• Aucun résultat trouvé

On the application of mixed finite element methods to the wave equations

N/A
N/A
Protected

Academic year: 2022

Partager "On the application of mixed finite element methods to the wave equations"

Copied!
9
0
0

Texte intégral

(1)

M2AN. M

ATHEMATICAL MODELLING AND NUMERICAL ANALYSIS

- M

ODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

T UNC G EVECI

On the application of mixed finite element methods to the wave equations

M2AN. Mathematical modelling and numerical analysis - Modéli- sation mathématique et analyse numérique, tome 22, no2 (1988), p. 243-250

<http://www.numdam.org/item?id=M2AN_1988__22_2_243_0>

© AFCET, 1988, tous droits réservés.

L’accès aux archives de la revue « M2AN. Mathematical modelling and nume- rical analysis - Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

MOOÉUSATIOH MATHÉMATIQUE ET ANALYSE NUMÉRIQUE (Vol. 22, ne 2, 1988, p. 243 à 250)

ON THE APPLICATION OF MIXED FINITE ELEMENT METHODS TO THE WAVE EQUATIONS (*)

by Tune GEVECI O

Abstract — The convergence of certain semidiscrete approximation schemes based on the

« velocity-stress » formulation of the wave équation and spaces such as those tntroduced by Raviart and Thomas is discussed The discussion also apphes to similar schemes for the équations of elasticity

Resumé. — La convergence de certains schémas d'approximation semi-discrète basés sur la formulation « vitesse-contrainte » de l'équation d'onde et d'espace tel que ceux introduits par Raviart et Thomas est discuté La discussion s'applique également pour les schémas similaires aux équations d'élasticité

1. THE « VELOCITY-STRESS » FORMULATION OF THE WAVE EQUATION AND A SEMIDISCRETE VERSION

Let us consider the following initial-boundary value problem for the wave équation :

D f u ( t , x ) ~ & u ( t , x ) = f ( t9x ) , r > 0 , x e O c R 2 , ( 1 . 1 ) « ( * , * ) = 0 , t > 0 , xeT,

u ( 09x ) = uo( x ) , Dtu ( 09x ) = vo( x ) , x e H ,

where fl is a bounded domain with boundary F, and ƒ, u0, v0 are given functions. Introducing the « stress » cr = Vu, (1.1) may be reformulated as

Dfu(t,x) - d i v a ( f , j t ) = f(t,x) , t>0 , J C Ë O ,

(1.2) u(t9x) = 0, t>0, xeT,

M ( 0 , X) = uo(x) , £>, w(0, x) = vo(x) ,

(*) Received in October 1986.

(!) Department of Mathematical Sciences, San Diego State University San Diego, Califorma 92182

M2 AN Modélisation mathématique et Analyse numérique 0399-0516/88/02/243/8/$ 2.80 Mathematical Modelhng and Numencal Analysis © A F C E T Gauthier-Villars

(3)

244 T. GEVECI

We use the notation of Johnson and Thomée [12] :

V = L2(n) , H = {x e L2(nf : div x e L2(H)} . Using Green's formula

f [ Ç

u div x dx = u\ . n ds — Vu . x dx Jn Jr Jn

where n is the unit exterior normal to F, a Galerkin version of (1.2) is to seek u(t) e V, <r(t) e H, t > 0, satisfying

(Dfu(t),w)- ( d i v a ( 0 , w ) = ( / ( r ) , w ) , weV , (1.3) ( ^ ( O x ) + ( M ( O>d i vx) = 0 , xe / f ,

u(0) = MO, Dfw(0) = t?0>

where the parentheses dénote the appropriate inner products (L2-inner product in V, L2(n)2-inner product in H). \ïVh<^V and Hha H are finite dimensional subspaces, such as the spaces introduced by Raviart and Thomas [13], and by Brezzi, Douglas, Jr. and Marini [6], a semidiscrete version of (1.3) seeks uh{t) G Vh, <rh(t) e Hh, t > 0, satisfying

(Dfuh(t), wh) - (divaA(0, wh) = (f(t), wh) , wheVk,

uh(0) = M0 ) h, Dtuh(0) = i ;0 i h s

whcrc uOjk, voh e Vh are approximations to u0 and v0, respectively.

Johnson and Thomée [12] have discussed the parabolic counterpart of (1.3A). The analysis of convergence of (1.3/,) can be carried out along similar Unes, parallel to Baker and Bramble [4], for example. (1.3A) is treated essentially as a non-conforming « displacement » model for the wave équation (1.1). The purpose of this note is to discuss the convergence of the

« velocity-stress » models based on pairs of spaces (Vh, Hh) such as those in [6], [12], [13]. Thus, defining v = Dtu, vh = Dtuh, (1.3) and (1.3A) are transformed, respectively, to

( Dtv ( t ) , w ) ~ ( d i v a ( 0 , w ) = ( f ( t ) , w ) , w e V ,

(1.4) ( D , a ( O , x ) + ( » ( O > d i vX) = 0 , X e H , v(0) = v0, CT(0) = a0 = Vw0 , where v(t) eV, <r(t)e H, t^ 0, and

(Dt vh(t), wh) - (div *h(t), wh) = (ƒ(0, wh)9 wheVh,

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(4)

(1.4,) (A^(O,Xfc)+(»A(O,divX f c) = 0 , Xh^Hh9

where vh(t) e Vh, vh(t) e Hh, t a* 0.

We now list the basic features of the space Vh, Hh which lead to a straightforward analysis of the convergence of vh to v and crh to a :

(H.l) There exists a linear operator Uh: H ^ Hh such that (1.5) ( d i v I Ih X, w * ) = (divX,wh) VwheVh, x^H, (1.6) \ \ n h X~ x \ \ ^ C hs\ \ x \ \s f o r l ^ s ^ r , r ^ 2 (|| || is the L2(n)2-norm, and ||.||5 is the 7/*(n)2-norm).

(H.2) There exists a linear operator Ph : V -> Vh such that (1.7) ( Phv , d i vX h) = ( v9d i vX h) V X A e ^ 5 veV, (1.8) I I ^ A » - Ü | | «CA'llüH,, U ^ r , r ^ 2

(|| || is the L2(n)-norm, and || ||s is the Hs(ü,)-norm, and, as usual, C dénotes a generic constant which dépends only on the data and on the particular discretization scheme).

If ft is a polygonal domain and Vh, Hh are the Raviart-Thomas spaces [12], [13], or if these spaces are the pairs introduced in the paper by Brezzi, Douglas, Jr., and Marini [6], div \h e Vh-> an<^ Ph c a n ^e t a^en to be the L2-projection. For an example of a pair (Vh, Hh) satisfying the above hypotheses (with r = 2), where Ph is not the L2-projection, we refer the reader to the paper by Johnson and Thomée [12]. We would also like to point out that (H.l) and (H.2) are valid for the mixed method that has been introduced by Arnold, Douglas, Jr., and Gupta [3] to approximate solution of plane elasticity problems. Our analysis is readily adapted to the corresponding (genuine) velocity-stress formulation of the time-dependent problem.

We can now state and prove our convergence resuit :

THEOREM : If u is the solution of (1.1), v = Dtu, <J = Vw, and if the pair {vh> ah} w tne solution of(lAh), under the hypotheses (H.l) and (H.2) we have, for 1 =s s === r, r ^ 2,

(1.9) | | » * ( 0 -

vol. 22, n° 2, 1988

(5)

246 T GEVECI

Proof : Let us dénote by X the space V x H, the éléments of which will be designated as £ = {v, o-} or Ç = {w, x} and set

( ( € , 5 ) ) = (v w)+(<T,x),

min

Let Xh = Vh x Hh be equipped with ((. , . ) ) and the induced norm III • III . Eléments of Xh will be designated as £h = {vh,<rh} or £A = {wh, \h} •

We define the bilinear form a{. , . ) on X by (1.10) o(Ê, £) = - (diva, w ) + (t),divX) for £ = {i>, a } , 4 = {w, x } •

We can now express (1.4) as

(1.11) ((D, * ( * ) , £ ) ) + « ( € ( 0 . 0 = ( / ( 0 , w ) , U ^ r ( 4 ( 0 = { r ( f ) , a ( O } , C = { w , x } ) , and we can express {i.Ah) as

A) = (/(O, wfc) , CheXh

Let us define Phk= {Ph v> nA a} f °r € = {v> "•} e ^T, and observe that (1-12) fl(£*c,t*)

by ( H . l ) ((1.5)) and (H.2) ((1.7)).

Therefore we obtain from (1.11) (1.13) ((£>, Ph

= (/(O, w») + ((P

A

A 6(0 - D, Ç(0, 5*)) ,

Setting eA(f ) = Ph 6(r) - 6*(0, (1-Hft) and (1.13) yield

(1.14) ((A s*(0, t*)) + a(e*(0. 5») =

Let us define Ah : Xh -> A!"fc by (1.15)

Since (1.16)

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelhng and Numencal Analysis

(6)

as is readily seen (cf. (1.10)), Ah is shew-adjoint, (1.17)

and -Ah générâtes the unitary group e \ In particular, (1.18) III e~'Ahih(0) III = BI Êh(0)111, teU.

Let us dénote by P°h:X^>Xh the projection with respect ((. , . ) ) . We can now express (1.14) as

(1.19) D, 8,(0 + A„ e*(0 = P°h(Ph Dt UO - D, so that

(1.20) e,(0 = e-/Afte,(0)+ f e~ « " ^ P l ( Ph Dj € ( T) _ Dj €(T)) dr . Jo

(1.18) and (1.20) yield the estimate

( 1 . 2 1 ) III 8 , ( 0 III ^ III 6 , ( 0 ) III + f III Ph DT 6 ( T ) - Z)T 6 ( T ) III ^ T Jo

(El is the ((. , .))-projection).

(1.21) is readily translated to

« C ( | | ü0- f o , f t | | + 11 °"o — °-0,ftli + H-PA^O - üoll + I I H A ^ O - O ' O I I

+ | ' (||Pf cDTo(T)-DT»(T)|| + ||II,,£>Ta(T)-Z>T<T<

Jo

and this, together with (1.6) and (1.8), yields (1.22) | | P * i > ( 0 - M 0 | | + | | n , a ( 0 - c 7 , ( 0 | |

)-V0,h\\ + II a0 - ar0> h || + ^ ( | K HS

vol. 22, n° 2, 1988

(7)

248 T. GEVECI

Since

||»(O-»*(OII + 1^(0-^(011

=s \\v(t)-Phv(t)\\ + \\Phv(t)-vh(t)\\

+ | | a ( 0 - nh CT(0|| + \\nha(t)-<rh(t)\\

by (1.6) and (1.8), and

n»(on,*Kii

f

+ r

J

*IKII,+ l

J o

p

Jo

5

(1.22) leads to (1.9), the assertion of the theorem.

2. SOME OBSERVATIONS IN REGARD TO THE TEME-DIFFERENCING OF THE SEMIDISCRETE MODEL

(1.4/,) leads to a system of ordinary differential équations in the form Mö Dt W - DX = F ,

where W corresponds to vh, 2 corresponds to vh, Mo, M1 are symmetrie, positive-definite matrices, and DT dénotes the transpose of D. The application of impiicit Euier time-differencing

Mo

'° k

(2.2) yn + 1 _ vn

(k dénotes the time step), nécessitâtes the solution of

n + 1 = kFn + l + M0Wn ,

Mo is in block-diagonal form if Vh consists of functions with no continuity requirement across inter-element boundaries, as is the case in [6], [12], [13], and the élimination of Wn +1 in (2.3) is efficiently implementable. This leads to a System in the form

(2.4)

M2 AN Modélisation mathématique et Analyse numérique Mathematical ModelHng and Numerical Analysis

(8)

where M1 is symmetrie, positive definite and DTMQ1D is symmetrie, positive-semidefinite, for the détermination of 2" + 1.

On the other hand, (1.3*) leads to

M0DfU-DX = F,

K 0) MX

where U corresponds to uh. (2.5) can be expressed as (2.6) Mo Df U + DMï 1DTU^F ,

where Mo, DMf1 DT are symmetrie, positive-definite [12]. If (2.6) is expressed as a System in {U, W} ,

Dt U - W = 0

Mö Dt W + Z)Mf lDTU=F , and implicit Euler time-differencing is applied to (2.7),

k

(2.8) w n + 1 Tx^n

élimination of Wrt + 1 leads to a System in the form (2.9) (Mo + k2DMï 1DT)Un + 1 = G

The matrix in (2.9) is symmetrie, positive-definite, so that (2.9) is solvable.

But Afj is not block-diagonal, unlike Mo, so that deriving the reduced system (2.9), which includes inverting Ml5 is more expensive than forming the reduced system (2.4). The time-independent counterpart of (2.5),

- D2 = F ,

( 2*1 0 ) M1S + DrL7 = 0 ,

led Arnold and Brezzi [2] to relax the requirement that div o^ e L2(lï) in order to have a block-diagonal matrix instead of Mx and be able to eliminate 2 efficiently. This approach has to introducé a multiplier corresponding to the relaxation of the requirement div ah e L2(H).

The above considérations suggest that the « velocity-stress » formulation (1.4,,) may be préférable to (1.3,,) if the approximation of the « stress » a is of primary concern.

The application of diagonally implicit Runge-Kutta methods (see, for example, Crouzeix [8], Crouzeix and Raviart [9], Alexander [1], Burrage

vol. 22, ne 2, 1988

(9)

250 T. GEVECI

[7], Dougalis and Serbin [10]) to (2.1) leads to Systems similar to (2.4) so that our discussion is relevant to higher-order time differencing as well. We will not prove error estimâtes for such full-descrete approximation schemes based on (lAk). Such estimâtes should be obtainable by employing techniques that have been utilized in [5] or [11], for example.

REFERENCES

[1] R. ALEX ANDER, Diagonally implicity Runge-Kutta methods for stijfO.D.E.'s, SIAM J. Numer. Anal. 14 (1977), 1006-1021.

[2] D . N. ARNOLD and F. BREZZI, Mixed and nonconforming finite element methods : Implementation, postprocessing and error estimâtes, R.A.LR.O.

Math. Model, and Num. Anal. (M2AN) 1 (1985), 7-32.

[3] D. N. ARNOLD, J. D O U G L A S , Jr., and C. P. GUPTA, A family of higher order mixed finite element methods for plane elasticity, Numer. Math. 45 (1984), 1-22.

[4] G. A. BAKER and J. H. BRAMBLE, Semidiscrete and single step fully discrete approximations for second order hyperbolic équations, R.A.LR.O. Anal. Num.

13 (1979), 75-100.

[5] P. BRENNER, M. CROUZEIX and V. THOMÉE, Single step methods for inhomogeneous linear differential équations in Banach spaces, R.A.LR.O.

Anal. Num. 16 (1982), 5-26.

[6] F. BREZZI, J. D O U G L A S , Jr. and L. D. MARINI, TWO families of mixed finite éléments for second order elliptic problems, Numer. Math. 47 (1985), 217-235.

[7] K. BURRAGE, Efficiently implementatie algebraically stable Runge-Kutta methods, SIAM J. Numer. Anal. 19 (1982), 245-258.

[8] M. CROUZEIX, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, thèse, Paris (1975).

[9] M. CROUZEIX and P.-A. RAVIART, Approximation des problèmes d'évolution, preprint, Université de Rennes (1980).

[10] V. DOUGALIS and S. M. SERBIN, On some unconditionally stable, higher order methods for numerical solution o f the structural dynamics équations, Int. J.

Num. Meth. Eng. 18 (1982), 1613-1621.

[11] E. GEKELER, Discretization Methods for Stable Initial Value Problems, Springer Lecture Notes in Mathematics 1044 (1984), Springer-Verlag, Berlin, Heidel- berg, New York,

[12] C. JOHNSON and V. THOMÉE, Error estimâtes for some mixed finite element methods for parabolic type problems, R.A.LR.O. Anal. Num. 15 (1981), 41-78.

[13] P.-A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order problems, in Mathematical Aspects o f the Finite Element Method, Springer Lecture Notes in Mathematics 606 (1977), Springer-Verlag, Berlin-Heidelberg- New York.

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

Références

Documents relatifs

As particular applications, the numer- ical approximation by mixed methods of the Laplace equation in domains with edges is investigated where anisotropic finite element meshes

As in the case of conforming fini te element methods treated by Bank and Weiser in [4] we will dérive element-oriented local error estimators whose computations amount to

In the conforming case several approaches have been introduced to define error estimators for different problems by using the residual équation (see for example [4], [5], [6], [12]).

The method is based on the use of an appropnate intégration formula (mass lumping) allowing an explicit élimination of the vector variables The analysis of the fimte volume

Abstract — We propose and analyze some itérative algonthms for mixed finite element methods for second-order elhptic équations The method is based on some multilevel décompositions

—An abstract framework under which an équivalence between mixed finite element methods and certain modified versions of conforming and nonconforming finite element methods

— An asymptotic expansion of the mixed finite element solution of a linear parabolic problem is used to dérive superconvergence results.. Optimal order error estimâtes

Abstract — We discuss a technique of implementing certain mixed f mite éléments based on the use of Lagrange multipliers to impose interelement continuity The matrices ansingfrom