• Aucun résultat trouvé

Ultrafast  Phenomena  in  Condensed  Ma3er  :  2    Prof.  P.Ruello  Ins:tut  des  Molécules  et  Matériaux  du  Mans,  UMR  6283  CNRS-­‐Université  du  Maine.

N/A
N/A
Protected

Academic year: 2022

Partager "Ultrafast  Phenomena  in  Condensed  Ma3er  :  2    Prof.  P.Ruello  Ins:tut  des  Molécules  et  Matériaux  du  Mans,  UMR  6283  CNRS-­‐Université  du  Maine."

Copied!
74
0
0

Texte intégral

(1)

Ultrafast  Phenomena  in  Condensed  Ma3er  :  2   Prof.  P.Ruello    

Ins:tut  des  Molécules  et  Matériaux  du  Mans,  UMR   6283  CNRS-­‐Université  du  Maine.  

hν

pump probe

Acoustic phonons

1  

(2)

Ultra-­‐fast  phenomena  in  condensed  ma3er  physics        

 

-­‐5  Picosecond  acous:cs  :  Femtosecond  laser  genera:on  of  coherent  acous:c  phonon.  Electron-­‐

acous:c  phonon  coupling  :  thermoelas:city,  deforma:on  poten:al      

-­‐6  Evalua:on  of  elas:city  at  the  nanoscale  nanostructures  by  using  ultrashort  acous:c  pulses  :   echography  of  nanostructures  by  laser  optoacous:cs.  

 

OUTLINE  

2  

(3)

Ultra-­‐fast  phenomena  in  condensed  ma3er  physics        

 

-­‐5  Picosecond  acous:cs  :  Femtosecond  laser  genera:on  of  coherent  acous:c  phonon.  Electron-­‐

acous:c  phonon  coupling  :  thermoelas:city,  deforma:on  poten:al    

-­‐6  Evalua:on  of  elas:city  at  the  nanoscale  nanostructures  by  using  ultrashort  acous:c  pulses  :   echography  of  nanostructures  by  laser  optoacous:cs.  

 

OUTLINE  

3  

(4)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "

!

!"#$%&'(#)%"*

+$%,*#-.*-)/#%$)(01*2%)"#*%3*4).5

6$%5"*7")4.$/)#8*9:0$)/*.#*01;*9<=>?*@ABC;

DEFE*>0G/*9H)./."3.1&*.#*01;*9D<>?*@ABI;

J.".$01*:%#%$/*9K./1.8*.#*01;*9D<>?*@ABL;

*

3)$/#*.4)&."(./*%3*2-%#%M.".$0#)%"*

0"&*2-%#%&.#.()%"*%3*2)(%/.(%"&*

0(%'/#)(*2'1/./

N2#)(01*2',2O2$%G.*.P2.$),."#*Q*-%5*&%./*)#*5%$R*S

:.0/'$.,."#*%3*#-.*

&)/#'$G.&*%2#)(01*

$.31.(#)4)#8

T.108.&*2$%G.*

10/.$*2'1/.

<',2*10/.$*

2'1/.

<-%#%)"&'(.&*

/#$.//*)"*#-.*

$.M)%"*%3*10/.$*

0G/%$2#)%"

/'G/#$0#. 3)1,

2 -

%

<-%#%M.".$0#.&*

'1#$0/%'"&/ E-%,/."*.#*01?*<=6*@ABU

D/VE.WX*D1VNW

4  

(5)

Genera:on  of  acous:c  waves  due  to  electronic  and   phononic  excita:on.    

!R

R = f (!!1

!1 ,

!!2

!2 )

! =!1 +i!2

GENERATION  :    

The  laser  excita:on  induces  varia:on  of   electronic  energy  and  the  relaxing  

electrons  emit  some  phonons  that  give   rise  to  an  increase  of  laTce  

temperature.  Consequently,  the  system   is  submi3ed  to  an  electronic  pressure   and  a  phononic  pressure.  Both  pressures   will  be  responsible  to  the  genera:on  of   a  front  of  acous:c  waves.  

!R R

pump  

5  

! = f (electrons, phonons)

Acous:c   phonons  

DETECTION  :    

(6)

6  

0e+00 1eï11 2eï11 3eï11 4eï11 5eï11 6eï11

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Two  Temperatures  Model  

λe=10^6  (J.m-­‐3.  K-­‐1),  Ce=λeTe     g=1e17  (W/m3.K)  

g=3e17  (W/m3.K)  

Te    

TL     Popula:on  of  phonons  =  laTce  

temperature  

Popula:on  of  excited  electron  =  hot   electrons  =  large  electronic  

temperature  Te.  

Time(s)  

Temperature  (K)  

Phononic  stress  

(thermoelas:c  stress)   Electronic  stress  (deforma:on  

poten:al  stress)  

(7)

Deforma:on  poten:al  or  electronic  pressure  

We  have  shown  that  a  varia:on  of  the  volume  due  to  LA  mode  can  sca3er  electron  (change  of   the  electronic  level  of  the  electron)  by  deforma:on  poten:al  mechanism.  This  means  that   phonon  can  modify  the  distribu:on  of  electron  in  the  electronic  bands.  

In  the  inverse  a  change  of  the  electronic  energy  (by  laser  ac:on)  can  also  (reciprocally)  induce  a   change  of  the  laTce  volume  by  deforma:on  poten:al  mechanism.  The  photoexcited  electrons   have  new  “place”  within  the  crystal  than  they  had  before  laser  excita:on.  This  consequently   modify  the  local  electrosta:c  interac:on  that  forces  ca:ons  to  move.  Said  differently,  the  laser-­‐

induced  modifica:on  of  the  distribu:on  of  the  electron  in  the  bands  modify  indeed  the  orbitals   overlapping.  Consequently  the  equilibrium  posi:on  of  the  laTce  can  changes  (increase  or  

decrease  of  laTce  parameter  depending  on  the  electronic  structure).  

u! = !

u0ei(q.! r!!wt)

! = !u

!r = iq.uOei(q.! r!"wt)!

ur = iq.! u

!He"LA = an,k.! = an,k.iq.u

An  acous:c  field  modifies  the   electronic  energy    

A  modifica:on  of  the  electronic  energy  

modifies  the  acous:c  field  (crea:on  of  phonon).    

!He"LA = an,k.! = an,k.iq.u

7  

(8)

Electron-­‐longitudinal  acous:c  phonon  coupling  

C   m   -­‐-­‐-­‐  

-­‐-­‐-­‐  

x   BV   BC  

Eg     Eg  +δU  

!U = a!V V

Sca3ering  of  the  electron  by  a   local  fluctua:on  of  the  electronic   band  structure  

Compression  (for  example)  

a=  deforma:on  poten:al  parameter  

δV/V  =  volume  varia:on  due  to  the  acous:c  phonon  

(macroscopic  laTce  distorsion)   8  

(9)

Electronic  pressure  in  metals  (deforma:on  poten:al)  

P = 2 3

E V E = !2k2

2m g("

k)d

0 kF

!

k" = 8V!3 sin" d" d# !

2k2

2m k2 dk

!

!!

," = V!

2kF5 10m!2

Sommerfeld  model  

P = ! "E

"V

#

$% &

'(

N

N = 4

3!kF3 ! V

8!3 !2

Number  of  electrons  in   the  Fermi  sphere  

E(N,V) =

V!2 !(N3!2 V )5/3

10m! 2 The  internal  pressure  of  quantum  

free  electrons  depends  on  its   energy  E      

9  

(T=0K)  

(10)

P = 2 3

E

V !P " 2

3

!E

V " !eCe!Te !e = !"eCe"Te

When  a  laser  excite  an  electronic  cloud  in  a   metal  where  we  can  describe  the  electron   as  a  Fermi  liquid,  the  modifica:on  of  the   electronic  energy  induces  a  change  of  the   internal  pressure  

! Conven:on   External   applied     stress  

Compression  ! > 0

! < 0 Expansion  

Ce!Te = !E /V

( )

10  

!e = 2 / 3

( )

Orders  

!P " N #1eV

V "1028 #10$19 =1GPa

Grüneisen  coeff   of  electrons  

(11)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"#$%&'()$*+,$("*()'-+.+"-"/(%$*)/+0(%"00+12"+($+

-'0"%3)*12/"1+&$1)#)/'()$*+$#+$%4)('-0+

,$,2-'()$*+

5$&,%"00)$*+

0(%"00

67,'*0)$*+

0(%"00

682)-)4%)2&

9

:, 0

;<$($3)*12/"1+/'%%)"%0+

"7/)('()$*

=$*+4)*1)*>+

$?"%-',,)*>

@)*1)*>+

$?"%-',,)*>

"-"/(%$*

11  

(12)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"#$%&'()$*+%&#++*)(*+#,)-$'(./$%'&+*

0)1#*)(*,#%2"+3*45'%'-#6$)%#.*$2&&)#&+*2&#*&#+4'(+)7"#*'8*2*9#&,)*:2+*4&#++/&#*2%*

+5'&%*%),#*+$2"#*;/(%)"*$''"#.*<)%5*45'('(+*./&)(:*%5#*)(%&2-72(.*4&'$#++=>*?/%*

2..)%)'((2"@3*2(.*$'(%&2&@*%'*,#%2"+3*%5#*45'%'-#6$)%#.*$2&&)#&+*$2(*52A#*"'(:*")8#-

%),#*./#*%'*%5#*#6)+%#($#*'8*72(.*:24+

!1

1

B"'<*&#$',7)(2%)'(

!"

#"

!9

!!""#"# $ $%

$ & '

C#(#&2"*#64&#++)'(*;8'&*2(@*4'+)%)'(*)(*%5#*

#"#$%&'()$*72(.*+%&/$%/&#=

D#8'&,2%)'(*4'%#(%)2"*<5#(*

#"#$%&'(*2(.*5'"#+*52A#*

&#"26#.*)(*%5#*7'%%',*2(.*

%'4*'8*%5#*$'(./$%)'(*2(.*

A2"#($#*72(.+

-?&)""'/)(*

E'(#*A#$%'&

-*72(.*+

!:

%(

;!F>*G=

;!F>*H=

!!"#")!"&%( * +' ' &%( * +'

Deforma:on  poten:al  

12  

(13)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! ""

!

!"##$%&'#(&)*+&,"-#$%$#.'

/0

!"-&)'

&1%$#"#$+2'

0 (+,&-

&,&%#)+2-

!"

#"

!"##$%&'

&2&)3.

4$5)"#$+2'

&2&)3.'' ,&6&,

) )+

7+8$9$%"#$+2'+9'#(&',"##$%&' :")"*&#&)');<='>(&2' :(+2+2-':+:?,"#$+2'

$2%)&"-&- );<=

@(+2+2'

&*$--$+2

A2(")*+2$%':+#&2#$",'

&2&)3.

LaTce  anharmonicty  (thermoelas:city)  

 

The  electronic  subsystem  relax  step  by  step  to  its  ini:al  state  by  emiTng  phonons.  This  increase  of  phonons   popula:on  increase  the  vibronic  energy  of  the  laTce  (increase  of  the  temperature  TL).  Since  the  laTce  is   intrinsically  anharmonic,  the  laTce  expands.  This  is  called  the  phononic  pressure  or  thermoelas:c  stress.  

   

13  

(14)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"##$%&'#(&)*+&,"-#$%$#.

!!"""#

$

% # $$%$&( '% & '((

(

)

#"*+,$$%()* $$$&'% & '((#)-

/01"#$+2'+3'-#"#&

"" #%

%( **+,)

+

"# , &'$'%(-)

+

'% & '

$

# %%( $, &'$'%((

(

+, &'$'%(."%.)#"

4-'#(&'3)&&'&2&)5.

6&3$2$#$+2'+3'#(&'7)&--1)&'"-'"' 312%#$+2'+3'7(+2+2-'7+71,"#$+2 8(&)&

#(&2

9/0:';<

9/0:'=<

9/0:'><

?(&'@+,1*&'A&7&2A&2%&'+3'7(+2+2'3)&01&2%.'$-' )&-7+2-$B,&'+3'7)&--1)&'@")$"#$+2:

9C-%()+3#'D'E&)*$2F'G"12A&)-'H+,,&5&'71B,$-($25'5)+17<14  

(15)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"##$%&'#(&)*+&,"-#$%$#.

!!"

#

!$" # $%&$%$"&

#

%&$%$"& /)01&$-&1'2")"*&#&) %&$

!$" # $"'($% )$ ($%'

3(&)&

45#&)'#(&',"-&)'26,-&'&7%$#"#$+18'#(&)&'$-'"1'$1%)&"-&'+5'#(&'16*9&)'+5'2(+1+1-'' 1:!;8-<='>6&'#+'"1(")*+1$%$#.8'#(&'2(+1+1-'2+26,"#$+1'$1%)&"-&'$1?6%&-'"'@+,6*&'

%("1A&='B("#'@+,6*&'%("1A&':"<'$1?6%&-'#(&1'"'-($5#'+5'#(&'&$A&1'*+?&',"##$%&'

@$9)"#$+1'!;8-'='C+1-&D6&1#,.8'"'E'#(&)*+&,"-#$%'F'-#)&--'")$-&-

*" "

#&

%

(()(

&

'"#&"

#

$" # $

%

'( + )(' $" # $

&

(*($)%$"&"!#&!+'

,$" # $

C+1#)$96#$+1'

#+'CG'+5'#(&'

*+?&

,!"- ()"'!!+!-) !

H$1",,.8'#(&'#(&)*+&,"-#$%'-#)&--'%+*$1A'5)+*'#(&'(&"#$1A' +5'#(&',"##$%&'9&%+*&-

,!"-()"'#&* -) ! *"!!+&

#&

-$1%&

+)

:ID='J<

:ID='K<

3$#(

15  

(16)

!therm = !3B""T

! def.pot = !dehN = !NB "Eg

"P

= !3B! N "(h" ! Eg) C

Thermoelas:city  and  deforma:on  poten:al  in  GaAs  

16  

hv    

In  GaAs  :    

!

def.pot

>> !

therm.

è  It  is  possible  to  generate  GHz-­‐THz    acous:c  phonons  in  GaAs   without  hea:ng  the  crystal  

Photoinduced  stress  

N : photocarriers concentration,

deh : deformation potential parameter B : bulk modulus,

β : thermal expansion coefficient, ΔT : lattice temperature

(17)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"#$%&'()$*+,$("*()'-+,'%'&"("%.+)*+/'0.

1'."+$#+/'0.

! !"

! # "$#%&'()*+#$

!$!$#!%&

! # ",',%&'()*+#$

!$!%#!%&

! # "#"',%&'()*+#$

23 23

43

516%).("*."*+"(+'-7+89:;

17  

(18)

! "#

!

!"#$%&#'()*+,+*-.(/0.0#1&$%(*+&/.2&*#/*+('.

!!"

#

$$$%$%"$#

%

% & #"#'

&("'!()((% ("'&') (% (

3"&*&+/04,#0.)*$#)).

.5$6/#+)#/.,&#11+,+#/*.&1.

.#'#,*$&/).

)"!()*

&'

&"

*

++ ("!#++% $#$,#++%-

*

+, ("-#+,%. $/#+,%

$,

!"#$%&'()$*+,$(-*()'. /0-%&$-.'1()2)(3

&!"'!!)!(%!

!++"' "

/

$/#++%

$,

&!'."'/ 0#1

02 3 #4 & 5%"'0!.3 #4 & 5%

7#%+,&/04,*&$)

8#*(')

5$6/#+)#/

,&#11+,+#/*.&1.

2"&/&/).

9+*"

#*

.!"#$%('.#:2(/)+&/.

,&#11+,+#/*.

9+*"

("!#++ % ("-#++%

3"&*&+/04,#0.%&0+1+,(*+&/.&1.

#'#,*$&/.(/0.2"&/&/.0+)*$+;4*+&/

##++ % . /#++%

18  

(19)

Spectrum  of  the  emi3ed  acous:c   phonons  

19  

(20)

material

Pump beam (200fs)

Generation  of  acoustic  waves  by  a  femtosecond  laser

L

L=light  penetration  length  

=  characteristic  acoustic  wavelength In  metals  L  ~20nm

In  semiconductors  L  depends  a  lot   on  the  pump  wavelength.

Acoustic   pulse

 duration ! ! 2L VS

Vs=5000m/s

! ! 6ps (166GHz)

Review  on  the  processes    :    

Laser  Optocacous4cs  ,  Karabutov,  Gusev,  AIP-­‐Press,    New  York,  1993  

20  

(21)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"!"" # $#

!"" $%" !"!"" # $#

!$" %$

&

!' "" # $#

! $ %$

&

!"'"&'()(''$&(%%%#

! $

!"#$%&'()'*)+'%&'(

,-./+'.0$1%&2)1%/.11)3$(-$/+'(&2&%45

6.*'/+$%&'()7'%.(%&$0)1%/.11)3('(8."#&0&9/&#+) 7-'%'.:2&%.;)2$//&./15

'"&'()%$&')** "" # $#

''$&%$+'& , "" # $#

<.=%'()0$=)*'/)0'(>&%#;&($0)$2'#1%&2)=$?.)@)?$0&;)*'/)%!A71

!)@);&170$2.+.(%

2)@)B'(>&%#;&($0) 1'#(;)17..;

")@);.(1&%4 3!"C)D5

!'

! $ % -.(%'

21  

Force = v!!

!x v=volume  of  

the  unit  cell  

(22)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"##$%#&'()*"+$,&'''

!! "" # $#

!" $%&'(" !") "" # $#

! $" %"$&*#

+,

&',&-.

-. /, 0 ""#'&($& -.

+,

) "" # $# )*

1*) ""%&#$%'& ! ) ""%&#

! $

-./0'123

-./0'113

-./0'143

!"##$%#'&5#6",%'7#"88$*9'

:"77$,%'7%+8%#"75#%'()*"+$,&

! ) "" # $#

!" $%'& !") "" # $#

! $" & ) "" # $#

)* %"$&*#

&', / , 0 ""#'&($

! ) "" # $$&#

! $ $&

-$6'*;'&5#6",%'7#"88$*93

<%"7$*9';6'7=%'>"77$,%'"67%#' 8=;*;*'%+$&&$;*'(5%'7;''

$*7#"?"*('%>%,7#;*$,'#%>"@"7$;*

<%"7$*9';6'7=%'>"77$,%'"67%#' 8=;*;*'%+$&&$;*'(5%'7;''

$*7#"?"*('%>%,7#;*$,'#%>"@"7$;*

<%"7$*9';6'7=%'>"77$,%'"67%#'*;*A

#"($"7$B%',"##$%#'#%,;+?$*"7$;*

!"##$%#'

($665&$;* !"##$%#'

#%,;+?$*"7$;* C;5#,%'7%#+'D'*5+?%#';6'

>"&%#'8=;7;%@,$7%(' ,"##$%#&

22  

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"##$%#&'()*"+$,&'''

!! "" # $#

!" $%&'(" !" ) "" # $#

! $" %"$&*#

+,

&',&-.

-. / , 0 ""#'&($& -.

+,

) "" # $# )*

1*) "" %&#$%'& ! ) "" %&#

! $

-./0'123

-./0'113

-./0'143

!"##$%#'&5#6",%'7#"88$*9'

:"77$,%'7%+8%#"75#%'()*"+$,&

! ) "" # $#

!" $%'& !") "" # $#

! $" & ) "" # $#

)* %"$&*#

&', / , 0 ""#'&($

! ) "" # $$&#

! $ $&

-$6'*;'&5#6",%'7#"88$*93

<%"7$*9';6'7=%'>"77$,%'"67%#' 8=;*;*'%+$&&$;*'(5%'7;''

$*7#"?"*('%>%,7#;*$,'#%>"@"7$;*

<%"7$*9';6'7=%'>"77$,%'"67%#' 8=;*;*'%+$&&$;*'(5%'7;''

$*7#"?"*('%>%,7#;*$,'#%>"@"7$;*

<%"7$*9';6'7=%'>"77$,%'"67%#'*;*A

#"($"7$B%',"##$%#'#%,;+?$*"7$;*

!"##$%#'

($665&$;* !"##$%#'

#%,;+?$*"7$;* C;5#,%'7%#+'D'*5+?%#';6'

>"&%#'8=;7;%@,$7%(' ,"##$%#&

T(t,x)  

S=surface  recombina:on  velocity     (due  to  electronic  traps)  

(23)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"#"$%&'(#&)'*)+*#,"*-),"$"'#*(-)./#&-*0,)')'/*/0"-#$.%*&'*#,"*

-(/"*)+*1)%&'(#&'2*1"+)$%(#&)'*0)#"'#&(3*(/*0,)#)&'1.-"1*/#$"//*

('1*4&#,*"3"-#$)'5,)3"*$"-)%6&'(#&)'*7*

5*'"23&2&63"*#,"$%)"3(/#&-*/).$-"*

5*')**/.$+(-"*$"-)%6&'(#&)' 89:;

<"/)3.#&)'*7*=).$&"$*#$('/+)$%*>*:(03(-"*#$('/+)$%>*6).'1($?*

-)'1&#&)'/*>*$"/&1."/*&'#"2$(#&)'*>*$(1&(#&)'*-)'1&#&)'/

!"!"" # $#

!"" $%" !"!"" # $#

!$" %$

&

!' "" # $#

! $ %$

&

!"&'() "" # $##

!$

! ) "" # $#

!" %*'( !") "" # $#

! $" $ ) "" # $#

(+ )"$$+#

(*, - , . ""#'$+$

!) ""%&#

!$ %& 9)*-($$&"$*/).$-"*)$*-($$&"$*#$(00&'2** @ABC*DEF )'*#,"*/.$+(-"

G,")$?*1."*#)

HCIJ,%(')K*('1*LC*AC*M./"K H)KC*N,?/C*O/0C*EP@EF*DQQR

!"" # $# !, "-#

H"%&5&'+&'&#"*

/?/#"%

STU

23  

(24)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"#$%&'($)*+*,$&-("-*'-.)#/$-0*1*2.3%.4"*'-.)#/$-01*5$&)6.-7*

4$)6('($)#*1*-"#(6&"#*()'"8-.'($)*1*-.6(.'($)*4$)6('($)#

!""!#$"" #%!$" &"!#$# ""%

& #" '!$

( & #) $"" #%

& #

%* $"" &%'+%

,- %# $"" #%'!&#(#

*&"%

&#" '!& #% $"&%%

&# , &*&%

& # '!& #% $"&%%

& # ! &%# $"&%%,&" %* $"" &%

*&%

&# '!#%$"&%%,&%*$"" &%

,$&-("-*'-.)#/$-0*$/*'9"*0$'($)*":&.'($)

$

"$

%

"!*! & #!&$"#&%%! &!# $"&%%,&"!* $) " &%' !$

($" .!#) $"&%%,&) $"* " &%/

1*2.3%.4"*'-.)#/$-0*$/*'9"*0$'($)*":&.'($)

;'-.()*.)6*#'-"##*<=*.'*

/-""*#&-/.4"

>('9

%# $"" #%'+!-

,- % $* " #%'+"*(*

?@:A*BCD

?@:A*BED

F)'"8-.'($)*57*3.-'

24  

(25)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"#$%&'()%*$%&+,-&.+/0+1$&#%+,2"(%34&5$&1+,&$6#%+1#&#7$&

+1()2#*1&-*2/0+1$3$,#&*,&#7$&"%$8)$,19&+,-&5+:$&,)3;$%&

-(3+*,&<&

!

!"#" #$% $

#%&

"

#$

$

%

"

#!'"#&#$&($$% )*#+ "#! " #$,

$

!

!"#" #$% $

"

#&% #$

$"

#*% #$

$

&"#" #$

!'"#" '$% $

%-%.'*%/

'&%/ &"#" #$

" #&% #

$ $"#*% #

$ $

(#')#

!'"#" '$%

&"#"*% #

$ $

*%' #

$

(*%

#

$ '

&

&"#"% #

$ $

%' #

$

(%

#

$ ' =$2*-)$2&*,#$>%+#*(,&<&?&

/(0$2&+//$+%

@,:$%2$&.+/0+1$&#%+,2"(%3&#(&>$#&#7$&

-*2/0+1$3$,#&*,&2/+1$&+,-&"%$8)$,19&-(3+*,

! ! ! !

!"#$ %&' () ()*(#++)' &$

AB8C&DEF

AB8C&DGF

AB8C&DHF

AB8C&DIF

25  

(26)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!"#$%&$'()*%+$%',%-".)%/',)'0$,',1$'2+&34-5$/$",'+"'&3-5$'-"2',+/$'2)/-+"

!!" # $"# #

$$%&'

(' !)!*# $"%&&*"' *

!!" # $"# #

$$%&'

(' (!*#& *

) "%&&*!"&$+)"' *& #

$$%&'

(' (!*#&& *

) "%&&*!"($+)"'*

6-2+-,+)"'5)"2+,+)"'.-%'-7-8'.%)/' ,1$'&)*%5$

9-&$%':

&)*%5$ ;%+#+"0'.)%5$').'/),+)"

:<

=)'7-#$&'3%)3-0-,+"0'

,)7-%2&',1$'.%$$'&*%.-5$'-"2' 5)/+"0'.%)/',1$'>'%+01,'?

! @ABC'D<E

26  

(27)

!"#$%"&#'("&)*+,--$%*+./(()

*+("*$#*0,-'1%$2*3&%415$*6778**

9:;,$))(

! "#

!

!!""## "

$ $%##! "

$ $ &%!"$%$' &

($#

)

#!## "$ $ *+ !""## "$ $

,

%%

!!""# "

$ $%#! "

$ $ &%!"$%$' &

($#

)

##! "$ $ *+ !"" # "$ $

,

!!""# "

$ $% #"

($"

!

*+ !""## "$ $# *+ !""'# "$ $

$

#! "

$ $ &%!"$%$% &

($#

)

#!## "$ $ *+!""## "$ $

,

!"#$

%&#'()*+,-.,("#,&"-(-/0#$#)1(#2, 3-*$23,4#'-+#3

5-$06(*26$17,1'-*3(6',263&71'#+#$(,6$, ("#,3&1'#,1$2,(6+#,2-+16$,8,

%!& " '$% &

'- ($#.#/

'/

!

+ !"* "## "$ $#*+ !""'# "$ $

$

(##"!&#'0$$)"

!

!

91261(6-$,'-$26(6-$

:;<=,>>?

:;<=,>@?

:;<=,>A?

:;<=,>B?

C#$#)17,#D&)#336-$,8,E"1(#F#),("#,3()#33,-)606$

27  

Références

Documents relatifs

Moreover, detection of an IBD pattern at the orchard scale revealed a very low average dispersal distance that is particularly significant for epidemiologists and landscape managers

Here, we investigate the development of a boundary layer over rough surface, also at high Reynolds number and low blockage ratio with the aim to evaluate the development of

First, we mine every single size-2 weighted path (with one edge) that is condensed regarding the set of size-2 (only) weighted patterns. Those triplets match frequent triadic

AND 0 REGIONS ACROSS THE JUNCTION RESULTS IN A REGION WITH NO FREE CARRIERS 4HIS IS THE DEPLETION REGION 4HE BUILTIN VOLTAGE ACROSS

As already pointed out, the electronic dynamics at quasithermal equilibrium was extensively discussed on the basis of classical transport properties studies such as dc elec-

Dependence of the oscillation frequency on the delay. After Cheng et al. Since Te can be described by two-band contributions [58], does this contradict TSRS predic-

Nearly perfect optical extinction through free-standing transparent nanorod arrays has been measured.. The sharp spectral opacity window, in the form of a characteristic Fano

A travers cette étude, plusieurs microstructures et courbes de dureté ont été présentées, où nous avons montré les conditions des traitements thermomécaniques qui permettent