• Aucun résultat trouvé

Journal of Computational Physics

N/A
N/A
Protected

Academic year: 2022

Partager "Journal of Computational Physics"

Copied!
12
0
0

Texte intégral

(1)

Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks

Jichun Li

a,b,,1

, Yunqing Huang

a,2

, Wei Yang

a,3

aHunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China

bDepartment of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4020, USA

a r t i c l e i n f o

Article history:

Received 9 September 2011

Received in revised form 21 November 2011 Accepted 25 December 2011

Available online 4 January 2012

Keywords:

Maxwell’s equations Invisibility cloak Finite element method

a b s t r a c t

In this paper we propose a time-domain finite element method for modeling of electro- magnetic cloaks. The permittivity and permeability of the cloak model are described by the Drude dispersion model. The model to be solved is quite challenging in that we have to solve a coupled problem with different partial differential equations given in different regions. Our method is based on a mixed finite element method using edge elements with different types of meshes in different regions. Numerical results demonstrate that our algo- rithm is quite effective for simulating cloaks in time-domain. To our knowledge, this is the first cloak simulation carried out by the time-domain finite element method.

Ó2012 Elsevier Inc. All rights reserved.

1. Introduction

The possibility of cloaking an object from detection by electromagnetic waves has recently become a very hot research topic. In 2006, Pendry et al.[25]and Leonhardt[14]independently showed that it is possible to create invisible cloaks for ray optics[14]and electromagnetic waves[25]by guiding light around a region as if nothing is there. In late 2006, a 2-D reduced cloak was successfully fabricated and demonstrated to work in the microwave frequency region[26]. This is the first practical realization of such a cloak, and the result matches with the computer simulation[6]performed using COMSOL mul- tiphysics finite element analysis software. These pioneering work inspired researchers in different disciplines around the world to pursue the human being’s invisibility dream.

Since 2006, many papers have been published on the study of using metamaterials[3,8,18]to construct invisibility cloaks of different shapes (e.g.[1,5,21,22,28]). Also cloaks operating from microwave frequencies to optical frequencies have been achieved, more details and references on cloaking can be found in recent reviews[4,9]. Some mathematical analysis has been carried out for cloaking in frequency domain[19,13].

Numerical simulation plays a very important role in modeling different cloaks and validating theoretical predictions. The time-domain finite difference (FDTD) method is a very popular technique used in this area, readers can find more details about the FDTD method and its applications in cloak simulation in a recent book[10]. Due to the major disadvantage of FDTD method in dealing with complex geometry[30], the finite element method (FEM) based commercial package COMSOL has

0021-9991/$ - see front matterÓ2012 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2011.12.026

Corresponding author at: Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4020, USA. Tel.: +1 (702) 895 0355.

E-mail addresses:jichun@unlv.nevada.edu(J. Li),huangyq@xtu.edu.cn(Y. Huang),yangweixtu@126.com(W. Yang).

1 Supported by National Science Foundation Grant DMS-0810896.

2 This work was supported by National Science Foundation Grant DMS-0810896, and in part by the NSFC Key Project 11031006 and Hunan Provincial NSF project 10JJ7001.

3 Supported by Hunan Education Department Key Project 10A117 and Hunan Provincial Innovation Foundation for Postgraduate (CX2011B243).

Contents lists available atSciVerse ScienceDirect

Journal of Computational Physics

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j c p

(2)

been extensively used in frequency-domain cloak simulation by engineers and physicists[6,4]. However, COMSOL cannot be used for time-domain cloak simulation due to its limitation on algorithmic development for time-domain cloak modeling.

On the other hand, the recently designed broadband cloaks[20]make the time-domain simulation more appealing and nec- essary. But little attention has been paid to the time-domain modeling of cloaks. To our best knowledge, the first time-do- main simulation of 2-D cloaking structures was carried out by Zhao et al.[31] in 2008 using FDTD method. Later, they generalized the same idea to 3-D cloak simulation in 2009[32]. It seems that there is no existing work on time-domain finite element (FETD) method developed for cloak simulation yet.

In this paper, we propose a FETD method to simulate a 2-D cylindrical cloak. This problem is quite challenging, since we have to solve a coupled problem with different partial differential equations in different regions, and the material parameters are highly anisotropic and nonhomogeneous. The rest of the paper is organized as follows. We first describe the 2-D cylin- drical cloak modeling equations in Section2. In Section3, we develop a FETD method for solving the model problem. Then in Section4, we present a detailed stability analysis of our scheme. Numerical results showing the cloaking phenomena ob- tained by our method are illustrated in Section5. We conclude the paper in Section6.

2. The modeling equations

The cloak modeling is based on the Faraday’s law and Ampere’s law written as follows:

@B

@t ¼ rE; ð1Þ

@D

@t ¼rH ð2Þ

and the constitutive relations

e

E; ð3Þ

l

H; ð4Þ

whereEandHare the electric and magnetic fields respectively,DandBare the electric displacement and magnetic induc- tion respectively,

e

and

l

are cloak permittivity and permeability, respectively. For the cylindrical cloak, the ideal material parameters in the polar coordinate system are given by[25]:

e

r¼

l

r¼rR1

r ;

e

/¼

l

/¼ r rR1

;

e

z¼

l

z¼ R2

R2R1

2

rR1

r ; ð5Þ

whereR1andR2are the inner and outer radius of the cloak. In this case,Ebecomes a 2-D vector, andHis a scalar, i.e., we can writeE= (Ex,Ey)0andH=Hz, where the subindexx,yorzdenotes the component in each direction.

Transforming the polar coordinate system to the Cartesian coordinate system, we can obtain[31]:

e

0

e

r

e

/

e

rsin2

e

/cos2/ ð

e

/

e

rÞsin/cos/

ð

e

/

e

rÞsin/cos/

e

rcos2

e

/sin2/

" #

D: ð6Þ

Because the material parameters given in(5)can not be used directly to simulate the time-domain cloak, we have to map the parameters using the dispersive medium models. Here we consider the Drude model for the permittivity:

e

rð

x

Þ ¼1

x

2p

x

2j

xc

; ð7Þ

where

c

P0 andxp> 0 are the collision and plasma frequencies, respectively. Substituting(7)into(6)and using the follow- ing rules

j

x

!@

@t;

x

2! @2

@t2; ð8Þ

we have (detailed derivation see[31]):

e

0

e

/ @

2

@t2þ

c

@

@tþw2p

! E¼ @2

@t2þ

c

@

@tþw2p

!

MA

e

/ @

2

@t2þ

c

@

@t

!

MBD; ð9Þ

where we denoteD= (Dx,Dy)0and MA¼ sin2/ sin/cos/

sin/cos/ cos2/

" #

; MB¼ cos2/ sin/cos/

sin/cos/ sin2/

" #

: Similarly, we map the permeability using the Drude model[31]:

(3)

l

zð

x

Þ ¼A 1

x

2pm

x

2j

xc

m

!

; ð10Þ

whereA¼RR2

2R1, andxpm> 0 and

c

mP0 are the magnetic plasma and collision frequencies, respectively. Substituting(10) into(4), we obtain

Bz¼

l

o

l

zHz¼

l

0A 1

x

2pm

x

2j

xc

m

! Hz:

Then using rules(8), we have

@2

@t2þ

c

m@

@t

!

Bz¼

l

0A @2

@t2þ

c

m@

@tþ

x

2pm

!

Hz: ð11Þ

To carry out the cloak simulation, we have to reduce the infinite domain problem to a bounded domain by using Bereng- er’s perfectly matched layer (PML)[2]to absorb waves leaving the computational domain without introducing reflections.

The two dimensional Berenger PML governing equations can be written as:

e

0

@Ex

@t þ

r

yEx¼@ðHzxþHzyÞ

@y ; ð12Þ

e

0

@Ey

@t þ

r

xEy¼ @ðHzxþHzyÞ

@x ; ð13Þ

l

0@Hzx

@t þ

r

mxHzx¼ @Ey

@x; ð14Þ

l

0@Hzy

@t þ

r

myHzy¼@Ex

@y; ð15Þ

where the parameters

r

i,

r

mi,i=x,y, are the homogeneous electric and magnetic conductivities in thexandydirections, respectively.

For easy implementation of our algorithm given below, we rewrite(12) and (13)in the vector form:

e

0

@E

@tþ

r

y 0

0

r

x

E¼rH; ð16Þ

where we used the 2-D vector curl operator rH¼

@H

@y

@H@x

!

; forH¼HzxþHzy:

3. A fully discrete explicit finite element scheme

To design our mixed finite element method, we partitionXby a family of regular meshesThwith maximum mesh sizeh.

To accommodate our problem easily, we use a mesh with mixed types of elements: triangles in the cloak and free space re- gion; rectangles in the PML region, cf.Fig. 1(b) below. For simplicity, currently we implement our algorithm using the low- est-order Raviart–Thomas–Nédélec’s mixed spacesUhandVhgiven as follows[23,24]: for any rectangular elementK2Th, we choose

Uh¼nwh2L2ðXÞ:whjK2Q0;0; 8K2Tho

;

Vh¼n/h2Hðcurl;XÞ:/hjK2Q0;1Q1;0; 8K2Tho

;

whereQi,jdenotes the space of polynomials whose degrees are less than or equal toiandjin variablesxandy, respectively.

Here we denote the spaceH(curl;X) = {v2(L2(X))2;rv2(L2(X))2}. While on a triangular element, we choose Uh¼nwh2L2ðXÞ:whjK is a piecewise constant;8K2Tho

;

Vh¼n/h2Hðcurl;XÞ:/hjK¼spanfkirkjkjrkig; i;j¼1;2;3; 8K2Tho

; wherekidenotes the standard linear basis function at vertexiof elementK.

To impose the perfect conducting boundary conditionnE=0, we introduce the space V0h¼ f/h2Vh;n/h¼0on@Xg:

(4)

To define a fully-discrete scheme, we divide the time intervalI= [0,T] intoNuniform subintervalsIi= [ti1,ti] by pointsti=i

s

, i= 0, 1,. . .,N, where

s

=T/N. Furthermore, we denoteun=u(,tn) andu12¼u;ðnþ12Þ

s

, and introduce some operators:

dsun¼unun1

s

; d

2

sun¼un2un1þun2

s

2 ;

d2sun¼unun2 2

s

; u

n1¼unþ2un1þun2

4 ; bun¼unþun1

2 :

With the above preparation, we now construct a leap-frog type scheme for solving the modeling equations in the cloak re- gion: forn= 1, 2,. . ., findDh 12;Eh 122V0h; Bnþ1h ;Hnþ1h 2Uhsuch that

dsDh 12;/h

Hnh;r/h

¼0; ð17Þ

e

0

e

/d2sEh 12;/~h

þ

ce

0

e

/d2sEh 12;/~h

þ

x

2p

e

0

e

/Enh 12;/~h

¼ MAþ

e

/MB

d2sDh 12;/~h

þ

x

2pMADnh 12;/~h

þ

c

ðMAþ

e

/MBÞd2sDh 12;/~h

; ð18Þ

dsBnþ1h ;wh

þrEh 12;wh

¼0; ð19Þ

l

0Ad2sHnþ1h ;w~h

þ

l

0A

c

md2sHnþ1h ;w~h

þ

l

0A

x

2pmHnh;w~h

¼ d2sBnþ1h ;w~h

þ

c

md2sBnþ1h ;w~h

ð20Þ hold true for any/h;/~h2V0h; wh;w~h2Uh.

In order to couple(20)well with the PML Eqs.(14) and (15), we split(20)into

l

0Ad2sHnþ1zx;h;w~h

þ

l

0A

c

md2sHnþ1zx;h;w~h

þ

l

0A

x

2pmHnzx;h;w~h

¼1

2 d2sBnþ1h ;w~h

þ1

2

c

md2sBnþ1h ;w~h

; ð21Þ

l

0Ad2sHnþ1zy;h;w~h

þ

l

0A

c

md2sHnþ1zy;h;w~h

þ

l

0A

x

2pmHnzy;h;w~h

¼1

2 d2sBnþ1h ;w~h

þ1

2

c

md2sBnþ1h ;w~h

: ð22Þ

Similarly, we can construct a leap-frog type scheme for solving the Eqs. (16), (14) and (15) in the PML region: find Eh 122V0h; Hnþ1zx;h;Hnþ1zy;h 2Uh such that

e

0 dsEh 12;/~h

þ

r

y 0 0

r

x

bEh 12;/~h

¼ Hnzx;hþHnzy;h;r/~h

; ð23Þ

l

0 dsHnþ1zx;h;w1;h

þ

r

mxHbnþ1zx;h;w1;h

¼ @

@xEy;h12;w1;h

; ð24Þ

PML PML

wave source

PML PML

PEC

cloak air

Fig. 1.(a) The cloak modeling setup; and (b) a coarse mesh.

(5)

l

0dsHnþ1zy;h;w2;h

þ

r

myHbnþ1zy;h;w2;h

¼ @

@yEx;h12;w2;h

ð25Þ hold true for any/~h2V0h; w1;h;w2;h2Uh.

In summary, our mixed finite element time-domain algorithm for modeling the invisible cloak can be performed in the following steps: first, construct a proper meshThofX, choose a proper time step size

s

and proper initial conditions; then at each time stepn, perform theFETD Algorithm:

1. Solve(17)forDh 12onTh.

2. Solve(18) and (23)forEh 12onTh. 3. Solve(19)forBnþ1h onTh.

4. Solve(21) and (24)forHnþ1zx;h onTh. 5. Solve(22) and (25)forHnþ1zy;h onTh.

6. CalculateHnþ1h ¼Hnþ1zx;hþHnþ1zy;h, then go back to step 1 and repeat the above process. Note that in the free space region,Eh 12 andHn+1are updated using(23)–(25)with

r

x=

r

y=

r

mx=

r

my= 0.

4. Stability analysis

In this section, we present the stability analysis for our proposed scheme. Letcv¼1=pffiffiffiffiffiffiffiffiffiffi

0

l

0be the wave propagation speed in vacuum,cinv> 0 is a constant from the inverse estimate

krwhk0;X6cinvh1kwhk0;X; 8wh2Vh; ð26Þ wherekk0,Xdenotes theL2norm over domainX.

We start with the easy stability analysis in the PML and free space regionXr: Theorem 4.1.Assume that the time step

s

6 h

cvcinv; ð27Þ

then for any nP2 and the solutionEnh 12;Hnh¼Hnzx;h;Hnzy;h

of(23)–(25), we have

0 Enh 12

2 0;Xr

þ

l

0 Hnh 20;X

r 63

0 E12h

2 0;Xr

þ

l

0 H1h 2

0;Xr

;

where we denote Hnh 20;X

r¼ Hnzx;h 2

0;Xr

þ Hnzy;h 2

0;Xr

.

Proof.Choosing/~h¼2

s

bEh 12; w1;h¼2

s

Hbnþ1zx;h andw2;h¼2

s

Hbnþ1zy;h in(23)–(25), respectively, and using the 2-D curl notation, we obtain

0 Eh 12

2 0;Xr

Enh 12

2 0;Xr

þ

l

0 Hnþ1h 2

0;Xr

Hnh 20;X

r

62

s

Hnh;rEbh12

rEh 12;Hbnþ1h

¼

s

Hnh;rEnh 12

Hnþ1h ;rEh 12

; ð28Þ

where in the last step we used the identity Hnh;rEh12þEnh 12

rEh 12;Hnþ1h þHnh

¼Hnh;rEnh 12

Hnþ1h ;rEh 12 :

Summing up(28)fromn= 1 toN1, we obtain

0 ENh 12 2

0;Xr

E12h 2

0;Xr

þ

l

0 HNh 2

0;Xr

H1h 2

0;Xr

6

s

H1h;rE12h

HNh;rENh 12

: ð29Þ

Using the definitioncv¼1=pffiffiffiffiffiffiffiffiffiffi

0

l

0, the inverse estimate(26), the Cauchy–Schwarz inequality, and the time constraint (27), we have

s

HNh;rENh 12

¼ ffiffiffiffiffiffi

l

0

p HNh;

s

cv ffiffiffiffiffi

0

p rENh 12

61

2

l

0 HNh 2

0;Xr

þ ð

s

cvÞ2

0 rENh 12

2 0;Xr

61

2

l

0 HNh 2

0;Xr

þ

s

cvcinvh12

0 ENh 12 2

0;Xr

61

2

l

0 HNh 2

0;Xr

þ1

2

0 ENh 12 2

0;Xr

: ð30Þ

By the same technique, we obtain

(6)

s

H1h;rE12h 61

2

l

0 H1h 2

0;Xr

þ1 2

0 E12h

2 0;Xr

: ð31Þ

Substituting the estimates(30) and (31)into(29)completes the proof. h

Remark 4.1. To see how largecinv in(26)can be, let us consider an arbitrary rectangular elementK= [xchx,xc+hx] [ychy,yc+hy], on which the lowest edge element basis functions are:

wh1¼

ðycþhyÞy 4hxhy

0

!

; wh2¼ 0

xðxchxÞ 4hxhy

!

; wh3¼

ðychyÞy 4hxhy

0

!

; wh4¼ 0

xðxcþhxÞ 4hxhy

! : Herewhj; j¼1;2;3;4;start from the bottom edge and orient counterclockwisely.

For simplicity, we assume that the meshThofXis formed byNrectanglesK. In this case, it is easy to check that the 2D curl ofwhj satisfies

Z

X

rwhj

2dx dy¼X

K2Th

Z

K

1 4hxhy

2

dx dy¼ N 4hxhy

andwhj satisfies Z

X

wh1

2

dx dy¼X

K2Th

Z

K

ycþhyy 4hxhy

2

dx dy¼X

K2Th

2hx

ð4hxhyÞ21

3 ðycþhy3

ycþhy

y¼ychy

¼Nhy

3hx

;

Z

X

wh3

2

dx dy¼Nhy

3hx

; Z

X

wh2

2

dx dy¼ Z

X

wh4

2

dx dy¼Nhx

3hy

;

from which we can see that rwhj

2 0;X

whj

2 0;X

¼ 3

4h2y; j¼1;3:

Similarly, we have rwhj

2 0;X

whj

2 0;X

¼ 3

4h2x; j¼2;4:

Denoteh= max{hx,hy}. Hence we have cinvP

ffiffiffi3 4 r h

hx

or cinvP ffiffiffi3 4 r h

hy

; ð32Þ

which means thatcinvcan be very large for anisotropic meshes. But for the often used shape regular mesh,cinvshould not be that large. Of course, exact estimate ofcinvreally depends on the mesh and the order of the basis functions. To our knowledge, there is no general formular forcinv.

The rest of the section is devoted to the stability analysis on the cloak regionXc=XnXr. For simplicity, in the rest of this section, we usekk0to denotek k0;Xc.

Lemma 4.1

0

2 ffiffiffiffiffi

/

p dsEh 12

2 0 ffiffiffiffiffi

/

p dsEnh 12

2 0

þ

0

x

2p

2

ffiffiffiffiffi

/

p bEh 12

2

0 p bffiffiffiffiffi

/Enh 12

2 0

þ

sc

0 ffiffiffiffiffi

/

p dsbEh 12

2 0

6

s

ðMAþ

/MBÞd2sDh 12;dsbEh 12

þ

sc

d2ðMAþ

/MBÞdsDbh 12;dsDbh 12 þ 1

4d2

ðMAþ

/MBÞdsbEh 12;dsbEh 12

þ

sx

2p

2 d3

0 ffiffiffiffiffi

/

p dsbEh 12

2

0þ 1

2d3

0

Dbh 12

2 0þ Dbnh 12

2 0

: ð33Þ

Proof. Choosing/~h¼

s

dsbEh 12in(18), we obtain

(7)

0

/d2sEh 12;

s

dsEbh12

¼

0

/dsEh 12dsEnh 12

;dsbEh 12

¼

0

2 ffiffiffiffiffi

/

p dsEh 12

2 0 ffiffiffiffiffi

/

p dsEnh 12

2 0

;

c

0

/

Eh 12Enh 32

2

s

;

s

dsbEh 12 0

B@

1 CA

¼

sc

0

2

/dsEh 12þdsEnh 12

;dsEbh12

¼

sc

0 ffiffiffiffiffi

/

p dsbEh 12

2 0;

x

2p

0

/

Eh 12þ2Enh 12þEnh 32

4 ;bEh 12Ebnh 12 0

B@

1 CA

¼

0

x

2p

2

ffiffiffiffiffi

/

p bEh 12

2

0 p bffiffiffiffiffi

/Enh 12

2 0

: Using the facts thatjMAj6I,jMBj6Iand 1<RR2

2R1

6

e

/, and the arithmetic–geometric mean inequalityjabj6da2þ4d1b2, we have

c

ðMAþ

e

/MBÞd2sDh 12;

s

dsbEh 12

¼

sc

ðMAþ

e

/MBÞdsDbh 12;dsbEh 12 6

sc

d2ðMAþ

e

/MBÞdsDbh 12;dsDbh 12

þ 1 4d2

ðMAþ

e

/MBÞdsEbh 12;dsEbh 12

and

x

2pMA

Dh 12þ2Dnh 12þDnh 32 4 ;

s

dsEbh 12

! 6

sx

2p

2 dsEbh 12

0

Dbh 12þDbnh 12

0

6

sx

2p

2 d3

e

0 pffiffiffiffiffi

e

/

dsEbh 12 2

0þ 1 2d3

e

0

Dbh 12 2

0þ Dbnh 12 2

0

; where in the last step, we used the fact that dsbEh 12 6 ffiffiffiffiffi

e

/

p dsEbh 12

0. The proof completes by adding the above inequalities together. h

Lemma 4.2 1

2

l

0AðMAþ

e

/MBÞdsHnþ1h ;dsHnþ1h

ðM Aþ

e

/MBÞdsHnh;dsHnh

h i

þ

sl

0A

c

mðMAþ

e

/MBÞdsHbnþ1h ;dsHbnþ1h þ

l

0A

x

2pm

2 ðMAþ

e

/MBÞHbnþ1h ;Hbnþ1h

ðM Aþ

e

/MBÞHbnh;Hbnh

h i

6

sc

m d8ðMAþ

e

/MBÞdsBbnþ1h ;dsbBnþ1h þ 1

4d8

ðMAþ

e

/MBÞdsHbnþ1h ;dsHbnþ1h

þ

s

ðMAþ

e

/MBÞd2sBnþ1h ;dsHbnþ1h :

ð34Þ

Proof.An equivalent variable coefficient form of(20)can be written as ðMAþ

/MBÞ

l

0Ad2sHnþ1h þ

l

0A

c

md2sHnþ1h þ

l

0A

x

2pmHnh

;w~h

¼ ðMAþ

/MBÞd2sBnþ1h ;w~h

h

þ ðM Aþ

/MBÞ

c

md2sBnþ1h ;w~hÞi

: ð35Þ

Choosingw~h¼

s

dsHbnþ1h in(35), we obtain

l

0A ðMAþ

/MBÞdsHnþ1h dsHnh

;dsHbnþ1h

¼1

2

l

0A ðMAþ

/MBÞdsHnþ1h ;dsHnþ1h

ðM Aþ

/MBÞdsHnh;dsHnh

;

l

0A

c

mðMAþ

e

/MBÞd2sHnþ1h ;

s

dsHbnþ1h

¼

sl

0A

c

mðMAþ

e

/MBÞdsHbnþ1h ;dsHbnþ1h

;

l

0A

x

2pm

4 ðMAþ

e

/MBÞHnþ1h þHnhþHnhþHn1h

;Hbnþ1h Hbnh

¼

l

0A

x

2pm

2 ðMAþ

e

/MBÞHbnþ1h ;Hbnþ1h

ðM Aþ

e

/MBÞHbnh;Hbnh

h i

;

c

mðMAþ

e

/MBÞd2sBnþ1h ;

s

dsHbnþ1

¼

s c

mðMAþ

e

/MBÞdsbBnþ1h ;dsHbnþ1 6

s c

m d8ðMAþ

e

/MBÞdsbBnþ1h ;dsbBnþ1h

þ 1 4d8

ðMAþ

e

/MBÞdsHbnþ1h ;dsHbnþ1h

: Summing up the above estimates concludes the proof. h

(8)

Lemma 4.3

s

ðMAþ

/MBÞd2sDh 12;dsbEh 12

þ

s

ðMAþ

/MBÞd2sBnþ1h ;dsHbnþ1h

¼

s

2 ðMAþ

/MBÞdsHnh;rdsEnh12

ðM Aþ

/MBÞdsHnþ1h ;rdsEh 12

h i

þ

s

dsHnh;rðMAþ

/MBÞ dsbEh 12

: ð36Þ

Proof. For an arbitrary functionf(x), multiplying(2)byf(x)/and integrating overX, we can obtain fðxÞ@D

@t;/

¼ ðrH;fðxÞ/Þ ¼ ðH;r ðfðxÞ/ÞÞ; 8/2H0ðcurl;XÞ; ð37Þ

from which we can obtain an equivalent form of(17):

fðxÞdsDh 12;/h

Hnh;r ðfðxÞ/hÞ

¼0; 8/h2V0h: ð38Þ

Subtracting(38)from itself withnreduced by 1, then dividing by

s

, we obtain fðxÞd2sDh 12;/h

dsHnh;r ðfðxÞ/hÞ

¼0; 8/h2V0h: ð39Þ

On the other hand, it is easy to see that an equivalent form of(19)is:

fðxÞdsBnþ1h ;wh

þfðxÞrEh 12;wh

¼0; 8wh2Uh; ð40Þ

from which we obtain fðxÞd2sBnþ1h ;wh

þfðxÞrdsEh 12;wh

¼0; 8wh2Uh: ð41Þ

Choosing/h¼

s

dsEbh 12; wh¼

s

dsHbnþ1h in(39) and (41), respectively, we have

s

fðxÞd2sDh 12;dsbEh 12

þ

s

fðxÞd2sBnþ1h ;dsHbnþ1h

¼

s

dsHnh

;rfðxÞdsEh 12

fðxÞrdsbEh 12;dsHbnþ1h

h i

: ð42Þ

Using the identity

dsHnh;fðxÞrdsEbh 12

fðxÞrdsEh 12;dsHbnþ1h

¼1

2 dsHnh;fðxÞrdsEnh 12

dsHnþ1h ;fðxÞrdsEh 12

h i

; ð43Þ

the formula

r ðfðxÞuÞ ¼fðxÞruþrfðxÞ u

and choosingf(x) =MA+

/MBin(42), we conclude the proof. h

Lemma 4.4. For any vector (u, v)0, we have ðu;

v

ÞðMAþ

/MBÞ u

v

>u

2þ

v

2:

Proof. Using the definitions ofMAandMB, and the fact that

/> 1, we have

ðu;

v

ÞðMAþ

/MBÞ u

v

¼ ðu

2sin2/2u

v

sin/cos/þ

v

2cos2/Þ þ

/u2cos2/þ2u

v

sin/cos/þ

v

2sin2/

¼ ðusin/

v

cos/Þ2þ

/ðucos/þ

v

sin2>ðusin/

v

cos2þ ðucos/þ

v

sin2

¼u2þ

v

2:

Combining the above estimates, we finally have the following stability result on the cloaking region:

Theorem 4.2. Under the time step constraint(27),for any NP1, we have

0

ffiffiffiffiffi

/

p dsEh 12

2

0þ

x

2p p bffiffiffiffiffi

/Eh 12

2 0

þ

l

0A dsHNþ1h 2

0þ

x

2pm HbNþ1h 2

0

6C

0 ffiffiffiffiffi

/

p dsE12h

2

0þ

0

x

2p p bffiffiffiffiffi

/E12h

2

0þ

l

0A ffiffiffiffiffi

/

p dsH1h 2

0þ

l

0A

x

2pm p bffiffiffiffiffi

/H1h 2

0

:

Références

Documents relatifs

Split local absorbing boundary (SLAB) condi- tions are obtained by the operator splitting method, then the original problem is reduced to an initial boundary value problem on a

A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms.. Mulin Cheng,

We develop numerical methods for solving partial differential equations (PDE) defined on an evolving interface represented by the grid based particle method (GBPM) recently pro- posed

Unlike [22,2] where physical observables are computed from numerical solutions obtained by direct numer- ical methods for the Schrödinger equations, the Eulerian Gaussian beam

In this paper, we introduce an oversampled enrichment algorithm in the framework of generalized multiscale finite element method (GMsFEM) in solving flow problems in the

Abstract: A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one di-

In this paper we develop an adaptive edge finite element method based on a reliable and efficient recovery type a posteriori error estimator for time-harmonic Maxwell equations..

global superconvergence error analysis for semi-discrete standard and mixed finite element methods for Maxwell’s equations when dispersive media are involved.. In Section 2,