• Aucun résultat trouvé

Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations

N/A
N/A
Protected

Academic year: 2021

Partager "Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations"

Copied!
7
0
0

Texte intégral

(1)Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations Yvon Maday, Anthony Patera, Gabriel Turinici. To cite this version: Yvon Maday, Anthony Patera, Gabriel Turinici. Global a priori convergence theory for reducedbasis approximations of single-parameter symmetric coercive elliptic partial differential equations. Comptes rendus de l’Académie des sciences. Série I, Mathématique, Elsevier, 2002, 335 (3), pp.289294. �10.1016/S1631-073X(02)02466-4�. �hal-00798389�. HAL Id: hal-00798389 https://hal.archives-ouvertes.fr/hal-00798389 Submitted on 11 Mar 2013. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) C. R. Acad. Sci. Paris, Serie I, p. 000{000, 2001 Analyse numerique/Numerical Analysis. Global a Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Symmetric Coercive Elliptic Partial Di erential Equations Yvon MADAY a , Anthony T. PATERA b, G. TURINICI c a b c. Analyse numerique, Universite Paris VI, 4, place Jussieu, 75252 Paris cedex 05, France Department of Mechanical Engineering, M.I.T., 77 Mass. Ave., Cambridge, MA, 02139, USA INRIA Rocquencourt M3N, B.P. 105, 78153 Le Chesnay Cedex France. Abstract.. We consider \Lagrangian" reduced-basis methods for single-parameter symmetric coercive elliptic partial di erentialequations. We show that, for a logarithmic-(quasi-)uniform distribution of sample points, the reduced{basis approximation converges exponentially to the exact solution uniformly in parameter space. Furthermore, the convergence rate depends only weakly on the continuity-coercivity ratio of the operator: thus very low-dimensional approximations yield accurate solutions even for very wide parametric ranges. Numerical tests (reported elsewhere) corroborate the theoretical predictions.. Resultats globaux a priori pour l'approximation d'equations aux derivees partielles coercives symetriques elliptiques dependant d'un parametre Resume. On considere des methodes de bases reduites de type Lagrange pour des equations aux derivees partielles coercives symetriques elliptiques et dependant d'un parametre. On montre que, pour une repartition logarithmiquement quasi uniforme des points d'echantillonage, l'approximation en base reduite converge de facon exponentielle vers la solution exacte uniformement par rapport au parametre. De plus la convergence ne depend que faiblement du rapport entre les coecients de coercivite et de continuite de l'operateur: ainsi une approximation de tres basse dimension procure une solution tres precise m^eme dans le cas d'un large eventail de parametres. Des test numeriques (reportes par ailleurs) corroborent ces predictions numeriques. Version francaise abregee Dans un espace de Hilbert H , muni du produit scalaire ( ; )Y et de la norme k  kY on se pose le probleme de trouver u 2 Y veri

(3) ant (1) ou la forme bilineaire a: Y  Y  D ! IR depend d'un parametre  2 D  [0; max]. Sous des conditions classiques de continuite et de coercivite de a ce probleme possede une solution unique. La methode de base reduite consiste alors a choisir un entier N et un jeux de parametres SN = f 1; : : :; N g pour lesquels, de facon prealable, on calcule | le plus exactement possible | les solutions associees u( k ); k = 1; : : :; N .Puis on resout le systeme (2) ou WN = Vect fu( k ); k = 1; : : :; N g: On analyse dans cette note le cas d'un probleme dependant d'un seul parametre du type (3) ou a0 : Y  Y ! IR et a1: Y  Y ! IR sont continues, symetriques, semi positives et de plus ou a0 est coercive induisant une norme jjj  jjj2 = a0 ( ; ) equivalente a celle de Y . Des exemples de problemes entrant dans ce cadre sont presentes, analyses et simules sur base reduite dans [12]. Plus particulierement nous montrons ici que la convergence de cette methode en base reduite est une fonction exponentiellement decroissante en le cardinal de WN , et ce uniformement par rapport au.

(4) Y. Maday, A.T. Patera and G. Turinici. parametre. En particulier on a la borne suivante entre la solution exacte u() et son approximation uN () : il existe un entier Ncrit tel que pour tout N  Ncrit , on a (19) avec une constante c ne dependant que des conditions d'ellipticite de a0 et de max .. La demonstration de ce resultat repose d'une part sur le lemme classique de Cea rappele en (10) et une estimation a priori de la meilleure approximation donnee dans le lemme 2. Il convient de noter que l'analyse de la meilleure approximation fait ici intervenir une approximation polynomiale de la solution, mais cette approximation polynomiale est proposee apres un changement de variable approprie ( = e~ 1 ). Le point qui doit ^etre note est que la methode de Galerkin propose naturellement une approximation dans WN qui est (a une constante multiplicative pres) aussi bonne que cette approximation polynomiale en une variable a de

(5) nir. Ceci donne une superiorite et un caractere general a l'approche variationelle par rapport a une \simple" interpolation puisque aucune connaissance a priori de la forme de la solution en son parametre n'est a conna^tre. L'analyse faite ici suggere une repartition logarithmique du jeux de parametres qui donne en e et de meilleurs resultats dans les applications comme cela est reporte dans [15]. On renvoit aussi a [12] pour plus de details sur la mise en oeuvre et les applications.. 1. Introduction. Let Y be an Hilbert space with inner product and norm ( ; )Y and kkY = ( ; )1Y=2, respectively. Consider a parametrized \bilinear" form a: Y  Y  D ! IR, where D  [0; max], and a bounded linear form f : Y ! IR. We introduce the problem to be solved: Given  2 D,

(6) nd u 2 Y such that a(u(); v; ) = f (v); 8 v 2 Y : (1) Under natural conditions on the bilinear form a (e.g. continuity and coercivity) it is readily shown that this problem admits a unique solution. We introduce an approximation index N , the parameter sample SN = f 1; : : :; N g, and the solutions u( k ); k = 1; : : :; N , of problem (1) for this set of parameters. We next de

(7) ne the reducedbasis approximation space WN = span fu( k); k = 1; : : :; N g: Our reduced-basis approximation is then: Given  2 D,

(8) nd uN () 2 WN such that a(uN (); v; ) = f (v); 8 v 2 WN : (2) This discrete problem is well posed under the same former continuity and coercivity conditions. The reduced-basis approach, as earlier developped, is typically local in parameter space in both practice and theory [1, 2, 4, 9, 10, 13]. To wit, the k are chosen in the vicinity of a particular parameter point  and the associated a priori convergence theory relies on asymptotic arguments in suciently small neighborhoods of  [4]. In this note we present, for single-parameter symmetric coercive elliptic partial di erential equations, a

(9) rst theoretical a priori convergence result that demonstrates exponential convergence of reduced-basis approximations uniformly over an extended parameter domain. The proof requires, and thus suggests, a point distribution in parameter space which does, indeed, exhibit superior convergence properties in a variety of numerical tests [15]. We refer also to [5, 6, 7, 12] for further discussions of these results and related work and applications.. 2. Problem Formulation. Let us de

(10) ne the parametrized \bilinear" form a: Y  Y  D ! IR as a(w; v; )  a0(w; v) + a1 (w; v) ; 2. (3).

(11) Global a Priori Convergence Theory for Reduced-Basis Approximations. where the bilinear forms a0: Y  Y ! IR and a1 : Y  Y ! IR are continuous, symmetric and positive semi-de

(12) nite; suppose moreover that a0 is coercive, inducing a (Y -equivalent) norm jjj  jjj2 = a0 ( ; ). It follows from our assumptions that there exists a real positive constant 1 such that v; v) 0  aa1((v;  1 ; 8 v 2 Y : (4) 0 v) For these hypotheses, it is readily demonstrated that the problem (1) has a unique solution. Many situations may be modeled by our rather simple problem statement (1), (3). For example, ifR we take Y = HR01 ( ) where is a smooth bounded subdomain of IRd=2 , and set a0 (w; v) =. rw  rv, a1 = wv, we model conduction in thin plates; here  represents the convective heat transfer coecient. Other choices of a0 and a1 can model variable rectilinear geometry, variable orthotropic properties, and variable Robin boundary conditions. The space Y is typically of in

(13) nite dimension so u() is, in general, not exactly calculable. In order to construct our reduced-basis space WN , we must therefore replace u() 2 Y by a \truth approximation" uN () 2 Y N  Y , solution of the Galerkin approximation a(uN (); v; ) = f (v); 8 v 2 Y N : Here Y N , of

(14) nite (but typically very high) dimension N , is a suciently rich approximation subspace such that jjju() uN ()jjj is suciently small for all  in D; for example, for Y = H01 ( ) we know that, for any desired " > 0, we can indeed construct a

(15) nite-element approximation space, Y N (") , such that jjju() uN (") ()jjj  ". It shall prove convenient in what follows to introduce a generalized eigenvalue problem: Find ('Ni 2 Y N ; Ni 2 IR), i = 1; : : :; N , satisfying a1('Ni ; v) = Ni a0 ('Ni ; v), 8 v 2 Y N . We shall order the (perforce real, non-negative) eigenvalues as 0  NN  NN 1      N1  1 , where the last inequality follows directly from (4). We may choose our eigenfunctions such that N a0('N i ; 'j ) = i j ;. (5). and hence a1 ('Ni ; 'Nj ) = Ni i j , where i j is the Kronecker-delta symbol; and such that Y N can be expressed as span f'i ; i = 1; : : :; Ng. Note that, thanks to the

(16) nite dimension of our approximation space Y N , we preclude (the complications associated with) a continuous spectrum | and, as we shall see, at no loss in rigor. We conclude this section by noting that, if we set fiN = f ('Ni ), then uN () can be expressed as uN () =. N f N 'N i i ; N 1 +  i i=1. X. (6). 3. A Priori Convergence Theory. We propose here to choose the sample points k , k = 1; : : :; N , log-equidistributed in D, where N = ln( max + 1)P=N , and is any

(17) nite upper bound for 1 1. Here ~kN =N  c ; 8k; k = 1; : : :; N , and also N`=1 ~`N = ln( max + 1) , where c is a real positive constant. Denote the reduced-basis approximation space as WNN = span fuN ( k ); k = 1; : : :; N g. Although in general dim(WNN )  N , we can suppose that dim(WNN ) = N (otherwise we eliminate elements from WNN until it contains only linearly independent vectors). Then, the (reduced basis) problem is : Given  2 D,

(18) nd uNN () 2 WNN such that a(uNN (); v; ) = f (v); 8 v 2 WNN : 1. Note that 1 , , and hence SN , are independent of N . 3. (7).

(19) Y. Maday, A.T. Patera and G. Turinici. This problem admits a unique solution. Our goal is to (sharply) bound jjjuN () uNN ()jjj, for all  2 D, as a function of N (and ultimately N as well). This error bound in the energy norm can be readily translated into error bounds on continuous-linear-functional outputs [12]; we do not consider this extension further here. We shall need two standard results from the theory of Galerkin approximation of symmetric coercive problems [14]: a(uN. uNN ; ) = Ninf N a(uN wN 2WN N N a(u ; u ; )  a(u; u; ) :. wNN ; uN. uNN ; uN. wNN ; ) ;. (8) (9). From the positive semide

(20) niteness of a1, (3), (4) and (8) we can write. jjjuN () uNN ()jjj2  a(uN () uNN (); uN () uNN (); ) a(uN () wNN ; uN () wNN ; )  wNinf 2W N N. N. jjjuN () wNN jjj2;  (1 + max 1 ) wNinf 2W N N. N. 8  2 D:. (10). Also from the de

(21) nition of the jjj  jjj norm and the positive semide

(22) niteness of a1 , (3), (4) and (9), we obtain jjjuN ()jjj  (1 + max 1 )1=2 jjju()jjj; 8  2 D: (11) We

(23) rst state a preparatory result (see [8] for the proof) Lemma 1. Let g(z; ) = 1 1+ez for z 2 Z  [ln( 1 ); 1] and  2   [0; ] (recall is our strictly positive upper bound for 1 ). Then, for any q  0, jD1q g(z; )j  2q q! ; 8 z 2 Z; 8  2  ; q where D1 g denotes the qth -derivative of g with respect to the

(24) rst argument. We now prove a bound for the best approximation result in Lemma 2. For N  Ncrit  ce ln( max + 1) . . inf N jjjuN () wNN jjj  jjjuN (0)jjj exp N N ; N wN 2WN crit. 8 2 D :. Proof. To facilitate the proof, we shall e ect a change of coordinates in parameter space. To wit, we let De  [ln 1 ; ln(max + 1 )], and introduce  : De ! D as  (~) = e~ 1 so that.  1 () = ln( + 1 ). We then set u~(~) = u( (~)), u~N (~) = uN ( (~)), and u~N ) = uN )). N (~ N ( (~ We note that N N X X fiN 'N i fiN 'N ; N (13) = u~N (~) = N i g(~ i ); i N  ~ e +  1 i=1 i=1 i. from (6), our change of variable, and the de

(25) nition of g. We now observe that in our mapped coordinate, the sample points ~k   1( k ), k = 1; : : :; N , are equi-distributed with separation ~ k+1 ~ k ' ln( max + 1)=N . It thus follows that, given any ~ that includes ~ and M ~ (~ ; N ) distinct ~ 2 D~ , we can construct a closed interval Ie~~ of length  points ~ Pn~ , n = 1; : : :; M . Here M ~ (~ ; N ) is of the order of ~N ; more precisely, ~. ~ ; N )   : M ~ ( c N 4. (14).

(26) Global a Priori Convergence Theory for Reduced-Basis Approximations. In what follows, we shall often abbreviate M ~ (~ ; N ) as M . Now, for any ~ 2 De , we introduce u^~ 2 WNN given by u^~ . M X n=1. N M M X X X fiN 'N Pn~ ; N Qen~ (~) Qen~ (~) u~N (~ Pn~ ) = Qen~ (~) uN ( (~ Pn~ )) = i g(~ i ) ; n=1. n=1. i=1. where the characteristic functions Qe n~ are uniquely determined by Qe n~ 2 IPM 1(Ie~~ ), n = 1; : : :; M , and Qe n~ (~ Pn~0 ) = nn0 , 1  n, n0  M ; here IPM 1(Ie~~ ) refers to the space of polynomials of degree  M 1 over Ie~~ . We thus obtain u^~ =. N. X. i=1. ~ N ) ; e fiN 'N i [IM 1 g(; i )] (~. (15). where, for given , IeM~ 1 g(; ) is the (M 1)th -order polynomial interpolant of g(; ) through the ~ Pn~ , n = 1; : : :; M ; more precisely, IeM~ 1 g(; ) 2 IPM 1(Ie~~ ), and (IeM~ 1 g(; ))(~ Pn~ ) =  ~ g(; )]( 1()) is not a polynomial in . g(~ Pn~ ; ), n = 1; : : :; M . Note that [IeM 1 It now follows from (5), (6), (13) and (15) that

(27)

(28)

(29)

(30)

(31)

(32) N

(33)

(34)

(35) X 

(36)

(37)

(38) 

(39)

(40)

(41)  ~ N N N N N  ~ jjju~ (~) u^ jjj 

(42)

(43)

(44)

(45)

(46)

(47) fi 'i g(~; i ) [IeM 1 g(; i )] (~)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56). i=1.  sup jg(~; ) [IeM~ 1 g(; )] (~)j jjjuN (0)jjj : 2. (16). We next invoke the standard polynomial interpolation remainder formula [3] and Lemma 1 to obtain ~ M ~ (~ ;N ) : sup jg(~; ) [IeMu^ 1 g(; )] (~)j  sup sup M1 ! jD1M g(z; )j ~ M  (2) (17) 2 2 z2Z We now assume that c2N  ~ and ~  21 ; under these conditions (recall (14)) we obtain ~ M ~ (~ ;N )  (2) ~ ~ =c N , and hence, from (16) and (17), we can write (2) jjju~N (~) u^~ jjj  jjjuN (0)jjj(2~ )~ =c N : (18) It remains to select a best ~ satisfying c2N  ~  21 . To provide the sharpest possible bound, we choose ~ = ~   21e , the minimizer (over all positive ~ of (2) ~ ~ =N . Our conditions on ~ are readily veri

(57) ed: c2N  ~  follows directly from the ) hypothesis of our lemma, N  Ncrit ; and ~   12 follows from inspection. We now insert ~ = ~  into (18) to obtain jjju~N (~) u^~ jjj  jjjuN (0)jjj e N=Ncrit ; for all ~ 2 De : It immediately follows that, for any  2 D, N 1 N N N Ninf N jjju () wN jjj = Ninf N jjju~ ( ()) wN jjj wN 2WN. wN 2WN.  jjju~N ( 1 ()) u^. 1. () jjj  jjjuN (0)jjj e. since u^ 2 WNN and, for  2 D,  1() 2 De. This concludes the proof. Then, from (10),(11), Lemma 1, and Lemma 2, we obtain 5. N=Ncrit.

(58) Y. Maday, A.T. Patera and G. Turinici. Theorem 3. For N  Ncrit  c e ln( max + 1), jjjuN () uNN ()jjj  (1 + max 1 )1=2 jjjuN (0)jjj e furthermore for N (") such that jjju() uN (") ()jjj  ",. N=Ncrit. ; 8  2 D;. jjju() uNN (") ()jjj  " + (1 + max 1 ) jjju(0)jjj e. N=Ncrit. ; 8  2 D:. Remark 4. By letting " go to zero, we also have (19) jjju() uN ()jjj  c jjju(0)jjj e N=Ncrit ; 8  2 D; for any N  Ncrit with a constant c that depends only on 1 and max . Remark 5. It must be pointed out that the analysis of the best

(59) t in lemma 2 involves a simple. polynomial approximation of the solution, but this is a polynomial in the ~ variable. The Galerkin approximation provides this best

(60) t, up to a multiplicative constant, regardless of any a priori knowledge of the dependance of the solution on the parameter. This demonstrates the superiority of the reduced basis method with respect to a \simple" interpolation approximation. Acknowledgements. We would like to thank Christophe Prud'homme, Dimitrios Rovas, and Karen Veroy of. MIT for sharing their numerical results prior to publication. This work was performed while ATP was an Invited Professor at the University of Paris VI in February, 2001. This work was supported by the Singapore-MIT Alliance, by DARPA and ONR under Grant F49620-01-1-0458, by DARPA and AFOSR under Grant N00014-01-1-0523 (Subcontract 340-6218-3), and by NASA under Grant NAG-1-1978.. References. [1] Almroth B.O., Stern P., Brogan F.A., Automatic choice of global shape functions in structural analysis, AIAA Journal 16 (May 1978) 525{528. [2] Barrett A., Reddien G., On the reduced basis method, Math. Mech. 7(75) (1995) 543{549. [3] Dahlquist G., Bjorck  A., Numerical Methods, Prentice-Hall, 1974, p. 100. [4] Fink J.P., Rheinboldt W.C., On the error behaviour of the reduced basis technique for nonlinear

(61) nite element approximations, Z. Angew. Math. Mech. 63 (1983) 21{28. [5] Machiels L., Maday Y., Oliveira I.B., Patera A.T., Rovas D.V., Output bounds for reduced-basis approximations of symmetric positive de

(62) nite eigenvalue problems, C. R. Acad. Sci. Paris, t. 331, Serie I (2000) 153{158. [6] Maday Y., Machiels L., Patera A.T., Rovas D.V., Blackbox reduced-basis output bound methods for shape optimization, Proceedings 12th International Domain Decomposition Conference, Japan, 2000. [7] Maday Y., Patera A.T., Rovas D.V., A blackbox reduced-basis output bound method for noncoercive linear problems. Nonlinear Partial Di erential Equations and Their Applications, College De France Seminar, 2001. [8] Maday Y., Patera A.T., Turinici G., A Priori Convergence Theory for Reduced-Basis Approximations of SingleParameter Elliptic Partial Di erential Equations, in preparation. [9] Noor A.K., Peters J.M., Reduced basis technique for nonlinear analysis of structures, AIAA Journal 18(4) (April 1980) 455{462. [10] Peterson J.S., The reduced basis method for incompressible viscous ow calculations, SIAM J. Sci. Stat. Comput. 10(4) (July 1989) 777{786. [12] Prud'homme C., Rovas, D.V., Veroy K., Machiels L., Maday Y., Patera A.T., Turinici G., Reliable Real-Time Solution of Parametrized Partial Di erential Equations: Reduced-Basis Output Bound Methods, J. Fluids Engineering, submitted 2001. [13] Rheinboldt W.C., On the theory and error estimation of the reduced basis method for multi-parameter problems, Nonlinear Analysis, Theory, Methods and Applications 21(11) (1993) 849{858. [14] Strang W.G., Fix G.J., An Analysis of the Finite Element Method, Wellesley-Cambridge Press, 1973. [15] Veroy K., Reduced Basis Methods Applied to Problems in Elasticity: Analysis and Applications, PhD thesis, Massachusetts Institute of Technology, 2003. In progress.. 6.

(63)

Références

Documents relatifs

On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations.. Autour d’un phénomène de Liouville pour les sursolutions entières

The class of operators considered in our study is a non-linear gene- ralization of a bounded self-adjoint operator, namely the class of abstract variational

NIRENBERG Estimates near the boundary for solutions of elliptic partial differeratial equations satisfying general boundary conditions I. To appear

The essential compo- nents are (i ) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection onto a space W N spanned by solutions of the

It turns out that the stochastic Galerkin method employed on the unweighted weak formulation corresponds to the standard stochas- tic Galerkin approach whereas the stochastic

The results proven in this paper provide a first a priori analysis of the greedy algorithm for the selection of the elements used in the reduced basis for the approximation of

The abstract problem formulation, reduced- basis approximation, and computational considerations for linear coercive elliptic and linear coercive parabolic problems with

In this paper, we extend the reduced-basis methods and associated a posteriori error estimators developed earlier for elliptic partial differential equations to parabolic problems