• Aucun résultat trouvé

systems and synthetic biology for biorefineries to make sustainable chemicals

N/A
N/A
Protected

Academic year: 2022

Partager "systems and synthetic biology for biorefineries to make sustainable chemicals"

Copied!
41
0
0

Texte intégral

(1)

Andrew Tolonen Genoscope

atolonen@gmail.com

systems and synthetic biology for biorefineries

to make sustainable

chemicals

(2)

a major scientific challenge is to find way to balance the global carbon cycle

R Phil. Trans. R. Soc. B 2008;363:815-830

(3)

http://www.abakus.be

biorefinery: renewable, carbon balanced

production of biocommodities

(4)

biorefineries will produce many useful polymers

Rehm 2010

(5)

http://www.enviropack.org.uk

poly-lactic acid

chitin

http://www.ecovativedesign.com/

alginate

examples of renewable biomaterials

www.alibaba.com

spider silk

hanopolis.com

(6)

biorefineries will also produce renewable fuels

http://www.energy-enviro.fi

www.coskata.com

www.qteros.com

(7)

US oil consumption and ethanol production

US oil consumption: http://tonto.eia.doe.gov

US ethanol production: http://www.ethanolrfa.org

(8)

US corn production

Data from http://www.nass.usda.gov

(9)

future corn yields

28% improved yields by 2030

corn data from http://www.nass.usda.gov

(10)

we cannot grow enough corn to replace petroleum!

http://www.chicagoboyz.net

(11)

data from http://www.khoslaventures.com

cellulosic biomass can replace corn to

make biofuels at larger scale

(12)

McKinsey and Co.

Perlack et al., 2005 DOE/USDA report

cellulosic feedstocks are abundant, inexpensive and reduce GHG emissions

Data from Renewable Fuels Assn

(13)

hemicellulose (1,4-beta-D-xylopyranoside) 20-30% biomass

cellulose (1,4-beta-D-glucopyranoside) 35-50% of biomass

pectin α-(1-4) galacturonic acid ~ 10%

biomass

Stricklen et al, 2008

however, plant biomass is tough for microbes to

eat

(14)

a microbe that can convert biomass to fuel in a single step is ideal

Lynd et al, 2005

(15)

Clostridium phytofermentans: a new opportunity

for cellulosic ethanol

(16)

Clostridium phytofermentans (Cphy) ferments cellulosic biomass to ethanol and hydrogen

1 micron

Cphy genome has 161 carbohydratases (CAZy)

(17)

"la vie sans l'air" -Louis Pasteur 1862

Cphy is an obligate anaerobe

(18)

Chaim Weizmann: clostridia, cordite, and the founding of Israel

http://www.lesjones.com

http://www.cyber- heritage.co.uk

http://www.wereldoorlog1418.nl

(19)

Clostridial fermentation plant http://www.world-atlas.us

"There is only one thing I want: A national home for my people." -Chaim Weizmann

http://www.trumanlibrary.org

http://www.lonklab.ac.uk

(20)

1. Systems biology: identify key enzymes/pathways 2. Synthetic biology: genome engineering

fuels biocommodities

my research focus: new technologies

new generation

biorefineries

(21)

metagenomics for new enzymes from the cow rumen

Identified 27,755 putative carbohydrate-active genes

Hess et al, 2011

(22)

...and also metagenomics of the termite gut

Warnecke et al, 2007

Hongoh 2011

(23)

many putative cellulolytic enzymes sequenced, but what are their substrates?

Cantarel et al, 2009

www.cazy.org

(24)

systems biology of cellulosic bioconversion

Tolonen et al, 2011

(25)

NH 2

HOOC NH 2

HOOC

NH 2

HOOC NH 2

HOOC NH 2

HOOC NH 2

HOOC

NH 2

HOOC NH 2

HOOC

Sa m ple P re pa rati on Da ta Ac qu isiti on Da ta An aly sis

protein lysate by french press proteins peptides Cphy culture

0 20 40 60 80 100

R el at iv e A bu nd an ce

30 40 50 60 70 80 90 100 110 Retention time [min]

Survey MS

MS/MS

LC-MS/MS peparation of Peptides MS Spectrum MS/MS Spectra

MS/MS

>ORFP:YAL008W FUN14, Chr I from 136912-137508 MTLAFNMQRLVFRNLNVGKRMFKNVPLWRFNVANKLGKPLTRSVGLGGAGI VAGGFYLMN RQPSKLIFNDSLGAAVKQQGPLEPTVGNSTAITEERRNKISSHKQMFLGSLFGVVLGVTV AKISILFMYVGITSMLLCEWLRYKGWI RINLKNIKSVIVLKDVDLKKLLIDGLLGTEYMG FKVFFTLSFVLASLNANK*

>ORFP:YAL009W SPO7, Chr I from 135852-136631 MEPESIGDVGNHAQDDSASIVSGPRRRSTSKTSSAKNIRNSSNISPASMIFRNLLILEDD LRRQAHEQKILKWQFTLFLASMAGVGAFTFYELYFTSDYVKGLHRVILQFTLSFISITVV LFHISGQYRRTIVIPRRFFTSTNKGIRQFNVKLVKVQSTWDEKYTDSVRFVSRTIAYCNI YCLKKFLWLKDDNAIVKFWKSVTIQSQPRIGAVDVKLVLNPRAFSAEI REGWEIYRDEFW AREGARRRKQAHELRPKSE*

>ORFP:YAL010C MDM10, Chr I from 134182-135663, reverse complement MLPYMDQVLRAFYQSTHWSTQNSYEDITATSRTLLDFRIPSAIHLQISNKSTPNTFNSLD FSTRSRINGSLSYLYSDAQQLEKFMRNSTDIPLQDATETYRQLQPNLNFSVSSANTLSSD NTTVDNDKKLLHDSKFVKKSLYYGRMYYPSSDLEAMIIKRLSPQTQFMLKGVSSFKESLN VLTCYFQRDSHRNLQEWI FSTSDLLCGYRVLHNFLTTPSKFNTSLYNNSSLSLGAEFWLG LVSLSPGCSTTLRYYTHSTNTGRPLTLTLSWQPLFGHISSTYSAKTGTNSTFCAKYDFNL YSIESNLSFGCEFWQKKHHLLETNKNNNDKLEPISDELVDINPNSRATKLLHENVPDLNS AVNDIPSTLDIPVHKQKLLNDLTYAFSSSLRKIDEERSTIEKFDNKINSSIFTSVWKLST SLRDKTLKLLWEGKWRGFLISAGTELVFTRGFQESLSDDEKNDNAISISATDTENGNIPV FPAKFGIQFQYST*

>ORFP:YAL011W YAL011W, Chr I from 132159-134075 MRFGSNARRRQVRMPAVLRTRSKESSIEQKPASRTRTRSRRGKRGRDDDDDDDDEESDDA YDEVGNDYDEYASRAKLATNRPFEIVAGLPASVELPNYNSSLTHPQSIKNSGVLYDSLVS SRRTWVQGEMFELYWRRPKKIVSESTPAATESPTSGTIPLIRDKMQKMCDCVMSGGPHTF KVRLFILKNDKIEQKWQDEQELKKKEKELKRKNDAEAKRLRMEERKRQQMQKKI AKEQKL QLQKENKAKQKLEQEALKLKRKEEMKKLKEQNKNKQGSPSSSMHDPRMIMNLNLMAQEDP KLNTLMETVAKGLANNSQLEEFKKFIEIAKKRSLEENPVNKRPSVTTTRPAPPSKAKDVA EDHRLNSITLVKSSKTAATEPEPKKADDENAEKQQSKEAKTTAESTQVDVKKEEEDVKEK GVKSEDTQKKEDNQVVPKRKRRKNAIKEDKDMQLTAFQQKYVQGAEIILEYLEFTHSRYY LPKKSVVEFLEDTDEIIISWIVIHNSKEIEKFKTKKIKAKLKADQKLNKEDAKPGSDVEK EVSFNPLFEADCPTPLYTPMTMKLSGIHKRFNQI IRNSVSPMEEVVKEMEKILQIGTRLS GYNLWYQLDGYDDEALSESLRFELNEWEHAMRSRRHKR*

>ORFP:YAL012W CYS3, Chr I from 130798-131982 MTLQESDKFATKAIHAGEHVDVHGSVIEPISLSTTFKQSSPANPIGTYEYSRSQNPNREN LERAVAALENAQYGLAFSSGSATTATILQSLPQGSHAVSIGDVYGGTHRYFTKVANAHGV ETSFTNDLLNDLPQLIKENTKLVWIETPTNPTLKVTDIQKVADLIKKHAAGQDVI LVVDN TFLSPYISNPLNFGADIVVHSATKYINGHSDVVLGVLATNNKPLYERLQFLQNAIGAIPS PFDAWLTHRGLKTLHLRVRQAALSANKIAEFLAADKENVVAVNYPGLKTHPNYDVVLKQH RDALGGGMI SFRIKGGAEAASKFASSTRLFTLAESLGGIESLLEVPAVMTHGGI PKEARE ASGVFDDLVRISVGIEDTDDLLEDIKQALKQATN*

>ORFP:YAL013W DEP1, Chr I from 129268-130356 MSQQTPQESEQTTAKEQDLDQESVLSNIDFNTDLNHNLNLSEYCISSDAGTEKMDSDEEK SLANLPELKYAPKLSSLVKQETLTESLKRPHEDEKEAIDEAKKMKVPGENEDESKEEEKS QELEEAIDSKEKSTDARDEQGDEGDNEEENNEEDNENENEHTAPPALVMPSPIEMEEQRM TALKEITDIEYKFAQLRQKLYDNQLVRLQTELQMCLEGSHPELQVYYSKIAAIRDYKLHR AYQRQKYELSCINTETIATRTFIHQDFHKKVTDLRARLLNRTTQTWYDINKERRDMDIVI PDVNYHVPIKLDNKTLSCITGYAAHDSCAIPASPWQRTSLAKASSTATEPTRWTNSKSLW TE*1

2

MS/MS Spectra Protein Sequence Database

Peptide Identifications Search

Algorithm (SEQUEST)

Protein Identifications trypsin

how proteins are identified by mass spectrometry

(26)

quantify protein differences between treatments by reduction dimethylation (ReDi)

label amines with methyl isotopes

glucose

cellulose

Mix 1:1

quantify expression changes using MS1 peak area ratios

Boersema et al, 2009

whole proteome

(27)

distinct CAZy repond to hemicellulose and cellulose

significant differential expression

cellulose=orange, hemicellulose=cyan, both=green localization

secreted=triangle, intracellular=circle

Tolonen et al, 2011

(28)

interaction map of proteome expression changes

Tolonen et al, 2011

(29)

deconstruction and fermentation model

orange: cellulose cyan: hemicellulose purple: glucose

Tolonen et al, 2011

(30)

Synthetic biology: once we know the enzymes, we can engineer the microbes

de novo construct

biocatalysts from model microbes

http://ucsdnews.ucsd.ed

nature.com

http://www.lesjones.com www.trumanlibrary.org

study, modify natural isolates

(31)

MAGE is a method to make many small changes

to the E .coli genome

(32)

How MAGE works

(33)

What about engineering novel bacteria? (ie Clostridium

phytofermentans)

(34)

Delivery of foreign DNA into bacteria

(35)

Plasmid DNA transfer to bacteria

DNA delivery by conjugation with E. coli

Tolonen et al, 2009

Plasmid for targeted chromosomal

insertions

(36)

dilution 1x 10 -6 x dilution

we need antibiotics to determine which cells got the

plasmid DNA

(37)

Now we have DNA in the cell. How do we get it into the genome?

Homologous recombination

(38)

group II introns are more efficient than recombination

Intron ltra

(39)

a single cellulase is required for cellulose degradation

glucose cellobiose hemicellulose

(40)

Cphy3367: a "Rambo" cellulase

none cphy3367 cphy3368 both

images from Zhang et al., 2010 (except Rambo)

Cphy3367: a "Rambo" cellulase

none cphy3367 cphy3368 both

(41)

Now we can efficiently modify the Cphy

genome, our future directions are to use systems

biology to guide genome engineering

Références

Documents relatifs

Once the ancestral interaction networks are inferred, using subtype analyses for pairs of networks within each Domain of life, phylosystemics can determine what extant major

Michaelis-Menten kinetics, Hill kinetics of order n and more general kinetics come from reductions of elementary reaction systems with mass action law kinetics. and more

The guard is a Boolean predicate that determines in which states the transition is possible, the rate is the real-valued function that evaluated in the current state gives the

but two RTK receptors with their ligands can bind together on the membrane to form an active receptor complex (L-R)::membrane + (L-R)::membrane <=>

• Add EG f to the states for which there exists a path leading to a non trivial strongly connected component of the subgraph of states satisfying f. Space and

09/02/2017 François Fages – Pauline Traynard - MPRI C2-19 14..

Our model predicts that normal EGFR signalling results in a transient ERK signal due to receptor degradation, NGF signalling results in a sustained ERK signal (via the Rap1 pathway)

When, for example, a protein- coding gene is found, the next step is to predict the protein or the proteins (in the case of a gene that give rise to several spliced variants), and