• Aucun résultat trouvé

Filtrations on Verma modules

N/A
N/A
Protected

Academic year: 2022

Partager "Filtrations on Verma modules"

Copied!
7
0
0

Texte intégral

(1)

A NNALES SCIENTIFIQUES DE L ’É.N.S.

D AN B ARBASCH

Filtrations on Verma modules

Annales scientifiques de l’É.N.S. 4e série, tome 16, no3 (1983), p. 489-494

<http://www.numdam.org/item?id=ASENS_1983_4_16_3_489_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1983, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.

elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

4° serie, t. 16, 1983, p. 489 a 494.

FILTRATIONS ON VERMA MODULES

BY Dan BARBASCH (1)

1. Introduction

The purpose of this note is to make several remarks on the Jantzen filtration that follow from the paper of 0. Gabber and A. Joseph [G-J]. The first is to show that their techniques show that in fact the filtration has to coincide with the Socle filtration for Verma modules. The second is to apply their result to calculate Ext1 between two irreducible Verma modules.

Since the publication of [G'J], the conjecture that the Jantzen filtration is hereditary has been proved by A. Beilinson and J. Bernstein (unpublished).

I would like to thank D. Vogan for valuable discussions.

2. Notation and preliminary results

We adopt the notation and conventions of [G-J] paeticularly section 4. We assume that the Verma modules all have fixed regular infinitesimal character p (to keep the notation to a minimum). We write M(w) for M(-wp) if w e W , the Weyl group. Let a be a simple root, s=s^ the corresponding simple reflection and assume ws>w in the Bruhat ordering. Fix an inclusion M(w) -> M(ws). If { M-7} is the Jantzen filtration, then the Jantzen conjecture states that

(2.1) . M^y^M^y^nMO^).

Set M^M-VM7'4'1. Let 9,=(p^a be the coherent continuation functor. Write X=M(i^), Z = M ( w ) and Y=6,X=9,Z.

(1) Supported in part by an NSF grant and a Rutgers Research Council Grant.

ANNALES SCIENTIFIQUES DE L'.fiCOLE NORMALE SUPfiRIEURE. — 0012-9593/1983/489/S 5.00

© Gauthier-Villars

(3)

490 D. BARBASCH

Then there is an exact sequence

(2.2) Q-.x-'i.Y^Z-^O.

Y also has a canonical filtration satisfying the following properties ([G-J], section 4)

{

Y-'—fl 7s— ft X-'4"1

(2.3) ' '• '

Y,=e.z,=e.x,,i,

(2.4) T^Y^cZ7,

(2.5) Y ^ n X c X ^ c Y ^ Z^c^).

Then (cf. [G-J], section 4) one can set up the following exact sequences. Let X^X^W^nX),

X^.i^Y^nXVX-'-1-2. Then

(2.7) O ^ X ^ i ^ x ^ i ^ X ^ i ^ O .

The sequence splits, X^+1 is completely reducible and X^+1 is the largest submodule so that

e.(x^i)=o.

Let

Z^K^Y^/Z^1

Z^l=Z^l/7c(Y^l).

Then

(2.8) O ^ Z ^ i ^ Z , , i - ^ Z ^ , ^ 0 .

Z^i is completely reducible and Z?+i is the smallest submodule so that G^Zy.t.i/Z,'').!)^.

Let

Yj^Y-'nXMY-'-^nX), Y5=7r(Y^)/7^(Yj+l).

Then

(2.9.1) o - ^ Y j ^ Y . ^ Y J - ^ O , (2.9.2) o ^ X J ^ ^ Y ^ X ^ O , (2.9.3) o - ^ Z ^ ^ Y j ^ Z j ^ O , (2.10) ^i^Zj.

4" SERIE - TOME 16 - 19X3 - N"3

(4)

Let now u e W be such that vs>v and L=L(u), the corresponding irreducible quotient of M(v). Then there are exact sequences

(2.10.1) o ^ L ^ 9 , L - ^ Q , ^ 0 , (2.10.2) o-.U,L^Q,^L-^0, which do not split.

Extending the definition of U, to semisimple modules, we get an exact sequence (2.11) O^X^U.Z^Z^^O.

Since Y^.=9,ZJ and 9, is exact, we can write

(2.12) Y,=©[L(i;):Z?]9,L(i;).

vs>v

LEMMA. — For y e W we have

Hom^Y^"0^00^ if ys>yf

[ 0 if ys<y.

Proof. — Suppose ys>y. Then Hom[L(^):X^]=0. The long exact sequence 0 -^ Horn [L(y): X^ i] -^ Horn [L(y): Y^] -. Horn [L(y): X^] -.

gives the assertion.

Suppose ys<y but Hom[L(^):Y^]^0. Then Hom[L(^):Y^O. By (2.12) there must be v such that Hom[L(}Q: 9,L(i;)]^0. But the only submodule of 9,L(i;) is L(u) itself and v must be such that vs>v, a contradiction. This proves the lemma.

We now proceed to define the Socle filtration. Given M = M (w), it is well known that the largest semisimple submodule of M is M (id). We label M11 (w)] = M (id). Suppose we have defined M^1]. Then we define M1^ as the largest submodule so that M^ = M^/M1^1] is semisimple. This is a well-defined construction and { M171} is called the Socle filtration of M.

3. The main theorem THEOREM. - M^M7.

Proof. — The proof goes by ascending induction in l(w) and descending induction in j, It is enough to assume the statement to be true for Z and for X up to j 4- 3 and to show it is true for j 4- 2.

It is clear that X74-2 £ X1^ 2]. Suppose X^ 2 -+ X1^ 2]. Let k ^/+1 be the largest integer such that

X^^X^nXW^nX^^O.

ANNALES SC1ENTIFIQLJES DE 1/ECOLE NORMALE SUPERJEURE

(5)

492 D. BARBASCH

Let y e W be such that [L (y): X^j+2]-^ 0.

Then

(3.1) 0-.XD'4-2 ]nXk/X[ J 4-2 ]nXk 4-2-^Xf c/Xf c 4-2

and its image under the map K

(3.2) Q->Xk+l/Xk+2-^Xk/Xk+2^Xk/Xk+l->Q is nonzero.

Then

(3.3) HomlLGO^/X^^HomtLO^X^/X^2].

We show that this cannot be.

Case 1. — y<ys.

Horn [L(y): X^] = Horn [L(y): Z^1] since [L(y): Xk^Zk-1] = 0.

By the induction hypothesis, the socle of Z/Z^1 is Zk/ Zk 4'l, which implies (3.4) Horn [L(y):Zk-l/Zk+l]= Horn [L(^) :Zf c/Zk + l].

This is a contradiction.

Case 2. — y>ys.

Since X^cY^cY^, we get Y ^ n X ^ ^ X ^2. Then we have an exact sequence

(3.5) 0 -> (Y^ n X)^-"2 -> X^/X^2 -^ X^/Y^ n X -^ 0 But Xfc/Yk n X = X^ and [L(y): XQ = 0.

Thus

(3.6) Hom[L(};):Xk/Xk 4-2]=Hom[L(^):(YknX)/Xk + 2].

Also

(3.7) O^Y^nXVX^^Y^nXVX^^Y^nXMY^nX^O.

But(YknX)/(Yk + lnX)=Y^ so by Lemma 2 . 1 3

(3.8) HomtLOO^nXVX^2] =Hom[L(};):(Yk+l n X ) / Xk + 2] ^ H o m [ L ^ ) : X ^ Thus, combining (3.6) and (3.8) we get

Hom[L(y):Xk/Xk+2]=Hom[L(y):X^.^.

4*' SERIE - TOME 16 - 1983 - ?3

(6)

This contradicts (3.3) so

X^^X^2. The proof is now complete.

4. Computation of Ext1

Let y<w. We compute Ext1 [L(y), L(w)]. Consider the exact sequences (4.1) 0 -^ M(w)1 -^ M(w) -> L(w) -^ 0,

(4.2) Q-^M(y)l-^M(y)-^L(y)-^0

(4.1) gives rise to a long exact sequence

0 -^ Hom[L(w), L(}O] -> Hom[M(w), L(y)} -^ Hom[M1 (w), L(y)] ->

-^ Ext1 [L(w), LGO] ^ Ext1 [M(w), L(^)] -.

But Hom[M(w), L(^)]=0 because L(w) is the unique irreducible quotient of M(w) and Extl[M(w),L(y)]=Q because it is equal to Ri^, LOO)^"^ which is zero since y < w. Thus

(4.3) Exti[L(w), LOO] ^ Horn [Mi (w), L(^)].

Next, consider the long exact sequence coming from (4.2)

0 -^ Hom[L(}0, L(w)] ^ Hom[M(y), L(w)] ^ Hom[M(}/)1, L(w)] ->

^ Ext1 [L(^), L(u;)] ^ Ext1 [M(^), LOO] ^.^

Since Hom[M(^)1, L(w)]=0

(4.4) dimExt1 [L(y\ L(w)]^dimExt1 [M(^), L(w)]=^, w)

(from the Kazhdan-Lusztig conjecture as phrased in [V], conjecture 3.4 and the fact that Exti[M(3;), L(w)]^H1^, Ld^p^).

Putting (4.3) and (4.4) together, we get

(4.5) dimHom[M(w)1, L(y)]^dimExt1 [L(w), L(^)] =dimExt1 [L(^), L(w)]^[i(y, w).

By [G-J], Corollary 4.9, dim Horn [Mi (w), L(y)] ^ ^(wwo, ^o).

By [K-L], Corollary 3.2, [i(y, w)=[i(wwo, ywo). We summarize our result.

PROPOSITION. — Let y<w. Then

dim Ext1 [LOO, L(w)]=n(^ w).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE

(7)

494 D. BARBASCH

REFERENCES

[G-J] 0. GABBER and A. JOSEPH, Towards the Kazhdan-Lusztig Conjecture (Ann. scient. EC. Norm. Sup., 46 serie, T. 14, 1981, pp. 261-302).

[K-L] D. KAZHDAN and G. LUSZTIG, Representations of Coxeter Groups and Hecke Algebras (Invent. Math Vol. 53, 1979, pp. 127-149).

[V] D. VOGAN, Irreducible Characters ofSemisimple Lie Groups 11, The Kazhdan-Lusztig Conjectures (Duke Math. J., Vol. 46, No. 4, 1979, pp. 805-859).

(Manuscrit re^u Ie 8 septembre 1982, D. BARBASCH, revise Ie 10 decembre 1982).

Rutgers,

The State University of New Jersey, New Brunswick, New Jersey 08903, U.S.A.

46 SERIE - TOME 16 - 1983 - ?3

Références

Documents relatifs

She’s tall and slim, and she’s got long curly fair hair and blue eyes.. She’s very friendly

In principle, we can combine the results of multiple SPARQL or CRUD queries inside the API, to provide results which could not be returned by a single SPARQL query.. During the Hack

A complete classification of gradings on finite- dimensional simple modules over arbitrary finite-dimensional simple Lie algebras over algebraically closed fields of

Show that there exist entire functions of arbitrarily large order giving counterexamples to Bieberbach’s claim p.. Let f be an

– As a continuation of our previous works we study the conjecture on the rigidity under Kähler deformation of the complex structure of rational homogeneous spaces G/P of Picard

A natural conjecture is that the tilting modules in this situation should have the same characters as in the quantum case as long as the highest weights belong to the lowest p

From this the second main result easily follows: a description of the simple modules in the layers of the socle filtration as coefficients of Kazhdan-Lusztig polynomials.. This

Phrase and prove its properties (dual to the properties of the homology Bockstein above), and compute it for the Moore space M (n, Z /p), n &gt; 2.. Typeset