• Aucun résultat trouvé

Flatness of the regularization term

N/A
N/A
Protected

Academic year: 2022

Partager "Flatness of the regularization term"

Copied!
10
0
0

Texte intégral

(1)

!"##!

$%&''(((###!' !'

) *$

#+,! +!-$--

./, 0

")#

$%&''(((#$#)#' '

1% )

!- / - 2

!-

-3#-" !#!#!

$%&''%# !#!#!' -'

! "

#

$ ! "

%

(2)

& # '(

) %%

* +, % -. /0012

!) 3 - /0042

5 -) /0062"

$

-/000 2 ! 7 8 9 " #

: ;

+(

(

! "

# '( <

( 7 7

=

%

!

"-+ /004 2

# = + >1

( !- 4 -

-/0002 $

+ >9 =

!" !"

! "

!"

+>>

#

! - /0042" + >6

(3)

8 +, + /91 ? !/@9"

!/A1" !/A9" !"

= -)

/004 + /0042#

! "

.

#

8

! "! " #

! "

# -/0002

!"

! "

! "<B ! "

# ! "

< Ê

! "<B!

½! "

! ""B

! "B

! "

7 7 5

! "

! "

B!"

) #

(

+ ! " (

! "<B

! "

! "

! "B -

! "

! "2

# 7 7

= C

! "

5

# C ? Ê

<

! "B

! "

! "B

! "

(4)

=

! "B ! " C

D (

!" (

#

!

"<B

! "

!

"B

! "

!

"

= B

!>>" -

/0002% B

Æ

=

#

! 77"-

/0002

& E + /99 = +,

!/4F"

=

!/41"

!

"B!!"!

"!"!

""

= +

#

(

!>6"# !>6"5

G

! "

<B

! "! " ! "

$Ü%

Æ

#

(5)

* C

! "#$

) ( ! "

!

"

(

<

B

!"

!"

!"

+ !>>" !>6"

!

"

B

! "

!

"

B

! "

!

"

B

! "

!"

!"

!

" !"

5

G

C #

!>A" !>0" !>/F"

& -/0002

%& ' (

#H! B"

! "

#

B

¾

#

B!>A"

(

#

# +,

! " B

!

"

+, «

+, $

!"

¾ B

! " ! "

B

! "

!

"

! "

# (

-2!>/1"

# !>/1" (

! "8

(6)

!E " >/ C

2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Flatness of the regularization term

X

|Pf| 2

log(X|mu)=881.9 log(X|mu)=784.3

log(X|mu)=826.1 mu=.5 (true model) mu= 2 mu=3

)

!" # " &

#

=

! "

"

8

!E "

5

C

C

-$ /0002

! "

!

"

!

"

= -/0002 B =

3>1

%&

#

½

Ü

! "

! "B ! "I

! "!>A"#

-

Þ

!"2 -

Þ

!"2 !"

(7)

B

-

Þ

!

! ""2 -

Þ

!

! ""2 !"B

# !

Ü

! "

B

Ü

! " B

Ü

! " ! "

E ( *

# !>A"

$ 5

! "

Ü

-8 ?C /0002 = !>A"

) 5 Ê

Ê -F/2 / Ê

)

!

"

!

"<B

!

"

!

"

F/

# (

!>6"-+ /0042

!>/6"

%7#!#//@"

# ) %

(-+J /0002.

!>/6"

) * (

D

K

½

¾

½

¾

#

!

"

! "B /

K

½

¾

! "

BK

5 B

BK

B/

= !>/6" (#

!B

" (

#

K

(8)

# !

"

B

/

K

½

¾

! "

/

K

! "

½

¾

! "

B /

K

K

½

¾

½

¾

#

#

/ E

! !"" =

B !>/@"

!"B

! !""/

L+

,8 -, /0062 (

K

! " K

- /0042

) !!

""

-+J /0002

#

<B

½

!>/@" M

!" B

! "

5

,8 <

#

*

,8

=

/ M

! " B

! "

!"% ! "

!" !" B / # 7

#

77,8

(9)

!

#E C

< ) !

" ! B/

=

B / #

! E $

>6 Æ !"

! " B !" /F

!F 69"

) C # (

1 !

" #

15 10 5 0 5 10 15

5 0 5 10 15 20 25 30 35 40

45 Error bars for model selection of mu with 10 data points

lambda 1 /lambda 2

mus True mean mu=.5

2 4 6 8 10 12 14 16 18 20

0 5 10 15 20 25 30 35 40 45

50 Error bars for model selection of sigma with 10 data points

lambda 1 /lambda 2

sigma

%

) % < &<

" #

= +,

G G ! "

=

!" ! "

8 +,

-+ /004 2 +, )

C C

( (

(10)

B

¾

+ =

! "

#E

N

*

# += $ $O?CH %J +

3 $+ .+ 5*

)%D= +# P% = D)!

9A0Q61A/0/ +@1Q//"

Références

Documents relatifs

A fuzzy clustering model (fcm) with regularization function given by R´ enyi en- tropy is discussed. We explore theoretically the cluster pattern in this mathemat- ical model,

We have shown that it is possible to compute, via flatness- based motion planing techniques, adapted input current modulations in order to generate, in real-time and via

loosely speaking, for each flight control (pitch attitude con- trol, wing leveler, sideslip suppressor,. ) a specific control law is designed, using a partial model of the

The techniques used here is rhe Fourier transform associated with the variational form of (1) and a Lebesgue measure generated by the function ' 0 (t): So the proposed

A similar flatness-based ap- proach is used in [22] for explicitly establishing the null controllability of the heat equation, and generalized to 1D parabolic equations in [24], with

As we regularize surfaces, variational remeshing approaches can also be considered (e.g. We provide here an energy formula- tion dedicated to digital surfaces which is simple,

This is attributed to the fact that an in fi nite number of planes, bearing on the bump (or bumps) of its axisymmetric surfaces, lead to the same minimum sum of deviations and that

The set of all extreme points of C is denoted by ext(C). The unit ball of the sparse analysis regularizer. This section contains the core of our results. After giving