• Aucun résultat trouvé

ON NEUTRON SCATTERING FROM AN IMPERFECT FLUX-LINE LATTICE

N/A
N/A
Protected

Academic year: 2021

Partager "ON NEUTRON SCATTERING FROM AN IMPERFECT FLUX-LINE LATTICE"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217730

https://hal.archives-ouvertes.fr/jpa-00217730

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

ON NEUTRON SCATTERING FROM AN

IMPERFECT FLUX-LINE LATTICE

E. Brandt

To cite this version:

(2)

ON NEUTRON SCATTERING FROM AN IMPERFECT FLUX-LINE LATTICE

E- H . Brandt

Ames Laboratory-USDOE and Dept. of Physios, Iowa State University, Ames, Iowa 50011, U.S.A.

Abstract.- The diffraction of neutrons from the imperfect vortex lattice of a type-II superconductor is investigated. It is found that flux pinning leads not only to a broadening of the Bragg reflec-tions but also to diffuse scattering into the first Brillouin zone, which at high fields exceeds Bragg scattering.

In recent years there has been much effort to interpret the volume pinning force in type-II super-conductors in terms of elementary pinning interac-tions between flux lines (FLs) and crystal lattice defects/1-2/. Up to now the statistical summation theories required for this interpretation are still unsatisfactory. It is therefore desirable to get mo-re insight into the natumo-re of these interactions. This may be achieved by neutron diffraction, which probes the magnetic field inside the superconductor. Flux pinning changes the diffraction pattern of the ideal flux line lattice (FLL) in two ways : the Bragg reflections are broadened/3/ and a finite scattering intensity occurs for scattering wavevec-tors in the first Brillouin zone (BZ)/4/. A relati-onship between the scattered intensity and the pin-ning interactions may be established in 5 steps.

1.- The differential scattering cross section for neutrons in Born approximation is related to the Fourier transform jl(k.) of the magnetic field H(r) inside the specimen by (in SI units)

da/dfi = (yoyn/4lJ>o)2|H(k)|2 (1)

where y = 1.91, 4> is the flux quantum, and lc the scattering vector.

2. For a given FL displacement field with Fourier transform JKk), the Ginzburg-Landau (GL) theory yields for small FLL strains, for small FL tilting angles, and for lc well inside the first BZ

H(k) = (<l)o/uo)(l+k2/k^)~1li:k x |s_(k) x z | (2)

where z^ is the unit vector along the applied field, k£ % (l-b)A2, b = B/Bc2, and \ = K? is the field

penetration depth. Equation(2) applies to k < 0.7k,, /

where k„ = (2b) /C is the BZ radius. An extension a

of (2) to larger k, which is required for a rigorous calculation of the profiles of Bragg reflections, has not been obtained yet for 0<b<l. Inserting (2) in (1) we get for scattering into the first BZ

da/dfi = 0.23(l+k2/k2)-1(|k5(k)|2 + k2|s0c)|2) (3)

3. As a next step we express the displacement field j[(k.) in terms of the pinning force field P(k) = $(k)j[(k) where j|(k.) is the elastic matrix of the FLL. The GL result for k < 0.7 k ("continuum

appro-B ximation") and arbitrary b and K is /5/

where n = B/<j) , c6 6 is the shear modulus, and c n ( k )

£ c11(l+k2/k2)"1(l+k2/k^)"1and c„„(k) % c„„(l+k2/k£)" are the k-dependent compressional and tilting modu-li of the FLL, k2 = k2+k2+k2 and k2 = 2(l-b)/£2.

x y z Y

The Labusch parameter a emerges from statistics of pinning forces/6/ and for consistency must be small aL/ c1i « k | and OL/CX i«k?£k^. Insertion in (3) of

pinning forces requires the contribution to j[(k_) of the intrinsic FLL defects to be eliminated somehow. Fortunately, the elementary defects exhibit mere shear strains (point defects, edge dislocations) or tilt strains (screw dislocations), which all satis-fy div £ = ks_ = 0 and thus do not contribute to (3) if k = 0 ; this can be achieved by choosing the in-cident neutron beam parallel to the applied field. In this scattering geometry we get simply

da(kx,k ,0)/dfl = 0.23n2(l+k2/k|)2(cnk2+aL)~2

|k?(kx,ky0)|2 (5)

On leave from Max-Planck-Institut fur Metallfor-schung,Institut fur Physik, Stuttgart, Germany

JOURNAL DE PHYSIQUE

Colloque

C6,

supplément au n°

8,

Tome

39,

août

1978,

page

C6-644

Résumé.- Nous examinons la diffraction des neutrons thermiques par le réseau des vortex d'un supra-conducteur de deuxième espèce. Nous montrons que l'ancrage des vortex non seulement introduit un élargissement des pics de Bragg mais aussi une composante diffuse dans la première zone de Brillouin qui, à champ élevé, est plus intense que la composante de Bragg.

(3)

4. The p i n n i n g f o r c e f i e l d E ( k ) i s r e l a t e d t o t h e elementary pinning f o r c e f i e l d s Ei(k) of a l a r g e number, N , of weak pinning c e n t e r s a t p o s i t i o n s a .

-1

d i s t r i b u t e d a t random by

kP(k)12 = =

E

I s i ( k ) 1 2

I_

_

(6)

- -

The sum over t h e c r o s s terms P.P. v a n i s h e s because -1-J

of d e s t r u c t i v e i n t e r f e r e n c e of phase f a c t o r s exp { i k ( a . - a . ) } belonging t o pinning c e n t e r s of t h e

-1 -J

same type a t d i f f e r e n t p o s i t i o n s . This a p p l i e s t o a s t i f f FLL. E l a s t i c i t y of t h e FLL l e a d s t o corre-

-

l a t i o n of t h e P . ( k ) , s i n c e a p p l i c a t i o n of one f o r c e

-1

-

changes a l l FL p o s i t i o n s and thus changes a l l o t h e r f o r c e s . This c o r r e l a t i o n i s p a r t l y accounted f o r by i n t r o d u c t i o n of

aL

i n (4) ;

a

L removes t h e d i v e r - gence of (5) a t

k

= 0 . Besides t h i s , t h e e l a s t i c response d e p r e s s e s t h e f o r c e s below t h e v a l u e s ob- t a i n e d f o r a s t i f f and p e r f e c t FLL. This e f f e c t i s n e g l e c t e d below.

5 . The pinning f o r c e s may be d e r i v e d from t h e per- t u r b a t i o n

F = d 3 { - a ~ 2 ~ 4 + y ~ / i ~ - ) ~ 2 x ~ 2 (7) of t h e GL f r e e energy by a method developed i n / 7 / .

The s p a t i a l f u n c t i o n

a,

B,

y, and

x a r e small devia-

t i o n s from t h e mean ; f o r s m a l l p i n n i n g c e n t e r s w i t h diameter << they may be r e p l a c e d by a d e l t a

f u n c t i o n 6 ( ~ - a . ) w i t h weight ao,

Bo,

yo o r

x0.

We

-1

d i s c u s s t h r e e s p e c i a l c a s e s :

Short range f o r c e s . - Pinning c e n t e r s w i t h co- r e i n t e r a c t i o n a t b < 0.3, o r magnetic i n t e r a c t i o n a t b < 1 / 2 ~ ~ , e x e r t a f o r c e P . o n l y on t h e FL w i t h -1

-

p o s i t i o n R. c l o s e s t t o a . . This g i v e s L(&)=ll;exp -1 -1 (-ikRi) and d ~ / d R = 0.23n2 ( c l lk2+%)-'k2

fr

C

2;

(8) i I n (8) t h e n o n l o c a l i t y parameters

kh

and ky do n o t appear.

Long range f o r c e s . - Magnetic i n t e r a c t i o n a t b>>1 / 2 r 2 y i e l d s d o l d S 1 = 0 . 2 3 ~ ~ ~ ( c l ~ k ~ + % ) - ~ ( ~ + k ~ / l c $ ) (1+k2/k2.)-* h B4/u; (9) This i s 2, k - 4 f o r

a

/cll<<k2<<$ and c o n s t . ( k ) L f o r k2>>lc$=ki( 1-b) /b

.

Core i n t e r a c t i o n a t b > 0.5.- For

a

#

0 , B = y = x = O w e g e t 1 d ~ / d R = 0 . 2 0 ~ ~ > ~ b ~ ( c l l k ~ + ~ ) - ~ k ~ { l ~ ~ 1 - b ) k ~ / b k

+

+ k / g 2 ) (10) This i s %kLk-' f o r a L / c l l < < k 2 < < k 4 / 2 k B . I n t h e l a r g e range kg( 1-b) /2b<k<0.7 kg ( 10) reduces t o do/dR ~ 0 . 2 0 ( 8 ~ ~ ) - ~ ~ a ; ~ ~ ~ ( 2 k ~ - l ) - ~ = c o n s t . ( k , b ) (1 1 )

I n ( 1 1 ) we have used ~ l l = i ? ~ a H / a B and a = a 1 5 3 ~ 2 p

0 0 c o w i t h l a i l < I . A s i m i l a r r e s u l t i s o b t a i n e d f o r - , Y

#

0 / 4 / . The l a r g e c o n s t a n t s c a t t e r i n g c r o s s s e c t i o n (9) and (10) a t l a r g e i n d u c t i o n s i s e n t i r e l y due t o t h e n o n l o c a l i t y of t h e e l a s t i c response of t h e FLL, i n p a r t i c u l a r t o t h e f a c t o r ( l + k 2

I$)-'

i n ell (k)

.

The f a c t o r s ( l + k 2 / % ) - ' i n t h e "magnetic response"

(2) and i n c l l ( k ) c a n c e l i n t h e s c a t t e r i n g c r o s s s e c t i o n . A t l a r g e i n d u c t i o n s t h e i n t e n s i t y of s m a l l a n g l e s c a t t e r i n g exceeds t h a t of t h e Bragg r e f l e c - t i o n s , which v a n i s h e s a s ( ~ - b ) ~ . A t s t i l l h i g h e r i n d u c t i o n s FL t r a p p i n g l e a d s t o a breakdown of t h e above t h e o r y and t o do/& = 0 a t b = 1 . The d e r i v a - t i o n of our r e s u l t s a p p l i e s t o a r b i t r a r i l y weak pin- n i n g and does not r e q u i r e a t h r e s h o l d t o be exceeded a s i n t h e o r i e s of t h e volume pinning f o r c e . Small a n g l e s c a t t e r i n g of c o l d neutrons should thus y i e l d i n s i g h t i n t o t h e p i n n i n g problem beyond t h a t o b t a i - n a b l e from measurements of t h e volume pinning f o r c e .

F i g . 1 : L o n g i t u d i n a l s c a t t e r i n g geometry. Dots :

r e c i p r o c a l f l u x l i n e l a t t i c e p o i n t s , hexagon : f i r s t B r i l l o u i n zone, e l l i p s e s : l i n e s of c o n s t a n t s c a t t e - r i n g i n t e n s i t y f o r k, = 0

,

Ifn:

wavevector of i n c i - dent n e u t r o n s ,

&

: s c a t t e r i n g v e c t o r , I b + k l

=l&n/Z>B

0

: s c a t t e r i n g a n g l e .

ACKNOWLEDGEMENTS.- The a u t h o r wishes t o thank P r o f . J.R. Clem and D r . D.K. C h r i s t e n f o r v a l u a b l e d i s - c u s s i o n s , and t h e Deutsche Forschungsgemeinschaft f o r f i n a n c i a l s u p p o r t .

References

/ 1 / Campbel1,A.M. and E v e t t s , J . , C r i t i c a l

Currents i n Superconductors (Taylor and F r a n c i s , London 1972)

/2/ Kramer,E.J., t o b e p u b l i s h e d i n 3 . Appl. Phys. /3/ Labusch,R., Phys. S t a t . S o l . ( b )

2

(1975) 539 141 Brandt,E.H., t o b e submitted t o Phys. Rev. 151 Brandt,E.H., J . Low Temp. Phys.

26

(1977)

709 and 735

/6/ Labusch,R., C r y s t a l L a t t i c e D e f e c t s

1

(1969)l /7/ Brandt,E.H., J . Low Temp. Phys.

28

(1977)

Références

Documents relatifs

For l /a 5 100 and infinite distance d between the two defects we expect the configuration with lower energy to consist of a twofold symmetric vacancy V2 and a centered interstitial

Unit´e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex Unit´e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Investigations of the magnetic and lattice vibrations in CoBr2 using neutron scattering.. - Les phonons acoustiques et les magnons ont été étudiés dans CoBr2 par la

Regarding trie low-temperature part of trie phase diagram, it is seen that trie position of trie second peak coincides with trie crossover region determined by trie ~+SR and

A comparison of the thermal conductivity as a function of field perpendicular to the easy axis to the results of this model is presented for MnCR2-4H20 in Fig.. Results for

– The ar–rf reconnection: there an inclined arcade rooted within the erupting bipole reconnects with the leg of a flux- rope field line; it generates new flux-rope field line rooted

Figure 17 shows the relevant quantities: the L and M components of the magnetic field (i.e., in the magnetopause plane), the proton density, the L and M component of the flows and