• Aucun résultat trouvé

On the approximation of the spectrum of the Stokes operator

N/A
N/A
Protected

Academic year: 2022

Partager "On the approximation of the spectrum of the Stokes operator"

Copied!
9
0
0

Texte intégral

(1)

M2AN. M

ATHEMATICAL MODELLING AND NUMERICAL ANALYSIS

- M

ODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

T UNC G EVECI B. D AYA R EDDY

H OWARD T. P EARCE

On the approximation of the spectrum of the Stokes operator

M2AN. Mathematical modelling and numerical analysis - Modéli- sation mathématique et analyse numérique, tome 23, no1 (1989), p. 129-136

<http://www.numdam.org/item?id=M2AN_1989__23_1_129_0>

© AFCET, 1989, tous droits réservés.

L’accès aux archives de la revue « M2AN. Mathematical modelling and nume- rical analysis - Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

a m MATHEMATICAL MOOEUJNG AND NUMERICAL ANALYSIS . ' U I MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 23, n* 1, 1989, p. 129 à 136)

ON THE APPROXIMATION OF THE SPECTRUM OF THE STOKES OPERATOR (*)

by Tune GEVECI O , B. Daya REDDY (2) and Howard T. PEARCE (3)

Communicated by R. TEMAM

Abstract. — Error estimâtes are derived for the approximate calculation o f the eigenvalues of the Stokes Operator. These estimâtes are valid for the regularized versions of mixed methods that satisfy the uniform Ladyzhenskaya-BabuSka-Brezzi condition.

Résumé. — Nous obtenons ici des estimations d'erreur pour le calcul approché des valeurs propres de l'opérateur de Stokes. Ces estimations sont valables pour les versions régularisées des

méthodes mixtes qu satisfont la condition uniforme de Ladyzhenskaya-BabuSka-Brezzi.

THE BACKGROUND AND THE CONVERGENCE RESÜLT

Let O c R " (n = 2 or 3) be a bounded domain with boundary an. The Stokes problem consists of finding w, an R"-valued fonction, andp, a scalar function, such that

(1) - v Au + grad/7 = ƒ in H , div u — 0 in Cl ,

u = 0 on 8H .

(*) Received in July 1986.

(r) Department of Mathematical Sciences, San Diego State University, San Diego, California 92182.

(2) Department of Applied Mathematics and Civil Engineering, University of Cape Town, Rondebosch 7700, South Africa.

(3) Applied Mechanics Research Unit, University of Cape Town, Rondebosch 7700, South Africa.

(3)

130 T. GEVECI et al

Hère, v :> 0 is the viscosity, ƒ is a given R"-valued function, A dénotes the Laplacian acting componentwise, grad dénotes the gradient, and div dénotes the divergence.

HQ(SI)9 Hr(£l), r s s l , dénote the standard Sobolev spaces, (L2(H))n, (/fo(n))", (Hr(£l))n dénote the spaces of R"-valued fonctions with compo- nents in the respective spaces. (• , • ) dénotes the inner product in L2(H) or (L2(n))", ||- ||0 dénotes the induced norm. The norm in Hr(fl) or (Hr(fl))n is denoted by ||- ||r. fi is assumed to have sufficiently smooth boundary so that the assertions that follow are valid.

Let

V = {v e (H^(n))n : div v = 0 in 11} ,

H = {v e (L2(n))n : div u = 0 in fl, i? • ra = 0 on an }

where n dénotes the unit normal to the boundary, as in Temam [12].

It is assumed that the solution u of (1) is in V n (H2(£l))n, ps {qeL2(n):(q,l) = 0} and

IMI

2

+

Thus, the Stokes operator

A = -vPHA:V Pi (H2(n))n c H - . H ,

where PH: (L2(IÏ))" -• H is the orthogonal (L2(n))"-projection, is positi- ve-definite, self-adjoint, has compact inverse, so that there exists a séquence of eigenvalues of A,

0 < Xa =s \2 ^ • • • ^ \j ^ - • • , lim \j = oo ,

j -> 0 0

and a corresponding séquence {w/}co=1 of eigenfunctions which are or- thonormal and complete in H [12], [13].

The approximate calculation of the eigenvalues of the Stokes operator A, or of an operator similar to A, is of interest in regard to the stability of incompressible fluid flow or the vibrations of an incompressible elastic medium, for example. The aim of this note is to establish the convergence of certain efficiently implementable approximation schemes which are based on the regularization of mixed methods that are used for the approximate solution of (1).

Let Wh cz (7fo(n))n be a finite dimensional subspace. Hère h refers to the maximum diameter of the rectangular or triangular subregions (or their 3- dimensional counterparts) constituting a subdivision of n . We will confine

M2AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(4)

ON THE SPECTRUM OF THE STOKES OPERATOR 131 the discussion to the conforming case for the sake of brevity. Let Qh c L2(ft) be another finite dimensional space. We set

a(.u,v) = v j | ^ £

d

* > u,ve(

An approximation to the solution (u,p) of (1) is a pair (uh,ph) e Wh x Qh

which satisfies

(2) a(u\ wh) - (p\ div wh) = (ƒ, wh) , wh e Wh , (div u \ ?*) = 0 , qheQh. Let us define the discrete divergence operator div,, : Wh -> Qh by

(div* w&, ^A) = (div w \ ^A) , qheQh, and its adjoint - gradA : gf t - • Wft by

qh, wh) = (qh, divft wh) , wh e Wh . We will assume

(H.l) The kernel of gradA consists of constants, and

(H.2) The LBB (Ladyzhenskaya-BabuSka-Brezzi) condition : There exists a > 0, independent of h, such that

(q\divwh) . sup - s t a \\q n\\n

for qhe {qh € Qh : (q\ 1) = 0} .

Under the hypotheses (H.l) and (H.2), it is well known that there exists a unique solution (uh,ph) eWHx {qh E Qh: (qh, 1) = 0} of (2) and that (3) | | M A | | 1 +| | ^ | | o ^ C ( v ,o

(4) | |M- « * | |1 +| | p - / » * | |o a SC ( v , a , n ) f inf \\u-wh\\1+ inf ||/»-«*||0) (see, for exampie, Girault and Raviart [5]). To be spécifie, let us assume that (4) and the approximation properties of Wh, Qh lead to the estimâtes

(5) \\u-uh\\l+ \\p-pX^C(v,*,Çl,f)hr-\

(6) ||M - K \ * C ( V , a, O,

r > 2 [ 5 ] .

(5)

132 T. GEVECi et al.

Let us define Vh = {vh e Wh;ûi\h vh = 0 } , the discrete counterpart of V, anàAh:Vk-+Vhby

\vh) = a(u\vh), vheVh.

Ah is the discrete counterpart of the Stokes operator A. It is positive-definite, self-ad joint. Let us dénote its eigenvalues by {X*};- * u 0 < X* =s \* ^ ' * ' ** ^JV and let {«ƒ} ;- i j form a complete set of orthonormal eigenfunctions correspond- ing to {^j}jti> in the given order. Assuming (H.l), (H.2) and the error estimâtes (5), (6), error estimâtes such as

(7) IX^-X/I^C^a/

follow from the results of Mercier, Osborn, Rappaz, Raviart [8] and Peterson The computation of {>^}jti may be carried out within the self-adjoint framework if a basis for Vh is available (see, for example, [6], [7], [14]).

Otherwise we may consider a regularized version of (2) which computes (u E>h,pe>h) eWhxQh such that

ö(we'\ wh) - (pB>h, divA wh) = (ƒ, wh), wh e Wh , e(>e'ft, qh)+ (divhuE>h,qh) = 0, qh e Qh , i.e.,

and

(8) a{uz>h, wh) + i (divA we>\ éivh wh) = (f, wh), wheWh.

This formulation has been quite popular in recent years. In some cases the penalty term may be evaluated by reduced (inexact) intégration (hence the name, reduced intégration — penalty methods), and the ünplementation is efficient (see, for example, [9]).

If (H.l) and (H.2) are satisfied, it is known that (9) K ' % ^ C ( v , a , a

where C is independent of h (see [2], [5], [9]). Here and in the sequel C will designate possibly differing constants.

M2AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(6)

ON THE SPECTRUM OF THE STOKES OPERATOR 133

Let us define ABtk : Wh -» Wh by

(11) (Att h uh, wh) = a (uh, wh) + - (divft w\ divA wh), wh e Wh .

AEi h is positive-definite, self-adjoint. Let us dénote the eigenvalues as {*/'*}ƒ *i> 0 <\yh ^ Xf* ^ * " ^ ^Mftft- These eigenvalues can be computed efficiently, for example, by Bathe's subspace itération technique [1]. We will establish the following result :

THEO REM : Under the hypotheses (H. 1) and (H.2) (the uniform Ladyzhenskaya-BabuSka-Brezzi condition),

where C is independent of h, 0 < h === h0, for some h0 > 0.

Proof: Our proof is based on the min-max principle, along the lines of Canuto [3], [4], and Strang and Fix [11],

We first note that

(13) x ; - " ^ . Indeed, by the min-max principle

a(wh, wh) + - (divA w \ divA wh)

\Efh = min max

dim S, = j

a(uh,uh) max —:—-—-

uhe

since divA uh = 0 for uh G (W*, M*, ..., wj1) = the linear span of Ui, 1*2, ..., uf, a subspace of Vh.

Let us define T8)A : WA-> WA as A ^ J. Thus the eigenvalues of Te h are rfh = JL-,j = l, 2, ..., MA. We define i>e>A : WA^ Vh by

x

where Thf = uheVh, uh being the solution of (2), so that Th:(L2(n)T-+Vh.

Since wh = r8 f A(AS i A >vft) for wh s Wh,

wh-Peihwh=(Te,h-

(7)

134 T. GEVECI et al.

so that

(14) \\wh- PZih w \ ^ C(v, a, £l)\\A*-hw\ e by (10).

By the max-min pnnciple,

(15) p.?.* = max min <r«.» w* ' * * >

dim Sj = j

min (Teihwh,wh),

where {«ƒ'*}/*i form a complete set of orthonormal eigenfunctions corresponding to {\y>A};-*l9 in the given order.

For whe (u^h, ..., uf>h), \\wh\\Q = 1, let us write

Thanks to the estimâtes (3), (7), (9), (10) and (13), the second term on the right-hand side of (16) can be estimated as follows :

C ( v , a , n ) | | Pe > f c wf t- w \ (\\Pc,hwh\\o + \\w%)

= s C ( v , a, n,j)\je , say, for 0 < h === /i0.

Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(8)

ON THE SPECTRUM OF THE STOKES OPERATOR 135 The other terms of (16) are estimated in a similar manner and we obtain from (15),

(17) |LXy 'h ^ min — - — — —"~ h C (v, a, O, j ) X? E .

Thanks to (14), Pz>h{{ul*, ..., uf*h) ) c Vh is /-dimensional for suffi- ciently small e (as in Strang and Fix [11], proof of Lemma 6.1, page 229),

« sufficiently small » being independent of h, by (13) and (14). Therefore we obtain from (17), again by the max-min principle,

so that

(18)

o ^ x* - \yh ^ c

(v,

a, n, ƒ )

\j

\]'h. \*j

by (13) and (17), and the theorem is established.

Remark : One can actually improve (18) to obtain an estimate in the form 0 ^ X* - XJ'* =s C(v, a, H, ƒ ) X? e

using a technique similar to that of Canuto's [3], [4].

ACKNOWLEDGEMENTS

The initial draft of this paper was written while the first author was at the National Research Institute for Mathematical Sciences, Pretoria, South Africa. B. D. Reddy and H. T. Pearce wish to acknowledge the financial support of the Council for Scientific and Industrial Research of South Africa.

REFERENCES

[1] K. J. BATHE, Finite Element Procedures in Engineering Analysis, Prentice- Hall, 1982, Englewood Cliffs, N J .

[2] M. BERCOVIER, Perturbation of mixed variational problems : Application to mixed finite element methods, R.A.I.R.O. Anal. Num. 12 (1978), 211-236.

(9)

136 T. GEVECI et al

[3] C. CANUTO, Eigenvalue approximation by mixed methods, R.A.I.R.O. Anal.

Num. 12 (1978), 25-50.

[4] C. CANUTO, A hybrid finite element method to compute the free vibration frequenties of a damped plate, R.A.I.R.O. Anal. Num. 15 (1981), 101-118.

[5] V. GIRAULT and P.-A. RAVIART, Finite Element Approximation ofthe Navier- Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, 1979, New York, Heidelberg, Berlin.

[6] D. F. GRIFFITHS, Finite éléments for incompressible flows, Math. Meth. in the Appl. Sci. 1 (1979), 16-31.

[7] D. F. GRIFFITHS, An approximately divergence-free 9-node velocity element (with variations) for incompressible flows, Int. J. Num. Meth. Fluids 1 (1981), 323-346.

[8] B. MERCIER, J. OSBORN, J. RAPPAZ and P.-A. RAVIART, Eigenvalue approximation o f mixed and hybrid methods, Math. Compt. 36 (1981), 427-453.

[9] J. T. ODEN, N. KIKUCHI and Y. J. SONG, Penalty-finite element methods for the analysis of Stokesian flows, Comp. Meth. Appl. Mech. Eng. 31 (1982), 297-329.

[10] J. S. PETERSON, An application of mixed finite element methods to the stability of the incompressible Navier-Stokes équations, SIAM J. Sci. Stat. Comput. 4 (1983), 626-634.

[11] G. STRANG and G. F. Fix, An Analysis ofthe Finite Element Method, Prentice- Hall, 1973, Englewood Cliffs, N J .

[12] R. TEMAM, Navier-Stokes Equations, North-Holland, 1979, Amsterdam, New York, Oxford.

[13] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Régional Conference Series in Applied Mathematics, SIAM, 1983, Philadelphia.

[14] F. THOMASSET, Implementation of the Finite Element Methods for Navier- Stokes Equations, Springer-Verlag, 1981, New York, Heidelberg, Berlin.

M2AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

Références

Documents relatifs

Abstract — We are interested in the approximation of stiff transmission problems by the means of mixed finite element methods We prove a resuit of uniform convergence in e, the

Abstract — We propose and analyze some itérative algonthms for mixed finite element methods for second-order elhptic équations The method is based on some multilevel décompositions

—An abstract framework under which an équivalence between mixed finite element methods and certain modified versions of conforming and nonconforming finite element methods

Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis.. APPROXIMATION OF A QUASILINEAR MIXED PROBLEM 213 which is not a priori well defined.

BREZZI, Mixed and nonconforming finite element methods : Implementation, postprocessing and error estimâtes,

— An asymptotic expansion of the mixed finite element solution of a linear parabolic problem is used to dérive superconvergence results.. Optimal order error estimâtes

Abstract — Under the sole assumption of non-degeneracy of the continuous solution and the knowledge of an U-error estimate, we prove rates of convergence in measure{and in distance)

The continuous problem is discretized using a non-conforming mixed finite element method with quadratic éléments for the velocities and linear éléments for the pressure..