0 1/41/4

−1/4

−1/4 0 9/20

9/20 +1/2−1/2

−3/2

−1/20

−1/20 0 1/4

−1/41/4

−1/4

−3/2−1/2 +1/2 1/2

−1/20 1 3/10 3/10

−3/2−1/2 +1/2+3/2 +3/2+1/2

−1/2−3/2

−2/5 +1 +1 +1 1/53/5 1/5 1/2 +3/2+1/2

−1/2 +3/2 +3/2

−1/5 +1/2 6/355/14

−3/35 1/5

−3/7

−1/2+1/2 +3/2

2 × 3/2

5/2

2× 2

3/2 × 3/2

−3

Figure 36.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The

Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),

and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

Références

Documents relatifs

Using an extended precision integer and rational num- ber arithmetic library, these recursion formulae are shown to be up to four orders of magnitude faster than an exact

Kertes, Ion Exchange and Solvent Extraction of Metal Complexes, Wiley- Interscience, New York, 1969.. Choppin, Solvent Extraction Principe and Practice, second edition, Marcel

De plus, le groupe de New-York a joué un rôle important dans la diffusion de la psychanalyse aux États-Unis soit en parrainant d'autres sociétés, soit en étant le lieu d'une

In Section 2 we record some known results on Wiener–Hopf operators, which are then employed in Section 3 to describe the behaviour of the singular values and eigenvalues of

montre incurvée or pour homme, côtés lapidés, cadran noir mat, par Meyer-Stüdeli; montre spéciale en forme de timbre-poste, avec cadran création World's Fair, montre

J'ai aimé le livre car il y avait des illustrations en noir et blanc toutes les deux/trois pages pour mieux comprendre le texte. Ce livre plaira à tous ceux qui aiment les chiens et

Forsyth: Theory of differential equations, Part IV - Partial Differential Equa- tions, Campridg University press, Cambridge, (1906), Republished by Dover, New York, (1959)..

Cette année encore, beaucoup de candidats se sont fourvoyés dans une rédaction proche du sujet, mais qui ne répondait que partiellement à la question posée,