• Aucun résultat trouvé

When does the <span class="mathjax-formula">$F$</span>-signature exist?

N/A
N/A
Protected

Academic year: 2022

Partager "When does the <span class="mathjax-formula">$F$</span>-signature exist?"

Copied!
8
0
0

Texte intégral

(1)

ANNALES

DE LA FACULTÉ DES SCIENCES

Mathématiques

IANM. ABERBACH& FLORIANENESCU

When does theF-signature exist?

Tome XV, no2 (2006), p. 195-201.

<http://afst.cedram.org/item?id=AFST_2006_6_15_2_195_0>

© Annales de la faculté des sciences de Toulouse Mathématiques, 2006, tous droits réservés.

L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse, Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram.

org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

(2)

pp. 195–201

When does the F-signature exists?

()

Ian M. Aberbach(1), Florian Enescu(2)

ABSTRACT.— We show that theF-signature of anF-finite local ringRof characteristicp >0 exists whenRis either the localization of anN-graded ring at its irrelevant ideal orQ-Gorenstein on its punctured spectrum.

This extends results by Huneke, Leuschke, Yao and Singh and proves the existence of theF-signature in the cases where weakF-regularity is known to be equivalent to strongF-regularity.

R´ESUM´E.— Nous prouvons dans cet article l’existence de laF-signature d’un anneau localF-finiR, de caract´eristique positivep, quandRest la localisation `a l’unique id´eal homog`ene maximal d’un anneau N-gradu´e ou quandRestQ-Gorenstein sur son spectre ´epoint´e. Ceci g´en´eralise les esultats de Huneke, Leuschke, Yao et Singh et prouve l’existence de la F-signature dans les cas o`u faible et forteF-r´egularit´e sont ´equivalentes.

1. A sufficient condition for the existence of the F-signature Let (R,m, k) be a reduced, localF-finite ring of positive characteristic p >0 and Krull dimensiond. Let

R1/q=Raq⊕Mq

be a direct sum decomposition ofR1/qsuch thatMq has no free direct sum- mands. IfRis complete, such a decomposition is unique up to isomorphism.

Recent research has focused on the asymptotic growth rate of the numbers aq asq→ ∞. In particular, theF-signature (defined below) is studied in [7]

and [3], and more generally the Frobenius splitting ratio is studied in [2].

(∗) Re¸cu le 7 juin 2004, accept´e le 15 d´ecembre 2004

(1) Department of Mathematics, University of Missouri, Columbia, MO 65211.

E-mail: aberbach@math.missouri.edu

(2) Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303 and The Institute of Mathematics of the Romanian Academy (Romania).

E-mail: fenescu@mathstat.gsu.edu

Aberbachwas partially supported by a grant from the NSA.

(3)

Ian M. Aberbach, Florian Enescu

For a local ring (R,m, k) , we set α(R) = logp[kR : kRp]. It is easy to see that, for anm-primary idealI ofR,λ(R1/q/IR1/q) =λ(R/I[q])/qα(R), whereλ(−) represents the length function over R.

We would like to first define the notion ofF-signature as it appears in [3]

and [7].

Definition 1.1. — TheF-signature ofRiss(R) = limq→∞ aq qd+α(R), if it exists.

The following result, due to Aberbach and Leuschke [3], holds:

Theorem 1.2. — Let(R,m, k) be a reduced Noetherian ring of positive characteristic p. Then lim infq→∞aq/qd+α(R) > 0 if and only if lim supq→∞aq/qd+α(R)>0 if and only ifR is stronglyF-regular.

The question of whether or not, in a stronglyF-regular ring,s(R) exists, is open. We show in this paper that its existence is closely connected to the question of whether or not weak and strongF-regularity are equivalent.

Smith and Van den Bergh ([10]) have shown that theF-signature of R exists whenR has finite Frobenius representation type (FFRT) type, that is, if only finitely many isomorphism classes of indecomposable maximal Cohen-Macaulay modules occur as direct summands ofR1/qfor anyq=pe. Yao has proven that, under mild conditions, tight closure commutes with localization in a ring of FFRT type, [11]. Moreover, Huneke and Leuschke proved that if R is also Gorenstein, then the F-signature exists, [7]. Yao has recently extended this result to rings that are Gorenstein on their punc- tured spectrum, [12]. Singh has also shown that theF-signature exists for monomial rings, [9].

Let (R,m) be an approximately Gorenstein ring. This means thatRhas a sequence ofm-primary irreducible ideals{It}tcofinal with the powers ofm.

By taking a subsequence, we may assume thatIt⊃It+1. For eacht, letutbe an element ofRwhich represents a socle element moduloIt. Then there is, for eacht, a homomorphismR/It→R/It+1such thatut+It→ut+1+It+1. The direct limit of the system will be the injective hullE=ER(R/m) and each ut will map to the socle element of E, which we will denote by u.

Hochster has shown that every excellent, reduced local ring is approximately Gorenstein ([5]).

(4)

Aberbach and Leuschke have shown that, for everyq, there existst0(q), such that

aq/(qd+α(R)) =λ(R/(It[q]:uqt))/qd, for alltt0(q) (see [3], p. 55).

The situation whent0(q) can be chosen independently ofqis of special interest.

Definition 1.3. — We say thatRsatisfies Condition(A), if there exist a sequence of irreducible m-primary ideals {It} and a t0 such that, for all tt0 and allq

(It[q]:uqt) = (It[q]0 :uqt0).

Proposition 1.4. — Let(R,m, k) be a local reducedF-finite ring. IfR satisfies ConditionA, then theF-signature exists.

Proof. — We know that R is approximately Gorenstein and hence we will use the notation fixed in the paragraph above.

As explained above, ConditionA implies that there existst0, indepen- dent ofq, such that

aq/(qd+α(R)) =λ(R/(It[q]0 :uqt0))/qd, for allq.

But λ(R/(It[q]0 : uqt0)) = λ(R/It[q]0)−λ(R/(It0 +ut0R)[q]). Dividing by qd and taking the limit asq → ∞yields s(R) = eHK(It0, R)−eHK(It0 + ut0R, R).

Now we would like to concentrate on another condition, Condition (B), that appeared first in the work of Yao. First we need to introduce some notation.

Assume that E is the injective hull of the residue field k. By R(e) we denote theR-bialgebra whose underlying abelian group equalsRand the left and rightR-multiplication is given bya·r∗b=arbq, fora, b∈R, r∈R(e). Let k = Ru E be the natural inclusion and consider the natural induced mapφe:R(e)RE→R(e)R(E/k). Thenaq/qα(R)=λ(ker(φe)) (by Aberbach-Enescu, Corollary 2.8 in [2], see also Yao’s work [12]).

(5)

Ian M. Aberbach, Florian Enescu

One can in fact see that

λ(ker(φe)) =λ(R/(c∈R:c⊗u= 0 inR(e)RE)) =λ(R/∪t(It[q] :uqt)).

Definition 1.5. — We say thatRsatisfies Condition(B)if there exists a finite length submoduleE ⊂E such that, if

ψe:R(e)RE→R(e)RE/k, then λ(ker(φe)) =λ(ker(ψe)), for alle.

Yao [12] has shown that Condition (B) implies that theF-signature of R exists.

Proposition 1.6. — Let(R,m, k) be a local reducedF-finite ring. Then Conditions(A)and(B)are equivalent.

Proof. — Assume that Condition (A) holds. Then one can take E=R/It0 and then Condition (B) follows.

If Condition (B) holds, then take t0 large enough such that EIm(R/It0 →E).

As noted above, one can compute the length of the kernel ofψe as the colength of{c∈R:c⊗u= 0 inR(e)RE}. SinceR/It0 injects intoEwe see that {c∈R :c⊗u= 0 inR(e)RE} is a subset of{c∈R: c⊗u= 0 inR(e)RR/It0}= (It[q]0 :uqt0).

Since (It[q]0 : uqt0)(It[q] :uqt) for all t t0, we see that Condition (B) implies that (It[q]0 :uqt0) = (It[q] :uqt) for all t t0, which is Condition (A).

2. N-Graded rings

Let (R,m) be a NoetherianN-graded ringR=n0Rn, whereR0=k is anF-finite field of characteristicp >0.

For any graded R-module M one can define a natural grading on R(e)⊗M: the degree of any tensor monomialr⊗mequals deg(r)+qdeg(m).

In what follows we will need the following important Lemma by Lyubeznik and Smith ([8], Theorem 3.2):

(6)

Lemma 2.1. — Let R be an N-graded ring and M, N two graded R- modules. Then there exists an integer t depending only on R such that whenever

M →N

is a degree preserving map which is bijective in degrees greater thans, then the induced map

R(e)⊗M →R(e)⊗N is bijective in degrees greater thanpe(s+t).

LetE be the injective hull of Rm. In fact,E is also the injective hull of R/m overR and as a result is naturally graded with socle in degree 0. We can writeE=n0En.

Let t be as in Lemma 2.1, and let s −t−1. Obviously the map E =sn0En →E =n0En is bijective in degrees greater than s. So by Lemma 2.1, the mapR(e)⊗E→R(e)⊗Eis bijective in degrees greater thanpe(s+t)−pe.

Theorem 2.2. — Let R be an N-graded reduced ring over an F-finite field kof positive characteristic. Then Condition (B)is satisfied byR and hence theF-signature ofR exists.

Proof. — Let E be the injective hull of k = R/m over Rm. As above, E=n0En, where 0 is the degree of the socle generatoruofE.

Using the notation introduced above, we will let s = −t 1 and E = snn0En E. So, R(e)⊗E R(e)⊗E is bijective in degrees greater than −pe. In particular it is bijective in degrees greater or equal to 0.

We have the following exact sequences:

0→k=Ru→E→E/k→0 and

0→k=Ru→E→E/k→0.

After tensoring withR(e), we get the exact sequences R(e)⊗k=R(e)⊗Ru→R(e)⊗E→φe R(e)⊗E/k→0 and

R(e)⊗k=R(e)⊗Ru→R(e)⊗EψeR(e)⊗E/k→0.

(7)

Ian M. Aberbach, Florian Enescu

One can easily see that ker(φe) and ker(ψe) are the submodules gener- ated by 1⊗uin R(e)⊗E andR(e)⊗E, respectively.

The degree of 1⊗uis0 = 0 and we have noted that the natural map R(e)⊗E →R(e)⊗E is bijective in degrees greater than−pe. This shows that ker(φe)ker(ψe) and hence Condition (B) is satisfied.

3. Q-Gorenstein rings

We turn now to showing that Condition (A) holds in stronglyF-regular local rings which areQ-Gorenstein on the punctured spectrum. Let (R,m, k) be such a ring of dimensiond, and assume that R has a canonical module (e.g. R is complete). In this case R has an unmixed ideal of height 1, say J ⊆R, which is a canonical ideal. We may pick an elementa J which generatesJ at all minimal primes ofJ, and then an elementx2mwhich is a parameter on R/J such that x2J aR. It is easy to see that then xnJ(n)⊆anRfor alln1 (whereJ(n)is the height one component ofJn).

The condition that R is Q-Gorenstein on the punctured spectrum implies that there is an integerhand two sequences of elementsx3, . . . , xdmand a3, . . . , ad ∈J(h)such that xiJ(h)⊆aiR for 3id, andx2, . . . , xd is a s.o.p. onR/J. We may then pickx1∈J such thatx1, . . . , xdis an s.o.p. for R. See [1], section 2.2 for more detail. Then by [1], Lemma 2.2.3 we have that for anyN0 and anyn0,

(J(nh), xN2, . . . ,xNi , . . . , xNd) :xi = (J(nh), xN2, . . . ,xNi , . . . , xNd) :xni. (3.1)

Theorem 3.1. — Let (R,m, k) be an F-finite strongly F-regular ring which isQ-Gorenstein on the punctured spectrum. ThenR satisfies Condi- tion(A). In particular theF-signature ofR exists.

Proof. — If R is not complete, we observe that, since R is excellent, R is stronglyF-regular andQ-Gorenstein on the punctured spectrum. If{It} is a sequence of ideal inR showing condition (A) inR, then {It∩R}does so forR. Thus we will assume thatRis complete.

LetJ,h, andx1, . . . , xdbe as discussed above. LetIt= (xt−11 J, xt2, . . . , xtd).

Since xn1J = J as R-modules, the quotient R/xn1J is Gorenstein. The hypothesis that x2, . . . , xd are parameters on R/J and R/x1R (hence on R/xn1J) then shows that It is irreducible (see [4], Proposition 3.3.18). The sequence{It}is then a sequence ofm-primary irreducible ideals cofinal with

(8)

the powers ofm. Ifu1represents the socle element ofI1, then we may take ut= (x1· · ·xd)t1u1to represent the socle element ofIt. We will show that t0may be taken to be 3.

Suppose thatc It[q] : uqt for some q. We will show that c ∈I3[q] : uq3. Raising to theqth power we havecquqqt =cq

(x1· · ·xd)t−1u1

qq

∈It[qq]

= (xt11J, xt2, . . . , xtd)[qq]. Hencecq

(x2· · ·xd)t1u1qq

(xt2, . . . , xtd)[qq] : x(t11)qq+ (J, xt2, . . . , xtd)[qq]= (J, xt2, . . . , xtd)[qq].

Writeqq =nqh+rqwith 0rq < h. Repeated application of equation 3.1 (using 1 rather thanhforx2) gives

cq((x2· · ·xd)u1)qq (J(nqh), x2qq2 , . . . , x2qqd ). (3.2) Let d J(h) J(rq). Multiplying by xqq2 and using that xqq2J(qq) aqqR J[qq] we have dcq

(x2· · ·xd)2u1qq

(J, x32, . . . , x3d)[qq]. Multi- plying by x2qq1 shows that dcquqq3 = d(cuq3)q (I3[q])[q]. Thus cuq3 (I3[q])=I3[q], as desired.

Bibliography

[1] Aberbach (I. M.). — Some conditions for the equivalence of weak and strong F-regularity, Comm. Alg. 30, 1635-1651 (2002).

[2] Aberbach (I. M.), Enescu (F.). — The structure ofF-pure rings, Math. Zeit., to appear.

[3] Aberbach (I. M.), Leuschke (G.). — TheF-signature and strongF-regularity, Math. Res. Lett. 10, 51-56 (2003).

[4] Bruns (W.), Herzog (J.). — Cohen-Macaulay Rings, Cambridge University Press, Cambridge (1993).

[5] Hochster (M.). — Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231, no. 2, 463-488 (1977).

[6] Hochster (M.) and Huneke (C.). — Tight closure and strong F-regularity, Me ´moire no. 38, Soc. Math. France, 119-133 (1989).

[7] Huneke (C.), Leuschke (G.). — Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324, 391-404 (2002).

[8] Lyubeznik (G.), Smith (K.E.). — Strong and weakF-regularity are equivalent for graded rings, Amer. J. Math. 121, 1279-1290 (1999).

[9] Singh (A.K.). — TheF-signature of an affine semigroup ring, J. Pure Appl. Al- gebra, 196, 313-321 (2005).

[10] Smith (K.E.), Van den Bergh (M.). — Simplicity of rings of differential opera- tors in prime characteristic, Proc. London. Math. Soc. (3) 75, no. 1, 32-62 (1997).

[11] Yao (Y.). — Modules withfiniteF-representation type, Jour. London Math. Soc., to appear.

[12] , Observations on theF-signature of local rings of characteristicp >0, preprint 2003.

Références

Documents relatifs

Examples of GE-rings are (i) the classical Euclidean rings (cf. [17]), (ii) rings with a weak algorithm [5], in particular free associative algebras over a commutative field, and

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

\/7 is equal to the intersection of all minimal prime divisors of J, and the minimal prime ideals of J?/J are Z-ideals by 2.3.. — Every Z-prime ideal in R contains a

Si s est modérément ramifiée, elle est induite d’un caractère modérément ramifié Il de l’extension quadratique non ramifiée de F, à. valeurs dans

Vavilov, Description of subgroups of the full linear group over a semilocal ring that contain the group of diagonal

Soit (n, V) une représentation irréductible de G ayant un caractère central, et de dimension infinie.. Les fonctions de Kirillov

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

ICHIMURA, On the ring of integers of a tame Kummer extension over a number field. ICHIMURA, Normal integral bases and ray class