• Aucun résultat trouvé

ZETA MEAN MOTIONS AND VALUES OF THE RIEMANN FUNCTION.

N/A
N/A
Protected

Academic year: 2022

Partager "ZETA MEAN MOTIONS AND VALUES OF THE RIEMANN FUNCTION."

Copied!
70
0
0

Texte intégral

(1)

MEAN MOTIONS AND VALUES OF THE RIEMANN FUNCTION.

BY

VIBEKE BORCHSENIUS and BORGE JESSEN

in COPENHAGEN.

ZETA

C o n t e n t s .

Page

Introduction . . . 97 Chapter I. Mean motions and zeros o f generalized analytic almost periodic function, s 100 Ordinary analytic almost periodic functions . . . 100 The Jensen function of a type of generalized analytic almost periodic

functions . . . 109 Extension of the results to the logarithm of a generalized analytic almost

periodic function . . . 193 Chapter II. The Riemann zeta function . . . 138 Application of the previous results to the zeta function and its logarithm 138 Two types of distribution functions . . . 139 Distribution functions connected with the zeta function and its logarithm 154 Main results . . . 159 Bibliography . . . 166

Introduction.

1. I n t h e t h e o r y of a l m o s t periodic f u n c t i o n s t h e s t u d y of m e a n m o t i o n s a n d of p r o b l e m s of d i s t r i b u t i o n f o r m s an i n t e r e s t i n g chapter.

H i s t o r i c a l l y , t h e s u b j e c t begins w i t h L a g r a n g e ' s t r e a t m e n t of t h e p e r t u r b a t i o n s of t h e l a r g e planets, which leads to a s t u d y of t h e v a r i a t i o n of t h e a r g u m e n t of a t r i g o n o m e t r i c p o l y n o m i a l F ( t ) - ~ aoe~.ot+ ... § a ve~'~v t. A p a r t f r o m some cases c o n s i d e r e d by L a g r a n g e , this p r o b l e m was first t r e a t e d r i g o r o u s l y by Bohl[1] a n d W e y l [i], who by m e a n s of t h e t h e o r y of e q u i d i s t r i b u t i o n p r o v e d t h e existence of a m e a n m o t i o n w h e n e v e r t h e n u m b e r s ~1--~o . . . . , ~ x - - 4 o are linearly i n d e p e n d e n t .

(2)

9~ Vibeke Borchsenius and Borge Jessen.

Closely r e l a t e d to t h e i r m e t h o d is the t r e a t m e n t by B o h r [I] of t h e distri- b u t i o u of the values of t h e R i e m a n n zeta f u n c t i o n ~ ( s ) = ~(a +

it),

or r a t h e r of t h e f u n c t i o n lo~" ~r(,), in the half-plane a > 89 I t d e p e n d s on a c e r t a i n m e a n c o n v e r g e n c e of t h e E u l e r product, first applied by B o h r and L a n d a u [I], a n d on the linear i n d e p e n d e n c e of the l o g a r i t h m s of the primes. The m e t h o d has been f u r t h e r developed in B o h r and J e s s e n [i], [2]. T w o main results have been obtained.

One c o n c e r n s t h e d i s t r i b u t i o n of t h e values of log ~(,~.) on v e r t i c a l lines a n d states (in t h e t e r m i n o l o g y now used) t h e existence of an a s y m p t o t i c d i s t r i b u t i o n func- tion of t h e f u n c t i o n log ~(a + it) f o r every fixed a > 89 possessing a c o n t i n u o u s density

l"~(x)

which is positive in the whole x-plane when a ~ I. T h e o t h e r r e s u l t c o n c e r n s t h e d i s t r i b u t i o n of the values in vertical strips and states f o r e v e r y strip (89 ~ ) ~ 1 ~ a ~ o~ a n d every :~: t h e e x i s t e n c e of a r e l a t i v e f r e q u e n c y of t h e zeros of log ~ ( s ) - - x in t h e strip, which depends c o n t i n u o u s l y on al and a2 and is positive for all x w h e n a I ~ I.

T h e f u n c t i o n ~(s) is a l m o s t periodic in [I, + c o ] and so is, too, t h e f u n c t i o n log ~(s), whereas a c e r t a i n generalized a l m o s t p e r i o d i c i t y is p r e s e n t f o r 89 < a ~ I.

This a l m o s t p e r i o d i c i t y makes t h e results less surprising, b u t was n o t used in t h e proofs.

2. A new t r e a t m e n t of t h e d i s t r i b u t i o n of the values of log ~ ( s ) o n vertical lines was g i v e n in J e s s e n a n d W i n t n e r [I] ill c o n n e c t i o n w i t h a g e n e r a l t r e a t m e n t by m e a n s of F o u r i e r t r a n s f o r m s of d i s t r i b u t i o n f u n c t i o n s of f u n c t i o n s of a real variable which are almost periodic in t h e o r d i n a r y or in a g e n e r a l i z e d sense.

T h e existence of the density Fo(x) is h e r e o b t a i n e d by an e s t i m a t e of the F o u r i e r t r a n s f o r m of t h e d i s t r i b u t i o n f u n c t i o n , a n d f r o m its expression as a F o m ' i e r i n t e g r a l it followed, a m o n g o t h e r t h i n g s , t h a t it possesses c o n t i n u o u s p a r t i a l d e r i v a t i v e s of a r b i t r a r i l y h i g h order. In t h e case 89 < a ~ I it was even s h o w n t h a t it is a r e g u l a r a n a l y t i c f u n c t i o n of t h e coordinates. Similar results were o b t a i n e d r e g a r d i n g t h e d i s t r i b u t i o n of t h e values of .~(s) itself on vertical lines.

T h e d i s t r i b u t i o n of t h e zeros of an a r b i t r a r y a n a l y t i c a l m o s t periodic func- tion f ( s ) in vertical strips was studied by J e s s e n

[I]

by m e a n s of t h e so-called J e n s e n f u n c t i o n defined as the mean value

qv/(a)=~l{log]f((~+it)[};

it was

t

shown t h a t this f u n c t i o n is a c o n t i n u o u s c o n v e x f u n c t i o n a n d t h a t the r e l a t i v e f r e q u e n c y of zeros of f(.~') in a s t r i p

al~a<a.z

inside the strip of a h n o s t perio-

p / , I / ,

dicity exists and is e q u a l to

(q~f~,a2,--q~/~all)/2zr

w h e n e v e r q~f(a) is differentiable at the points o" 1 and a2. An addition on the variation of t h e aro.ument of

f(s)

(3)

Mean Motions a n d Values of the Riemann Zeta Function. 99 on vertical lines has been given by H a r t m a n [I], who p r o v e d t h a t the mean m o t i o n of f ( a +

it)

exists and is equal to ~v.~-(~) w h e n e v e r ~o/(a) is d i f f e r e n t i a b l e at the p o i n t a. A s y s t e m a t i c exposition of this subject, i n c l u d i n g a c o m p l e t e t r e a t m e n t of L a g r a n g e ' s problem, has been g i v e n in Jessen a n d T o r n e h a v e [1].

T h e s e i n v e s t i g a t i o n s of t h e J e n s e n f u n c t i o n c o n c e r n f u n c t i o n s w h i c h are almost periodic in t h e o r d i n a r y sense. I n the case of t h e zeta f u n c t i o n they are t h e r e f o r e only applicable in t h e half-plane a > I. T o g e t h e r with t h e above m e n t i o n e d result on t h e existence a n d c o n t i n u i t y in a 1 and a2 of t h e f r e q u e n c y of zeros of log ~ ( s ) - - x in

al<a<a2

t h e y show t h a t the J e n s e n f u n c t i o n ~Vlog,-~(a) of log ~ ( s ) - - x is differentiable in a > I f o r all x. I n t h e closely r e l a t e d case of an a l m o s t periodic f u n c t i o n J(s) with linearly i n d e p e n d e n t e x p o n e n t s in t h e D i r i c h l e t series an even preciser result is k n o w n . I t has been s h o w n in J e s s e n [2]

by a c o m b i n a t i o n a n d e x t e n s i o n of t h e m e t h o d f r o m t h e zeta f u n c t i o n a n d t h e F o u r i e r t r a n s f o r m m e t h o d , t h a t in this case the r e l a t i v e f r e q u e n c y of zeros of

f ( s ) - - x

exists f o r a n y strip al < a < az a n d any x and is t h e i n t e g r a l over the i n t e r v a l

a l < a

< a 2 of a c e r t a i n c o n t i n u o u s f u n c t i o n . This m e a n s t h a t t h e J e n s e n f u n c t i o n q~/_~(~) of

. f ( s ) - - x

is t w i c e differentiable with a c o n t i n u o u s second derivative.

3. T h e o b j e c t of t h e p r e s e n t p a p e r is to r o u n d off t h e p r e v i o u s work by a t r e a t m e n t of m e a n m o t i o n s on vertical lines a n d of zeros in v e r t i c a l strips of t h e f u n c t i o n s log ~ ( s ) - - x a n d ~ ( s ) - - x in t h e half-plane a > 89

Since the zeta f u n c t i o n is a h n o s t periodic only in a generalized sense in the strip 89 < a < I we m u s t first e x t e n d t h e results c o n n e c t e d w i t h t h e J e n s e n f u n c t i o n to c e r t a i n cases of g e n e r a l i z e d a l m o s t periodic f u n c t i o n s g e n e r a l e n o u g h to include t h e f u n c t i o n s log ~ ( s ) - x a n d ~ ( s ) - - x . T h i s extension, which m a y be of some i n t e r e s t in itself, is given in C h a p t e r I.

I n C h a p t e r I I t h e f u n c t i o n s log ~(.,.) a n d ~(s) are d e a l t with. W e prove t h a t the J e n s e n f u n c t i o n ~O~og :--x(a) -~ 3 I {log ]log ~ (a + i t) -- x {} of log ~ (s) - -

x

exists

t

and is a twice d i f f e r e n t i a b l e convex f u n c t i o n in t h e i n t e r v a l 89 < a < + c~. F o r a-+ 89 we have

qglog:-,,.(a)~c,o

f o r any x. F o r every a > 8 9 t h e f u n c t i o n

l o g ~ ( a + i t ) - - x

possesses a m e a n m o t i o n which is equal to r .-.~ (a), a n d f o r any strip (89 < ) a l < a < a2 t h e r e exists a r e l a t i v e f r e q u e n c y of t h e zeros of log

~(s)--x

in t h e strip, w h i c h is equal to (~'~og ;-.~(a2)--~V~og ;-2,(ax'~)/2

z.

T h e second d e r i v a t i v e ~'log ;-x (a) is o b t a i n e d

" {O. ~

in t h e f o r m ~Vlog:--.~.~ j~- 2 ~r G~(x), w h e r e

G,~(x)

is a c o n t i n u o u s f u n c t i o n of a and x, which f o r every a > 89 r e p r e s e n t s t h e d e n s i t y of a c e r t a i n d i s t r i b u t i o n f u n c t i o n

(4)

100 Vibeke Borchsenius and Borge Jessen.

analogous to the distribution function of log ~ ( a +

it).

I t has similar properties as the density

Fo(x)

mentioned above; thus it possesses continuous partial derivatives of arbitrarily high order and is in the case 89 <= o < I even a regular analytic function of the coordinates; if 8 9 it is positive for all x. Similar results are proved for the functions ~ ( s ) - x.

For the convenience of the reader we have included proofs of most of the known results which we need. In particular we have included a treatment of the asymptotic distribution functions of the functions log ~(a +

it)

and

~(a +it)

for every a > 89

Of earlier results in our subject we have mentioned above only those which are of direct importance for the present paper. A detailed account of the de- velopment of the subject has been given in the introduction to Jessen and Tornehave [I].

C H A P T E R I.

Mean Motions and Zeros o f Generalized Analytic Almost Periodic Functions.

Ordinary Analytic Almost Periodic Functions.

4. We shall begin by stating the above mentioned results of Jessen and H a r t m a n as they appear in Jessen and Tornehave If]. First we must mention certain definitions which will be used throughout.

Let

f(s)

denote an arbitrary function of the complex variable

s ~ a + it,

which is regular in an open domain G and is not identically zero. The function a r g f ( s ) is then defined mod. 2 z , by the condition f(s)---If(s)[e

iargf~),

for all s in G, with the exception of t h e zeros of

f(s).

Let L denote an orientated straight line (or segment) belonging to G. We then define the left argument a r g - f ( s ) of

f(s)

on L as an arbitrary branch of the argument, which is continuous except at the zeros of

f(s)

on L, whereas it is discontinuous with a jump of --p~r, when s passes, in the positive direction of L, a zero of

f(s)

of the order p. Similarly we define the right argument a r g + f ( s ) of

f(s)

on L as an arbitrary branch of the argument, which is continuous except at the zeros of

f(s)

on L, whereas it is discontinuous with a jump of + p ~r, when s passes, in the positive direction of L, a zero of

f(s)

of the order p.

In a discontinuity point we use as value the mean value of the limits from

(5)

Mean Motions and Values of the Riemann Zeta Function. 101 t h e two sides; the two functions a r g - f ( s ) and a r t + f (s) are hereby defined for all s on L.

I f s~ a n d s2 are points of L, so t h a t the direction from s~ to s2 coincides with t h e positive direction of L, t h e differences a r g - f ( s 2 ) - a r g - f ( s l ) a n d a r g + . f ( s 2 ) - a r g + f ( s l ) are i n d e p e n d e n t of the choice of the branches of the ar- g u m e n t s a n d are called the variation of the a r g u m e n t of

f ( s ) f r o m

sl to s~ along the left or r i g h t side of L, or simply t h e left or r i g h t variation of t h e a r g u m e n t of

f(s)

along t h e s e g m e n t f r o m s 1 to s~.

W h e n speaking of the left a n d r i g h t a r g u m e n t of a function on a vertical or horizontal line (or segment) we suppose the line o r i e n t a t e d a f t e r increasing values of t or a respectively.

5. The results referred to are now as follows.

Let f ( s ) = f ( a + it)

be almost periodic in the strip [a, fl] and n o t identically zero. T h e n the mean value ~

= lira _ I f log

[f(a-L, i t ) l d t

/(a)=Mllogt

I f ( a + it)l} a - r . !

7

exists u n i f o r m l y in the interval [a, ~] and is a convex f u n c t i o n of a. I t is called t h e

Jensen function

of

.f(s).

Moreover, if a r g - f ( a +

it)

and a r g + . f ( a +

it)

denote t h e left and r i g h t ar- g u m e n t o f f ( s ) on the line

s - ~ a + i t , - - o o < t < +o%

t h e n the lower a n d upper, left a n d r i g h t m e a n motions of

f(s)

on this line, defined by

inf

f ( a + id) -- a r g - f ( a + i 7)

~:;(a) = lim s u p a r g - ~ - - 7 and

lira inf + - - arg§ + i;,)

z F o r a n a r b i t r a r y real f u n c t i o n P(7, J) defined w h e n -- ~ ~ 7 ~ J ~ + oo we d e n o t e b y lira i n f P(7, J) t h e l e a s t u p p e r b o u n d of t h o s e n u m b e r s r for w h i c h t h e r e e x i s t s a n u m b e r (5-1) ~ oo

T f f i T ( r ) s u c h t h a t Q(7, d ) > r for ( J - - y ) > ~; a n d , s i m i l a r l y , b y lira s u p {~(7, J ) t h e g r e a t e s t (5-1) ~ o~

l o w e r b o u n d of t h o s e n u m b e r s r for w h i c h t h e r e e x i s t s a n u m b e r T ~ T ( r ) s u c h t h a t P(7, J ) ~ r for ( J - 7) ~ T. If t h e s e l i m i t s a r e e q u a l , we d e n o t e t h e i r c o m m o n v a l u e b y lira ~(7,$). W h e n P(7, J) is c o m p l e x - v a l u e d , we w r i t e lira ~ ( 7 , $ ) ~ a if t h e r e e x i s t s to e v e r y e > o a T = T(~)

($-7) ~ oo

s u c h t h a t IP(7, J ) - - a l ~ for ( J - - 7 ) ~ T. F o r a s e t of f u n c t i o n s 0 ( 7 , J) t h e l i m i t s a r e s a i d to e x i s t u n i f o r m l y , if, for a n a r b i t r a r y ~, t h e s a m e T ~ T ( ~ m a y be u s e d for all f u n c t i o n s of t h e set.

(6)

1 0 2 V i b e k e B o r c h s e n i u s a n d B o r g e J e s s e n .

satisfy the inequalities

' (~ - - o) =< (a) ,[ :~ (a) l < ~ (a) < ~.~ (a + o).

~' ::; =<

[

~; (~

= =

Finally, if N f ( a 1, az; 7, 6) denotes the n u m b e r of zeros t of .f(s) in the rectangle (a < ) a ~ < a < a ~ ( < fl), 7 < t < 6, then the lower and u p p e r relative frequencies of zeros of f(s) in the st~rip (al, a~), defined by

H ] (al, a,)] inf

Nr

(al, a,; 7, 6) /_~,. (al, a2 ) j = lim sup 6 -- 7

(5-3,)~ or satisfy the inequalities

I , ~ , . I , , .

2 ~ (~9f(O'2 - - O J - - 99y'~6r 1 -~ O)) <: / / f ( 6 r l , O'2) ~< lq](o'l, 0"2) ~ ~ (~Pf(6 2 + O) - - ~9f',6 1 - - 0 ) ) .

As a corollary we have, t h a t if f j ( a ) is differentiable at the point a, then the left and right mean motions

e l ( a ) = lira a r g - f ( a + i 6 ) - - a r g - f ( a + i7) and

c+(a) = lira a r ~ + ' f ( a + i d ) - - a r g + f ( a + i7)

.f" 6

both exist and are d e t e r m i n e d by

q (o) = g;~ (~,) = r

@.

Similarly, if 9~s(a) is differentiable at al and a~, then the relative frequency of zeros

Hf(al, a2) = lim N](al a~; 7, d) exists and is determined by

H,(ai, a , ) = I ,~ ,, ,

2~ (~I',a~

--

9o/,a~ ).

The latter formula is called the Jense~ formula for almost periodic functions.

I f for m > o we pnt

If(8) I,.

= max

{If(,s.)I, .~}

the aensen function ~t'(a) is also d e t e r m i n e d as the limit of the mean value M { l o g I/(,~ + it)l,, }

t

as , n - , o, the convergence being again u n i f o r m in [a,/~].

Throughout, multiple zeros are counted according to t h e i r order of multiplicity.

(7)

Mean Motions and Values of the Riemann Zeta Function. 103 A m o n g t h e f u r t h e r properties of the J e n s e n f u n c t i o n we m e n t i o n t h a t , if a sequence of f u n c t i o n s

f l ( s ) , f 2 ( s ) , . . ,

almost periodic in [a, 8], none of which is identically zero, converges u n i f o r m l y towards

f(s)

in [a, ~], t h e n the J e n s e n func- tion r of f,,(s) converges u n i f o r m l y in [c~,/~] t o w a r d s ff.,.(a).

6. W e shall now establish connections between the J e n s e n f u n c t i o n a n d certain distribution functions.

L e t R~ be the complex plane with x = ~1 + i~2 as variable point. A completely additive, non-negative set-function it(E), defined for all Borel sets E in Rx, for which tt(Rx) is finite, will be called a

distribution fmwtio~

in Rx. W e shall n o t suppose t h a t tt(Rx)-- I.

F o r distribution f u n c t i o n s in this general sense we have a theory similar to t h a t of the case it(R~.)= I. W e briefly recall t h e parts of the t h e o r y which will be applied, r e f e r r i n g for details e. g. to the m o n o g r a p h by Cram~r [I] and to t h e s u m m a r y in Jessen a n d W i n t n e r [I].

Our n o t a t i o n for an i n t e g r a l with respect to a distribution f u n c t i o n tt will be

j" h

,,

(d R,)

E

A similar n o t a t i o n will be used for o r d i n a r y Lebesgue integrals. The Lebesgue measure (in any n u m b e r of dimensions) ~vill be denoted t h r o u g h o u t by m. Thus t h e n o t a t i o n f o r an ordinary Lebesgue integral in Rx will be

E

A set E is called a c o n t i n u i t y set of ~ if

it(E') =

it(Ii ), where

;'" E'

denotes the set formed by all interior points of E , a n d

E "

the closure of E. ] f i t ( E ) = ~ , ( E ) or i t ( E ) ~

v(E)

for the common c o n t i n u i t y sets of it and v, t h e n I t ( E ) ~ - r ( E ) or

it(E) ~ v(E)

for all Borel sets E.

A sequence of d i s t r i b u t i o n f u n c t i o n s tt,, is said to be convergent if there exists a d i s t r i b u t i o n f u n c t i o n it such t h a t tt,,(E)-~ it(E) for all c o n t i n u i t y sets of the limit f u n c t i o n it, which is t h e n unique. The symbol tt,,--~ u will be used only in this sense.

W e have ,u,,-* it, if and only if the relation j" h,

(x)

it,,

(,1 lC) f h

,,

R x R x

holds for all bounded continuous functions h (x) in R~,.. I f it,-~ it, then lira inf tL,, (1'])

!t(E) for any open set E, and lim sup

!,,,(E)~= it(E)

for a n y closed set /~'.

(8)

104 Vibeke Borchsenius and Borge Jessen.

A d i s t r i b u t i o n f u n c t i o n tto d e p e n d i n g on a p a r a m e t e r a, which r u n s in an i n t e r v a l

(a, fl),

is said to d e p e n d c o n t i n u o u s l y on a, if tt~,~--~ tt~o w h e n an-+ a 0.

T h e n tt,(R~) is c o n t i n u o u s and t h e r e f o r e b o u n d e d in any closed i n t e r v a l (a < ) a 1

< a < a2 ( < fl). Moreover, try(E), c o n s i d e r e d as a f u n c t i o n of a, is semi-continuous f r o m below f o r any o p e n set E and s e m i - c o n t i n u o u s f r o m above f o r a n y closed set E . I n p a r t i c u l a r , fro(E) is a B a i r e f u n c t i o n f o r a n y open or closed set E and h e n c e f o r any Borel set E. 1 T h e i n t e g r a l

tl.,

~t(E) = f ~t.(E)da

r 1

is a g a i n a d i s t r i b u t i o n f u n c t i o n .

Suppose n o w t h a t go f o r every a is the limit of a d i s t r i b u t i o n f u n c t i o n tt,,,o, a n d suppose t h a t ~t,,,~ f o r e v e r y J~ depends c o n t i n u o u s l y on a; c o n s i d e r the distri- b u t i o n f u n c t i o n

t J=+

I,n(E) = fit,, o(E)da.

o |

T h e n tt will be t h e l i m i t of ttn, if

tt,.,,(R~)

is u n i f o r m l y b o u n d e d f o r all n a n d all a in a l < a < a 2 . F o r if E is a B o r e l set, and

E '

d e n o t e s the set f o r m e d by all i n t e r i o r points of E , and

E "

t h e closure of E , then, by F a t o u ' s t h e o r e m , we have

f f

lira i n f #,~ (E) > lim inf it,, ( F ' ) ~ lira inf it,,. o ( E ' ) d a

> tto(E') da -- ,u (E')

(~t O1

and

lim sup g . (E) < lim sup it. ( E " ) =< f lim sup it,,,. ( E " )

da < j it,, ( ~ ) d a ~ t' ( E ) ,

d | 0 l

so t h a t ~t.(/~)-+ i t ( E ) if E is a c o n t i n u i t y set of ~u.

A d i s t r i b u t i o n f u n c t i o n g is called absolutely c o n t i n u o u s if t t ( E ) = o f o r e v e r y B o r e l set E of m e a s u r e o; this is the case if a n d only if t h e r e exists in R : a Lebesgue i n t e g r a b l e p o i n t f u n c t i o n F ( x ) such t h a t

E

f o r a n y Borel set E ; we call F ( x ) t h e density of ft.

L e t By be t h e c o m p l e x plane with y = ~71 + i~72 as variable point, a n d let t h r o u g h o u t

x y

d e n o t e n o t t h e usual p r o d u c t of t h e two complex n u m b e r s , b u t

S i n c e t h e s y s t e m of s e t s E for w h i c h p a ( E ) is a Baire function c o n t a i n s t h e l i m i t of a n y d e c r e a s i n g or i n c r e a s i n g s e q u e n c e of s e t s from t h e s y s t e m .

(9)

Mean Motions and Values of the Riemann Zeta Function. 105 the inner product ~171 + ~ 2 of the vectors x =-(~1, ~) a n d y ~ (71, ~ ) . I f # is a d i s t r i b u t i o n f u n c t i o n in R~ t h e n the i n t e g r a l

]t x

defines in B~j a f u n c t i o n A(y;!,) which is uniformly continuous a n d bounded, the m a x i m u m of its absolute value being A(o;/~)----#(R~). W e call A ( y ; / ~ ) t h e

Fourier transform

of /~. I f A(y;/,) ~ A(y; r), t h e n /z ---- r.

I f /z,,-*#, t h e n A(y;/~,,)--*A(y;/z) holds u n i f o r m l y in every circle [y] ~ a ; conversely, if a sequence of F o u r i e r t r a n s f o r m s A(y;

t*,,)

is uniformly convergent in every circle ]y] =< a, t h e n tile limit f u n c t i o n also is the Fourier t r a n s f o r m A(y; ~) of a d i s t r i b u t i o n f u n c t i o n ~u, a n d /z,-* ,u.

I f the integral

fly I' I A (y; ,,,(d

Ry

is finite for an integer p >_--o, t h e n # is absolutely c o n t i n u o u s and its density

F(x)

: F ( ~ I , ~ ) , d e t e r m i n e d by the inversion f o r m u l a F ( * ) = (2 ~)-~

f e-'*"A

(y; u)m (d R,a)

Ry

is continuous a n d possesses in t h e case p > o c o n t i n u o u s p a r t i a l derivatives of order _--< p, which m a y be obtained by differentiation u n d e r the i n t e g r a l sign.

This is in p a r t i c u l a r the ease if for some e > o

oqyl-(-'+,'+')) as oo.

I f the estimate

A ( y ; , - ) = O ( e -~h'l) as l y l - ~ o o

holds for some c > o, t h e n

F(x)=

F(_~I, ~2) is a r e g u l a r a n a l y t i c f u n c t i o n of the two real variables ~l,~z. I f c m a y be t a k e n arbitrarily large, t h e n

F(x)

is an entire f u n c t i o n of t h e two variables _El, ~2.

7. L e t a g a i n

f(s)

be an a n a l y t i c a h n o s t periodic fullction in t h e strip [a, fl].

W e shall prove a t h e o r e m on t h e d i s t r i b u t i o n of the values of

f(s)

on vertical lines which is a special case of a general theorem on asymptotic distribution functions, to be f o u n d in Jessen a n d W i n t n e r Ill.

F o r a n a r b i t r a r y a a n d a n a r b i t r a r y interval (--oo < ) 7 < t < ~ ( < + ~ ) let ,u~;:,,a and ~o;~,a denote t h e distribution f u n c t i o n s of

f ( a + it)

a n d of f ( a +

it)

with respect to

If'(a + it)l 2

over t h e interval 7 < t < d, defined by

(10)

106 Vibeke Borchsenius and Borge Jessen.

uo;:,,,~,(E) -m(A~ 6 - - 7

a n d

v,,;~,,~(E) = 6 ~ - - 7 . I f If'(a + it) l~'dt'

"1o; 7, d (E)

where

Ao;~,,o,(E)

d e n o t e s t h e set of points in 7 < t < 6 f o r which

f ( a + it)

be- longs to E .

T h e n /~o; ~, ~ and v~; ~, ,~ c o n v e r g e f o r ( 6 - - 7 ) - + o o t t o w a r d s c e r t a i n d i s t r i b u t i o n f u n c t i o n s #o and

vo.

W e call these d i s t r i b u t i o n f u n c t i o n s t h e

asymptotic distri- bution functions

of

f ( a + i t)

and of

f ( a + i t)

w i t h r e s p e c t to I f ' (a + i t)[~.

T h e p r o o f is i m m e d i a t e . By t h e definition of t h e i n t e g r a l we have

5

(,) I . n d

7 5

_'~ f (o+it) y i t) ]*" d t,

A (y; vo; :,, ~') = 3- ei: i f ' (a +

7

where

f ( a + it)y

d e n o t e s t h e i n n e r product. Since t h e f u n c t i o n s e if(o+it)v and

e lf(a+it) y ]f'(a + it)] ~

are almost periodic f o r e v e r y y a n d f o r m a u n i f o r m i t y set of a l m o s t periodic f u n c t i o n s f o r [y[ =< a for a n y a, t h e m e a n values

d

I f ei.f(~

a n d

M { e ' " ( ~ lira ~ - ' 7 J '

t (d-7) ~ 0r

7 f[

lim

I (df(o+,),./lf,(a +it)l~.dt M{eif(o+it) v l f ' (a + it)] ~}

d 7

exist u n i f o r m l y in every circle ] y ] < a. T h i s implies t h e t h e o r e m , a n d we o b t a i n

2)

A(y;tto)=M{eif(~

and

A(y;vo)=M{ei:(~+'t)vlf'(a+it)p}.

t t

F r o m t h e expressions (I) a n d (2) it follows t h a t t h e F o u r i e r t r a n s f o r m s are c o n t i n u o u s f u n c t i o n s of y and a t o g e t h e r . This implies t h a t t h e d i s t r i b u t i o n func- tions #o and v,, a n d #o; ~,, and vo;,:, ~ f o r fixed 7 and 6, d e p e n d c o n t i n u o u s l y on a.

8. By m e a n s of the d i s t r i b u t i o n f u n c t i o n s uo we o b t a i n f o r t h e J e n s e n f u n c t i o n

9f(a)

of

f(s)

the expression

(3) -- f l o g ,o(d R=).

Rx

L I. e. f o r a n y s e q u e n c e o f i n t e r v a l s 7 n < t < d n , w h e r e ( d n - - 7 n ) --> o o .

(11)

Mean Motions and Values of the Riemann Zeta Function. 107 For by the definition of the integral we obtain for every m > o

r~

I I i'lo

- ~ . log I,/(~ + i ~)I,. d t = . Ix

I,, .o; .,,, ~' (d ~.,),

"/ R x

whence

(4) M {log If(~ + it)I,,,} = .flog I~'lm ~o(d R,:),

t R. t

since we may replace log ] X[m by log 3I~ for Ix [ > M, where M denotes the upper bound of [ f ( a +

it)I,

and thus obtain a bounded continuous function under the integral sign. By w 5 the left-hand side of (4) converges for m-~ o towards 90:(a).

This implies the existence of the integral on the right in (3) and the relation (3).

Similarly, the Jensen function

~q,.-~(~) = M{log I f ( a +

it)--x[}

t

of the function

f(s) --x

is for any complex number x determined by the expression

(o)

s I

(d

B,~)

~.:-~

= j , o g l u . - x I

,,,

R u

9. We will now establish a connection between the Jensen functions

q~.r-~(a)

and the distribution functions v~.

For a fixed strip

(a<)al<a<a2(.~fl)

let

~,._~ (7, 6)

denote the number of zeros of

f ( s ) - - x

in the rectangle a l < a < a 2 , 7 < t < c ~ , and let us consider the distribution function

v~"~'(E)=.l- ~ - : r ,,(dR.,.).

E

By the area theorem we have

v . , ~ ( E ) =

' ~--7 ~1

I f f ,

(a+it) dadt,

is

3 7 , ~ (E)

where

A~,~(E)

denotes the set of points in the rectangle for which

f(s)

belongs to E. Hence, by Fubini's theorem,

v;,,~(E)= f v,;.:,~(E)d~.

(12)

108 Vibeke Borchsenius and Borge Jessen.

Also, v,; ~,, ~. (R~) is uniformly bounded for all 7 and cl and all a in al =< a _--< a~

(since f " ~ ~s,, is bounded in the strip al<=a<_%a2). Hence by w 6 v.,.~ converges for (d--7)--* oo towards the distribution function v determined by

(5) ,,(E)

=

f,,~(E)da. ~

ot

By w 5 we have for every x the inequalities

(6)

- - -

I (p:_.~

, : , % - o) -- ~:-,~at +

o))

< lira inf

N:-~(7"

~)

< lira sup ~- . N , . - , (7, a) < ~ ,

- - Z - - 2 - ~ ( r ( % + o) - r ;o,t - - oi).

By w 5 the convex functions ~.f-x(a) depend continuously on a~. This implies t h a t the left and right derivatives p}-~(a--o) and ~ - x ( a + o) considered as functions of x for every fixed a will be lower and upper semi-continuous, respectively.

Hence, the functions to the left and right in ( 5 ) a r e lower and upper semi- continuous, respectively. By Fatou's theorem we c o n c l u d e t h a t if E is a con- tinuity set of r(E), then

' l '

" m d R , } < v ( E <

t :

" ' "

(z)

~-~. (~s-.(%-o,-~s-.,.,,,+o)) ( . . = ) = ~ (~.~_.~%+o,-~.-,,(,,,-o..).4dR,,).

E E

These inequalities must then hold for all Borel sets E.

I f we put E = R x , a l = a - - ~ , and a 2 = a q - ~ , then v(E) will by (5) approach zero for ~-+ o, whereas the first term i n ( 7 ) will converge towards the integral over Rx of (P'I-x (a + o) - - p':_~ (a - o))/2 z . This integral must therefore be zero.

Hence the two functions p}-~(a--o)

and p}_~(a+o)

will differ only in a null-set.

This implies t h a t the first and last terms in (7) are equal. Thus we have proved t h a t for an arbitrary Borel set E

f . , ,

' ' 9 , = ~

f

( ~ _ , . ( % + o ; - ~ ) . _ , ( ~ l - o ) ) m ( d R , . ) .

(8) ~j(r162 + oj)m(dR,)=v(E)

E E

x Actually, the relation ~,./,d(E)---> v(E) holds not only for the continuity sets of v, but for all Borel sets E. This property depends on the fact that the densities N y - x ( y , d ) / ( J - y) of the distribution functions vT, d are uniformly bounded for ( J - y ) > I, say.

(13)

Mean Motions and Values of the Riemann Zeta Function. 109 I f in particular ~ for every a is absolutely continuous with a density

Go(x)

which is a continuous f u n c t i o n of x and a together, the relations (8) show (on a c c o u n t of the semi-continuity of the integrands) t h a t for every x

' ' a fGo(x)da<qD/-x(a, Wo)--qD.r-,(al--O).

9 ~ f - ~ ( a ~ - o ) - 9os-~( ~ + o) ~

2~.

= ' "

o" I

The c o n t i n u i t y in al and a2 of the t e r m in the middle ~hen implies t h a t ~0.f-.<(a) is different,able, and we obtain

t ,' i i o'~

IjOf--, (0"2) -- IjOf--x (0"1) --- 2 iT S tCJ[is(X)dG,

OI

which shows t h a t

l,f-~.(a)

is twice differentiable with the second derivative

The Jensen Function of a Type of Generalized Analytic Almost Periodic Functions.

10. W e shall now give an extension of some of the preceding results to a type of generalized analytic almost periodic functions. The f u n c t i o n s which we will consider will be supposed to be ~lmost periodic in a strip [a o,ri0] a n d con- tinuable n o t in a strip (a, fl), b u t in a half-strip, say

c~<a<fl, t>7o.

The t y p e of generalized almost periodicity with which we shall be concerned will be an extension to analytic functions of almost periodicity in Besicovitch's sense with index p; but while Besicovitch takes p ~ I, it is sufficient for our purposes to take p > o. No t h e o r y of this type of generalized almost periodicity will be needed, since all results follow directly from the definition.

I t will n o t be possible to m a i n t a i n the above definition of the J e n s e n function.

As m i g h t be expected, since we are dealing with generalized almost periodicity of t h e Besicovitch type, the limit has to be replaced by a limit, in which ~-~oc for fixed 7, b u t n o t necessarily u n i f o r m l y in 7.

The n o t i o n of a m e a n value will be t a k e n t h r o u g h o u t in this sense, i. e. a f u n c t i o n

H(t)

defined on a half-line t > 70 will be said to possess the

mean ~:alue

i]lt {H (t)} = e_ oo .d I - - l i r a

~, ]_ H (t) dr,

7

if the limit on the r i g h t exists for a fixed 7 > 7o (the i n t e g r a l need n o t exist for 7 =-7o). Evidently the existence of the limit for one

7>7o

implies its existence for

(14)

110 Vibeke Borchsenius and Borge Jessen.

all ~'>7o, a n d t h e value is i n d e p e n d e n t of 7. I f H ( t ) i s a real f u n c t i o n defined on a half-line t > 70, the upper mem~ value is defined by

M I H ( t ) } = lira sup - H(t) dt,

t ~ r

7

w h e r e 7 > 70 is a g a i n a r b i t r a r y , b u t fixed.

A similar c h a n g e will have to be made in t h e definitions of t h e m e a n motions, t h e f r e q u e n c i e s of zeros, a n d t h e a s y m p t o t i c d i s t r i b u t i o n functions.

T h e u s u a l n o t a t i o n f o r strips will be m a i n t a i n e d f o r half-strips w i t h o u t change.

T h u s , if we are d e a l i n g w i t h f u n c t i o n s defined in a half-strip a < a < fl, t > 70, a s t a t e m e n t is said to h o l d in [a, fl], if it holds in the p a r t of t h e half-strip b e l o n g i n g to an a r b i t r a r y r e d u c e d strip (a < ) a : < a < fll ( < fl).

Suppose t h a t p > o, a n d t h a t f ( s ) , f:(s), f~(s), . . . are f u n c t i o n s defined in t h e half-strip ~ < a < f l , t > 7 o . T h e n we shall say t h a t f,(s) c o n v e r g e s in t h e mean, w i t h i n d e x p, t o w a r d s f ( s ) in [a, fl] if

B, 1

f o r a n y r e d u c e d

strip (a <)ax

< a <

#:(< ~).

Since t h e left side decreases as p decreases it is plain t h a t c o n v e r g e n c e in m e a n w i t h index p implies c o n v e r g e n c e in m e a n with i n d e x p:, if o < p : < p .

11. W e shall ])rove the following t h e o r e m s .

T h e o r e m 1. Let - - c o <~ a < ao < ~o < fi X 4- co and - - c o < 7 o < + c ~ , and let f:(s), f2(s), 9 9 9 be a sequence o f fi~nctions almost periodic in [a, fl] conve~ying u~i- formly in [ao, flo] towards a function f ( s ) , which is lhen almost periodic in [ao, flo].

Suppose, that none of the functions is identically zero. Suppose further, that f ( s ) may be continued as a regular ./'unction in the half-slriIJ a < a < fl, t > 70, and that f~(s) converges in mean with an i n d e x p > o lowards f ( s ) in [a, fl].

Then the Jensen function

~.,-(a) = M { l o g { f ( a + it)I}

t

exists uniformly in [a, fl], i.e. the function

: floglf(a+it)let

~(~; 7, ~ ) -

~ _ y

7

(15)

M e a n M o t i o n s a n d V a l u e s o f t h e R i e m a n n Z e t a F u n c t i o n . 1 1 1

converges for ~-+ oo for any fixed 7 > Zo uniformly in [a, fl] towards a limit func- tion 9f(a). The Jensen function 9fn (a) orris(s) converges for n-+ oo uniformly in [~, fl] towards 9s(a).

The function qDf(a) is convex in (a, fl), and, for every a in (a, fl), the four mean motions defined by

,7 (~)1

~; (a) ]

and

inf a r g - . f ( a + i6) -- a r g - f ( a + i 7) -- lim

sup ~ -- 7

f f ~ o o

~_:~ ( a ) / = lira i n f a r g + . f ( a + i~) -- a r g + f ( a + i~,)

sup ~ -- 7

satisfy the inequalities

(9) ~0~(a -, o) =< , r (a) _-< I d (~) ] _+

L ~,=- (~ --< ~s (~,) =< ~;(a + o/

Further, for every strip (61: as). where c~< 61 < as< fl, the two relative frequencies of zeros de.fined by

H f (al, 62)

~ inf

N f (61, as; 7, (l) H f (61, as) j = lira sup 6 -- 7 '

({ ~ o o

where N f (61, 62; Z, (l) denotes the number of zeros of f ( s ) in the rectangle 61< a < 62, 7 < t < ~, satisfy the inequalities

I

-- '~ - ' ' "-- - ' -o~I,

(io) 2 ~ i (gs,a~ o, - ~ s ( ~ l + o))=<_H/~l,~s)=</Ts(a~,o2)= < 2 ~

(9)(as

+ o) 9s(ol

As a corollary we have t h a t if r is differentiable at t h e point a, t h e n the left a n d r i g h t mean motions

c 7 (a) -- lim a r g - . f ( a + i(~) -- a r g - f ( a + i7)

~ ~ 6 - - 7

and

e + ( a ) = lira a r ~ + ' f ( a + i ~ ) - a r g + f ( a + i7)

.r o ~ 6 - - 7

both exist and are d e t e r m i n e d by

' 1

'7 (~ = e/(o) = ~j

(o).

t ( \

1 T h i s m e a n s t h a t a r g - f ( a + i t ) a n d a r g + f ( a + it) are b o t h --ct+ o(t), w h e r e c = (pj.,aj.

(16)

1 1 2 V i b e k e B o r c h s e n i u s a n d B o r g e J e s s e n .

S i m i l a r l y , if ~f(a) is d i f f e r e n t i a b l e a t a 1 a n d a2, t h e n t h e r e l a t i v e f r e q u e n c y o f z e r o s H f (aa, a2) = l i m N.l (ff_L,_a~; 7' 6)

a ~ 6 - - 7 e x i s t s a n d is d e t e r m i n e d b y t h e J e n s e n f o r m u l a

I t P( ,

9 - - 9 J " ~0"lJ)"

H r (fiX, 62) : ~ ( 9 . f ' a 2 ' ' " '

T h e o r e m 2. The ./iowtion .f(a + i t) possesses for every a in (a, fl) an asymptotic distribution funelion uf, ~, i.e. the distributio, function #j, o; .~., J of f ( a + i t) in the interval 7 < t < 6, defined by

m. ,,; .., ~ ( E ) = m (Aj. o: ~,. ~ (E~)

' 6 - - 7 '

where A f, ,~; :, ~ (E) for an arbitrary Borel .~.et E de~wtes the set oat" points of 7 < t < 6 for which f ( a + it) belongs to E , eolwerges for 6--> oo for any .fixed 7 > 7o towards a distribution function /~.0. The asymptotic d&b'ib, dion function /%,. o oj'.f,,(a + i t ) converges for n -~ oo towards tq. o.

T h e r e a r e o f c o u r s e s i m i l a r t h e o r e m s f o r f u n c t i o n s f ( s ) w h i c h m a y be c o n t i n u e d in a h a l f - s t r i p a < a < fl, t < 6 o . T h e l i m i t s m u s t t h e n b e t a k e n f o r Z ~ - - ~ 1 7 6 a n d fixed 6 < 60. I f b o t h p a i r s o f t h e o r e m s a r e a p p l i c a b l e f o r t h e s a m e s e q u e n c e f l ( s ) , , f z ( s ) . . . 4 h e J e n s e n f u n c t i o n 95(0") a n d t h e a s y m p t o t i c d i s t r i b u t i o n f u n c t i o n /~f.o will b e t h e s a m e in b o t h cases, s i n c e in b o t h c a s e s t h e y a r e t h e l i m i t s o f ~f",(a) a n d /~f,, ,, r e s p e c t i v e l y .

W e s h a l l n o t g o i n t o t h e e x t e n s i o n o f t h e r e s u l t s o f w 1 6 7 8 - - 9 , s i n c e t h e i r e x t e n s i o n is n o t n e e d e d f o r t h e t r e a t m e n t o f t h e z e t a f u n c t i o n .

12. L e t a 1, ill, a2, flz b e c h o s e n s u c h t h a t a < cg I < {2' 0 < •2 < if2 </~0 < E1 < ~, a n d l e t 6 > o be c h o s e n so s m a l l t h a t a < a l - - 8 6, /~1+ 8 6 < / ~ , e~0< ct2-- 3 6, a n d f12+ 3 6 < f l 0 ; w e m a y s u p p o s e 6_--< 2 x. D e f i n e t h e r e c t a n g l e s R,,(to) f o r o ~ r ~ 8 b y

lt,.(to) : a l - - v 6 _-< G _-< #1 + v 6,

a n d t h e r e c t a n g l e s S,(to) f o r 0 ~ v =< 3 bv S,.(to) : u 2 - - v 6 ~ a ~ ~2 + v6,

] t - t o l ~ , ~ ( I +~),

I t - t 0 1 _ - < 89 + ~ ) . 1

a N o t all of t h e s e r e c t a n g l e s will be u s e d in t h e p r o o f s of T h e o r e m s I a n d 2. T h e r e m a i n d e r are b e i n g k e p t in r e s e r v e for t h e p r o o f s of T h e o r e m s 3 a n d 4.

(17)

M e a n M o t i o n s a n d V a l u e s of t h e R i e m a n n Z e t a F u n c t i o n . 113

Since ~ =< 89 the distance between t h e frontiers of two successive rectangles

R.(to)

or

S.(to)

is & The rectangles

B.(to)

are contained in t h e half-strip a < a <,8, t > 7 o for t o > 7 o + ~ .

We shall begin with some lemmas, which may be proved w i t h o u t difficulty from the assumptions of Theorem I.

( I I ) NOW,

L e m m a 1. I f for t o > y o + ~ we put g(to) = m a x I f ( s ) l , KL,(to) = m a x J.r

R:

(t.)

t';

(tol

the f u n c t i o n s K(to) v, A;,(to) v,

L,,(to) v

possess mean values, a n d

M{L,,(to) v} -~ o and M{h,,(to) v} -~. ) f ! K ( t o ) v}

as

to It, t o

P,'oof I f !l(s) is r e g u l a r in I s - s o l =< d, the mean value

'(,

M (el = 2-~7~ g (So + q e i o) p, d 0

o

is, according to H a r d y [I], increasing for o < e ---<- $- H e n c e d

' f f

I :~(,o)1,' = M(o) _-< M ( e ) e d e = ~ ,

I.q(,,,)l"d,dr.

2 *

o Is-~ol~t

Consequently

I f,(

L,,(to)" <--_ ~fi~

if(s)--./;,(s)l,'dadt.

lt~ (ti,!

The mean convergence therefore implies t h a t

M{L,,(to)P}-'.o

as n ~ o o .

1o

Hence ~

K(to) <= ~3,(to) + L.(ro)

.,,d

hL,(to) ~ K(to) + L,,(to).

L,,(to)- ,na, I,r(.~t-f,,(~)/,

1,'; (t,,)

5 d d

, I 2 '

]i~--II'A'(to)P(I,o] P ,

[(j

'=i: ! __< m ;: j

7 7 ;'

where P----I if p < I a n d

I ' = I / p

if p > I. F r o m the ahnost periodicity of./;,(.,') in [a, fl] it follows t h a t

K,(to)

is almost periodic. H e n c e

K,(to) p

possesses a mean value. The inequality ([2) t o g & h e r with (I I) t h e n shows, t h a t

K(to) I~

possesses

' See e.g. Hardy, Littlewood and P61yaii~. Theorems 28, J98, and I99.

8

(18)

114 Vibeke Borchsenius and Borge Jessen.

a mean value, and t h a t

M{K,,(to) ~'} ~M{K(to)~' I

as u - ~ c ~ .

to to

value of

L,,(to)~

will exist, since

f,,(s)--fi,(s)

converges in

.f(s) --/;,(,,:)

f o r m -+ cx~.

Finally, the m e a n t h e mean t o w a r d s

L e m m a 2. K(to) I ' = o(to) as to~OO.

Proof

Since ].f(s)] takes t h e value

K(to)in

some p o i n t of R;(t0), t h e r e will (for t0> ~'o+ !~) exist an i n t e r v a l of l e n g t h > I c o n t a i n i n g to in w h i c h

K(t)>K(to).

H e n c e

t I, + 1

K ( t.),' < .1" K ( t)" at,

t o - - 1

and the r i g h t h a n d side is o(to) , since

Jll{K(t)vl

exists.

t

L e m m a 3. T h e r e exists a c o n s t a n t k > o such t h a t f o r all to max I.f(.,.)l > k a n d m a x ]fi,(.s')] > k f o r all n.

E, (to~ .% it,,)

Proof.

Since the f u n c t i o n s are a h n o s t periodic in [uo,,3o] a n d n o t identically zero, a n d since fi,(s) c o n v e r g e s u n i f o r m l y in [ao,/~o] t o w a r d s

f(s),

t h e r e exists a c o n s t a n t h > o a n d a b o u n d e d closed sub-set S of t h e strip (do, rio) such t h a t f o r e v e r y f u n c t i o n

f ( s + ito)

or

f,(s+ito)

the absolute value is > h in some p o i n t of S.

I f the l e m m a were false, we could e x t r a c t f r o m t h e system of f u n c t i o n s

f ( s + ito)

a n d f,,(s + ito) a sequence c o n v e r g i n g u n i f o r m l y t o w a r d s zero in So(o).

Since the f u n c t i o n s are u n i f o r m l y b o u n d e d in [%, ~o], this sequence would con- verge u n i f o r m l y to zero in any b o u n d e d closed sub-set of (%, rio), in p a r t i c u l a r in S, and this is impossible.

13. W e shall also use c e r t a i n g e n e r a l f u n c t i o n t h e o r e t i c lemmas. ~ L e t F ( s ) be a r e g u l a r f u n c t i o n in R3(o) f o r w h i c h

,~o (0,

where k is a given positive number. "~ T h e l e m m a s will give estimates d e p e n d i n g on t h e n u m b e r

~ = n,ax I F (.~') I (--> ~'1.

R~ (o)

i S o m e of t h e s e l e m m a s are well k n o w n , b u t for t h e convenience of the reader l h e p r o o f s are given.

*- W h e n t h e l e m m a s are a p p l i e d k will be t h e n u m b e r of L e m m a 3.

(19)

Mean Motions and Values of the Riemann Zeta Function. 115 By A we denote constants (not necessarily the same a t each occurrence) d e p e n d i n g on t h e rectangles involved a n d on k (but n o t on

F~s

In one of the lemmas t h e c o n s t a n t depends on a parameter m and is t h e r e f o r e denoted by A (m).

Besides R3(o), t h e rectangles R~(o), Rl(O), and So(O) occur. An)" sequence of f o u r rectangles, each of which contains tl~o. n e x t in its interior, would do. L a t e r on we shall sometimes use the lemmas for other sets of f o u r r e c t a n g l e s .

L e m m a 4. The n u m b e r N of zeros of l"(.v) in Rz(o ) satisfies an inequality

N < = A l o g ( K + I).

Proofl

L e t So be a point of So(o) in which

I F ( s ) [ ~ k .

L e t

z = z ( s )

be a regular f u n c t i o n in //3(0) which maps //3(o) on the circle ]z I ~ x so t h a t

Z(So) ---- o,

and let

s = s(z)

be its inverse function. ~ The image of Rz(o) will depend on s o, b u t will for all possible so be contained in a circle { z l ~ Q < l, where q is in- d e p e n d e n t of So. A p p l y i n g J e n s e n ' s inequality to the f u n c t i o n

H ( z ) =

F ( s ( z : ) w e obtain

k, < K = or N--< _ I log K log -

whence the desired result. ~ e

The n e x t two lemmas will be proved together.

Lemm& 5. I f s l , . . . , s.v are t h e zeros of F(.~) in //2(o), and we p u t

N

F(8)

= I F [ ( " -

t h e n in //1(o) ~='

log {Fl(s)] a - - J log ( K + I), i . e . 1 1"~(~)1 >----

(K§ i),,"

I

Lemm& 6. The left or r i g h t variation V of the a r g u m e n t of F(s) along an arbitrary s t r a i g h t s e g m e n t in /t1(o ) satisfies an inequality

]V I=<Aiog(K+ I).

Proof

The f u n c t i o n

l"l(S)

is regular i n / / 3 ( o ) a n d 4=O in//2(o). I f d denotes t h e d i a m e t e r Of B2(o), we have

[I"l(so)] :> kid ~',

Where s o is the point introduced in t h e proof of L e m m a 4. On the f r o n t i e r of R3(o ), and hence in Ba(O), we have

I

=<

Kl<i.".

I T h u s S=S(Z) is c o n t i n u o u s in {z I _-< I a n d r e g u l a r e x c e p t in f o u r p o i n t s on Izl = I corre- s p o n d i n g to t h e v e r t i c e s of R3(o).

Since K / k ~ K + i w h e n k ~ I, a n d K/k_-<IK%I) l/t" w h e n k < I . T h e e x p r e s s i o n l o g ( K + I ) is i n t r o d u c e d for t h e s a k e of u n i f o r m i t y t h r o u g h o u t t h e lemmas~

(20)

116 Vibeke Borchsenius and Borge Jessen.

L e t z t = 2'1(8) be a regular f u n c t i o n in R2(o) which maps B2(o ) on t h e circle l Zl[ ~ I such t h a t zt(so) = o, a n d let s = s ( z i ) be the inverse function. The image of Rl(O) will be contained in a circle ]zil ~ Qt< I, where 01 is i n d e p e n d e n t of so.

A p p l y i n g Carath60dory's inequalities ~ to a branch of the f u n c t i o n log H i ( g 1 ) =

= log ]HI(~'I)[ -{- i arg HI(Zl), where H i ( z 1 ) = Fl(S(~l~), we o b t a i n for 12'1] ~ q1 the inequalities

k 2 o t K

log IH~(zl) l

->-- x + ~ log dX " log 6-~

I - - q i I - - 01

a n d

(i3)

and

I a r t H , (2'1) -- a r t H 1(O) 1 ----< l ~ log ~ -- log il x . H e n c e in R t ( o )

9 K I + Q1 l o g ~7~

log = > - _2gl

l o g &v

I - - (J1 I - - ~I

I a r t ib I (.~) --- a r t 1~1 (,e0) I < 2 ~1 l o g K d -v The l a t t e r inequality gives the estimate

('4)

I I'l < 4Q, = ~ log K d : " + N,w,.

I n (13) and ('4) we may by L e m m a 4 replace N by A log (K + I), since d > I and d < I. W e t h e n o b t a i n the desired results.-"

L e m m a 7. There exists a horizontal s e g m e n t a i ~ a ~ : l 1, t-=--t* ill 1~o(O) on which F(s) =~ o and

( ~ arg l"(a + it) <-- A log- ( K + I).

Proqf L e t .,',,=an + i t , be the zeros i n t r o d u c e d in L e m m a 5 a n d let t* be chosen in the interval It*l__< 89 such t h a t min I I t * - - t,,l/ is as large as possible.

B y L e m m a 4 t h e distance of the s e g m e n t rhNa<=fll, t = t * f r o m the zeros s, and t h e f r o n t i e r of R l ( o ) is >=I/A log ( K + I), a n d we m a y therefore find a rectangle

=< =< + r, I t - t*[ --< r belonging to Rt(o), where r > , / A log ( K + I), in which F ( s ) 4 ' o . I t follows f r o m L e m m a 6 t h a t , if s* lies on the segment, t h e n

See e~g~ C~rath~odory if], w 74- T h e i n e q u a l i t i e s as t h e r e given m u s t be a p p l i e d to t h e f u n c t i o n f ( z i ~ = a log H i ( z 1 ~, + b for s u i t a b l e v a l u e s of a a n d b.

F o r t h e first e s t i m a t e we h a v e to a p p l y t h a t , s i n c e K ~= k, a c o n s t a n t d e p e n d i n g on t h e r e c t a n g l e s and on k~ will be ;< an e x p r e s s i o n A log ~K-k f .

(21)

M e a n M o t i o n s a n d V a l u e s of t h e R i e m a n n Z e t a F u n c t i o n . 117

a branch of arg F(s) satisfies in this rectangle, and a f o r t i o r i [,~" -- s* I < r, an inequality

l arg I"(.,')- arg F(.,.*)I ~ A log ( K + I).

in the circle

By the familiar inequality ~

(o, o) I _<- 4 , v

~ 1 "

for a harmonic function u(x, y) in the circle x ~ + y~ =<- r-', for which [u (x, Y) I =< J l , we obtain the desired result.

L e m m a 8. I f we put

I F ( s ) ] , , = max {]F(s)[,ml f o r o < m ~ I, the integral

r)'

l - - j ' ( l o g IF(a +

it) Ira--

Iogl/"(a +

it) t)dt

7

satisfies for ~ < 7 ~ cT ~ 89 :and ~l < a =< fit a,n inequality

(IS) ] ~ A(m) log ~ (K § ,),

where A (n 0 -~ o as m -~ o."

(=> o)

Proo[: Since m < I

log ] F ( a + i t ) I . , - log I F ( a + it)] <= - log- ] F ( a + it)]."

H e n c e by L e m m a 5 f o r a l < a < { / 1 and I t [ < 8 9

log [ F (a + i t)1,,, -- log ] F (a + i t)[ ~ -- log [ I"I (.") ] -- ~ log [ s -- s,, ! A"

< A [ o g ( K + I ) ~ l o g I t - t,I.

Since ,,= 1

-flog lt--t,,ldt

< - - f l o g - J u } , t , , J = e

*' - - 1

for any t,,, we find t h a t

I < . 4 1 o g ( K + ] ) + . ~ , and hence, on using L e m m a 4, t h a t

(I 6) ] =< A log (K + I).

I Cf. S e h w a r z [[I, w 6.

I Instead of log'-(K+ I) w e might use ally 'positive function which does not take arbitrarily small values and which tends to infinity m o r e rapidly than log ( K + I).

a In analogy to the notation l o g + x for the function m a x {log x, o}, x > o, w e denote by log- X the fimelion rain {log x, o}, x > o. T h e function -- iog:-x is non-negative and decreasing;

moreover, if x = x 1 . . , x N, w e have - - l o g - x ~ - - I o g - x t . . . I o g - x N.

(22)

118 Vibeke Borehsenius and Borge Jessen,

This estimate does n o t depend on m and implies (I 5) for every m. I t r e m a i n s to prove t h a t if ~ > o is given, then I ~ t l o g s ( K + I) for - - 8 9 < ~ 8 9 and

~1 ~ a ~/~1, provided t h a t m is sufficiently small. From (I6) it follows t h a t I ~ r log ~ ( K + I) for all m, provided t h a t K ~ (some) K o depending on r. Thus, to complete the proof we m u s t show t h a t I ~ r l o g ~ ( K + I) for K ~ < h o, when m is sufficiently small. I t will be sufficient to prove t h a t I X ~ log ~ (k + r).

W h e n K=</~o, L e m m a 4 shows t h a t

N~No=A

log (K0+ I), and L e m m a 5 then shows t h a t when s belongs to RI(O) a n d all Is--s~]-->---r, where o < r < I, then

r.V r.~'o

[F(s)[=>(K+ I) a ~(K o+I) A"

Thus, if we p u t

rNo

(Ko+ P'

the total length of those sub-intervals of } tl =< 89 in which the i n t e g r a n d in / is positive, is at most N 2 r . Consequently

3"r

9 z a logIK + f l o g I-I t"

--.Vr .V. r

=<

a log (K0+ ,) N o f log-I,, I

- X o r

The last expression tends to zero as r - ~ o. H e n c e I < r log ~ (k + I) when r is sufficiently small, i. e. when m is sufficiently small.

Connected with L e m m a 8 is the following lemma, which will be used later on in the p r o o f of T h e o r e m 3.

L e m m a 9. The integral

3

J== flog

[ F ( a +

it)[ dt

7

satisfies for - - 89 _--< 7 < ~ ~ 89 and al ----< a ~ fll an inequality [ J [ =< A log ( K + I).

Proof

W e have

d d

J = f log+[F(a+ it)[dt f log-[F((r+it)[dt.

7 7

The first integral on the right is < log* K < log ( K + 1). The second integral is the integral I of L e m m a 8, for r e = I , which by (i6) is = < A l o g ( K + I).

(23)

Mean Motions and Values of the Riemann Zeta Function. 119

Remark.

All the p r e c e d i n g l e m m a s r e m a i n valid if in t h e estimates on t h e r i g h t we replace log ( K + I) or log ~ ( K + I) by

Kq,

w h e r e q is a given positive n u m b e r .

14. W e now t u r n to t h e p r o o f of T h e o r e m I. On a c c o u n t of L e m m a 3 we m a y apply the lemmas of w x3 to t h e f u n c t i o n s f ( s +

ito)

and f n ( s + i t 0 ) a n d h e r e b y o b t a i n estimates on t h e f u n c t i o n s

f(s)

and

f~(s)

in

Ba(to).

I n s t e a d of t h e n u m b e r K we m a y use t h e n u m b e r s

K(to)

a n d

K,(to)

i n t r o d u c e d in L e m m a I.

F r o m L e m m a 81 it t h u s follows t h a t f o r aa _--< a _--< fll

a n d

to+ 89

f (log If('~ + i t ? l . , -

tu- 89

log I f(,~ + i t;: I)dt <=

A

(m)K (to) v

to+89

f (log If. (,7 + i t~ I,,, - log If,, ::~ + i t~l) ,t t __< A (.,) K,, (to)".

to-

L e t us now s u p p o s e , as we m a y a c c o r d i n g to w zo, t h a t p _--< I. T h e n if ul a n d u~ are b o t h ~ m

l i o g ~,~ - l o g , , ~

I ~

l o g (,,, + I , , . - ,,~

I)

- l o ~ , , , = < . I . . - ~,~

I",

where a is the (finite) u p p e r b o u n d of (log (m + x) - - log

m)/x ~

f o r x > o. H e n c e

log If(s)I-,

- l o g

If.(s)I,,, I ~ a If(s)I.,

-

I j;,(8)Im

I p ~ a

If(s)

- f . ( s ) I p

a n d c o n s e q u e n t l y f o r al =< a _--</~t to+ ~,

f l o g

!f(a + i t)I,..-- log If. (a + it)I-I d t

<__ ~ L .

(to)".

tQ- 89

I t f o l l o w s t h a t f o r t~ 1 ~ o" <: ~1

_ 7 l o g l f . ( o + i t l l d t

7 ' 7

_--< A ( m ) ~ I

K(to)"dto+ A(m) K,,(to)Vdto+ a L,,(to)Vdto .

7- 89 " z - t " / - t

z W i t h 7 = - - ~, 6 = 8 9 and w i t h A(m) K p on the right instead of A / m ~ : l o g ~ ( K + I ~ .

Références

Documents relatifs

Since the sequence {F^} converges uniformly on C^ to F, we conclude that given N&gt;o, there exists n^eZ,, n^&gt;_m^ such that if n and n' are integers not less than n^ then

of this fact we shall prove a new omega result for E2(T), the remainder term in the asymptotic formula for the fourth power mean of the Riemann zeta-function.. We start

evaluators associated to the Riemann zeta function and the Dirichlet L- functions have been shown here to be special instances of a more

Ap´ ery of the irrationality of ζ(3) in 1976, a number of articles have been devoted to the study of Diophantine properties of values of the Riemann zeta function at positive

Furthermore, Ullrich (1989, Section 3.5) observes too that other mathematicians dealt with questions concerning entire function factorization methods, amongst whom are just Enrico

In this paper we shall continue our pursuit, specializing to the Riemann zeta-function, and obtain a closed form evaluation thereof at all rational arguments, with no restriction to

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des