• Aucun résultat trouvé

EXCIMER FORMATION IN RARE GAS DISCHARGE AFTERGLOWS

N/A
N/A
Protected

Academic year: 2021

Partager "EXCIMER FORMATION IN RARE GAS DISCHARGE AFTERGLOWS"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219157

https://hal.archives-ouvertes.fr/jpa-00219157

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXCIMER FORMATION IN RARE GAS DISCHARGE AFTERGLOWS

W. Wieme, J. Lenaerts

To cite this version:

W. Wieme, J. Lenaerts. EXCIMER FORMATION IN RARE GAS DISCHARGE AFTERGLOWS.

Journal de Physique Colloques, 1979, 40 (C7), pp.C7-37-C7-38. �10.1051/jphyscol:1979718�. �jpa-

00219157�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, suppZ6ment n07, Tome 40, J u i l Z e t 1979, nage C7- 37

EXCIMER FORMATION IN RARE GAS DISCHARGE AFTERGLOWS

W. Wieme, J. Lenaerts.

Laboratoriwn uoor Natuurkunde, Ri j k s u n i v e r s i t e i t , Rozier 44 Gent, BeZgiwn.

I . I n t r o d u c t i o n .

T h e V U V c o n t i n u u m i n r a r e g a s e s h a s b e e n e x t e n s i v e l y s t u d i e d w i t h d i f f e r e n t m e t h o d s .

-

D i s c h a r g e a f t e r g l o w s w e r e m a i n l y s t u d i e d a t l o w p r e s s u r e s ( 0 , l - 2 0 T o r r ) . A b s o r p t i o n m e a s u r e m e n t s o n t h e 3 ~ m e t a s t a b l e s t a t e 2

e s t a b l i s h e d t h e r o l e o f t h r e e - b o d y c o l l i - s i o n s : R ( ~ P , ) + 2 R ( ' S o ) + R, + R ( 1 R e a c t i o n r a t e s f o r p r o c e s s ( 1 ) a r e : A r : 1 8 . 5 p 2 [ 1 1 K r : 4 4 p 2 [ 2 1 X e : 8 7 p 2 [ 3 1

-

E x c i t a t i o n by h i g h l y e n e r g e t i c p a r t i c l e s ( a s o u r c e o r e - b e a m ) , u s u a l l y a t h i g h e r p r e s s u r e s ( 1 0 0 - 1 0 0 0 T o r r )

.

A s p r e c u r s o r s a l l 4 s t a t e s o f t h e n p 5 ( n + l ) s c o n f i g u r a t i o n h a v e b e e n i n v o l v e d . R e a c t i o n r a t e s f o r ( 1 ) w e r e s t a t e d a s :

A r : 10 p 2 [ 4 1 Kr : 4 6 p 2 [ 9 ] X e : 4 0 p 2 [ 6 1 F o r t h e 3 ~ 1r e s o n a n t s t a t e r e a c t i o n ( 2 ) h a s b e e n e s t a b l i s h e d w i t h r a t e c o n s t a n t s :

R ( ~ P ~ ) + 2 R ( ' S o ) + R; ( 2 ) A r : 2 1 p 2 C 8 1 Kr : 8 , 4 5 p 2 C 5 1 Xe : 4 6 p 2 [ 6 1

-

O p t i c a l e x c i t a t i o n u s i n g s y n c h r o t r o n r a - d i a t i o n h a s b e e n a p p l i e d t o K r a n d Xe [ 7 ] . T h i s y i e l d s f o r r e a c t i o n ( 2 )

K r : 2 3 p 2 Xe:36 p 2 w h e n R: i s t h e 0: s t a t e K r : 4 6 p 2 Xe:63 p 2 w h e n R: i s t h e '3~' s t a t e . T h e 0: s t a t e c a n e i t h e r d e c a y r a d i a t i v e l y , g o r c o l l i s i o n a l l y t h r o u g h :

R : ( o ~ ) + I l ( l S o ) R:('r3~=) + R ( ' S ~ ) ( 3 ) R e a c t i o n c o n s t a n t s a r e :

Kr : 3 , 3 1 0 6 p Xe : 2 , 8

-

O t h e r e x p e r i m e n t a l t e c h n i q u e s a r e n o t r e - v i e w e d f o r l a c k o f s p a c e . G e n e r a l l y , we f i n d t h a t l o w p r e s s u r e a f t e r g l o w d a t a t e n d t o g i v e r e a c t i o n r a t e s r o u g h l y t w i c e t h o s e o b t a i n e d a t h i g h p r e s s u r e s w i t h o t h e r me- t h o d s . Low p r e s s u r e a b s o r p t i o n m e a s u r e m e n t s b e i n g t h e o n l y o n e s w h e r e t h e p r e c u r s o r s c a n b e p o s i t i v e l y i d e n t i f i e d , we r e p o r t m e a s u r e - m e n t s o f t h e V U V e m i s s i o n i n d i s c h a r g e a f - t e r g l o w s a t p r e s s u r e s b e t w e e n 1-150 T o r r ,

i n a n a t t e m p t t o e l u c i d a t e t h i s d i s c r e p a n c y . 2 . T h e o r y .

I n o u r a n a l y s i s we u s e a f o u r - l e v e l m o d e l ? L e t R r e p r e s e n t t h e 3 ~ 1r e s o n a n c e s t a t e , M t h e ' P 2 m e t a s t a b l e s t a t e ; P a n d S i n d i c a -

t e t w o m o l e c u l a r l e v e l s w h i c h c a n b e p o p u - l a t e d t h r o u g h c o l l i s i o n p r o c e s s e s . We g i v e n o a s s i g n m e n t t o t h e s e l e v e l s , a s t h e y may s t a n d f o r a m u l t i t u d e o f v i b r a t i o n a l l e v e l s b e l o n g i n g t o d i f f e r e n t e x c i m e r s t a t e s . We

d e f i n e :

8 d e c a y c o n s t a n t f o r t h e e s c a p e o f i m p r i - s o n n e d r e s o n a n c e r a d i a t i o n

aRSaRMaMRaMPCXSPaPS r a t e c o e f f i c i e n t s f o r c o l l i s i o n - i n d u c e d t r a n s i s t o r s R t o S,R t o M, M t o R , M t o P , S t o P , P t o S, r e s p e c t i v e -

l y . E x c i m e r s S a n d P d e c a y w i t h t i m e c o n - s t a n t

e

a n d r r e s p e c t i v e l y .

T h e f o l l o w i n g s e t o f d i f f e r e n t i a l e q u a - t i o n s r e s u l t s :

-

dR =

d t - ( B + h R M + a R S ) R + a MR M

-

dS d t = - ( e + a S p ) s + a ~ + ~'psP R

We n e g l e c t b a c k w a r d t r a n s i t i o n s R+M a n d S+R.

We o b t a i n f o r P a n d S :

P = ~ , e ' ~ ~ + ~ ~ e - P ~ + ~ , e - ~ f t + ~ , , e - d s t

s

= c , ~ - ~ ~ + c , ~ - P ~ + c , ~ - ~ ~ t + ~ , e - d s

5

,

= [ - ( k ?

J

(m-k) '+ 4 a S p a p g I

2

a = f l + aRM + a R S

,

b = aMR + a MP m = B+ a

P S , k = 0 + a S P

W i t h r e a c t i o n r a t e s known f r o m l i t e r a t u r e , we f i n d t h a t f o r p r e s s u r e s up t o 6% T o r r , w i t h i n 5 X : d f = a , d s = b S i m p l i f i c a t i o n o f a a n d p i s more d i f f i - c u l t , a s n o r e l i a b l e v a l u e s o f t h e c o e f f i - c i e n t s B , p , a p S a s p a r e k n o w n . I t s e e m s how- e v e r t h a t a t p r e s s u r e s up t o a b o u t 5 0 T o r r

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979718

(3)

we have df, ds < < m. k.

3. Experimental.

The discharge tube is discribed in [3]. It is followed by a McPherson 2 1 8 monochroma- tor. The detector is a EMI-GENCOM G-26E315.

The P M signal is analysed with a DATALAB DL 920 transient recorder with a time resolu- tion of 5 0 ns. The intensity decay is fit-

ted to a curve : I = A ~ - P ~ + B ~ - ~ ~ ~ + c ~ - ~ s ~ . The fast decay ~ e may include several - ~ ~

transient processes and has not been analy- sed, df and ds have been defined earlier.

4. Results.

We distinguish between :

a) The wavelengths adjacent to the 3 ~ 1 - ' ~

resonance line (first continuum).

b) The so-called second continuum with a maximum at 170nm(Xe),150nm(Kr)& 13Onm(Ad No significant wavelength dependence was found throughout this second continuum. A typical result i.s .given for Xe in Fig.1.

The full line is a curve fit to the d va- lues from the second continuum at pressures

< 2 0 Torr.

In complete agreement with absorption s tu- dies, we find : Ar : ds = 45p + 18p2 (4)

Kr : ds = 82p + 41p2 (5) Xe : ds = 113p + 8 7 p 2 (6) At higher pressures the observed ds is al- ways slower than predicted by (4) (5) or (6).

At the same time, ds becomes highly depen- dent on the discharge current. This implies that interactions involving electrons beco- me important. The points presented in Fig. 1 are taken in a diffuse discharge at the lo- west possible current.

A computer simulation, including dimeric ion formation and recombination was attemp- ted. As n o precise values of electron den- sity and temperature were available, these were treated as a parameter. The computer predicted decays show an exponential decay,

corresponding to ds, with a time constant 10 to 200 % below the full line of Fig.1, the lower n giving the best approximation.

The first continuum has only been measured in Xe. It decays with rate constant df which which is close to the measured decay of the

3 ~ ,resonance line, reported in [IO](dashed line).

4. Discussion.

Our results indicate that reaction rates obtained from 3 ~ absorption measurements 2

in Ar, Kr and Xe, are indeed reliable. The discrepancy with high pressure results is probably partly due to other precursors, partly to neglect of electron collision ef- fects. Collision induced transitions such as (3) also become increasingly important at higher pressures.

5. References.

[ I ] W . W i e m e , J . W i e m e - L e n a e r t s , P h y s . L e t t . 4 7 A , 37,1974.

[21 R.Turner,Phys.Rev.l58,121,1967.

[31 W.Wieme,J.Phys.B,7.850,1974.

C41 N.Thonnard,G.S.Hurst,Phys.Rev.A5,1110, 1972.

[51 P.K.Leichner,R.J.Ericson,Phys.Rev.A9, 251,1974.

[61 P.K.Leichner et al.,Phys.Rev.A13,1787, 1976.

[71 R.Brodmann,G.Zimmerer,J.Phys.B,10,3395, 1977.

181 M.BourSne et al.,J.Chem.Phys.63,1668,75.

C91 R . B o u c i q u 6 , P . M o r t i e r , J . P h y s .D3, 1905,1970.

[lo]

W.Wieme at al. ,submitted for this c o n f e rence.

Références

Documents relatifs

(a) Demand-driven (the default model in OpenMusic): The user requests the value of node C. This evaluation requires upstream nodes of the graph to evaluate in order to provide C

The current densities obtained here in the “physicochemical” synthetic seawater show the interest of going ahead with the design of a “biological” synthetic seawater, which would

The political and economic interconnections between the choice elements in long term planning are illustrated by the relations between the choice of

We previously defined the original cytotoxic mechanism of anticancerous N-phenyl-N’-(2-chloroethyl)ureas (CEUs) that involves their reactivity towards cellular proteins

Semiconducting SWCNT extraction efficiency plotted as a function of temperature for Pluronic F108 dispersed laser ablation, plasma torch, and arc discharge SWCNTs separated by DGU..

The results of our studies indicate that four factors must be considered when optimizing dye selection and loading to max- imize luminosity of a hybrid SNP dye : molecular

The following discussion will focus on the short to medium term impacts that could be realized within three areas of focus “ feedstock optimization, utilization of microorganisms