• Aucun résultat trouvé

3D-2D Stokes-Darcy coupling for the modelling of seepage with an application to fluid-structure interaction with contact

N/A
N/A
Protected

Academic year: 2021

Partager "3D-2D Stokes-Darcy coupling for the modelling of seepage with an application to fluid-structure interaction with contact"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-02417042

https://hal.inria.fr/hal-02417042

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

3D-2D Stokes-Darcy coupling for the modelling of

seepage with an application to fluid-structure interaction

with contact

Erik Burman, Miguel Angel Fernández, Stefan Frei, Fannie Gerosa

To cite this version:

Erik Burman, Miguel Angel Fernández, Stefan Frei, Fannie Gerosa. 3D-2D Stokes-Darcy coupling for

the modelling of seepage with an application to fluid-structure interaction with contact. Numerical

Mathematics and Advanced Applications ENUMATH 2019, Sep 2019, Egmond aan Zee, Netherlands.

�10.1007/978-3-030-55874-1_20�. �hal-02417042�

(2)

3D-2D Stokes-Darcy coupling for the modelling

of seepage with an application to fluid-structure

interaction with contact

Erik Burman, Miguel A. Fernández, Stefan Frei and Fannie M. Gerosa

Abstract In this note we introduce a mixed dimensional Stokes-Darcy coupling

where a d dimensional Stokes’ flow is coupled to a Darcy model on the d − 1 dimensional boundary of the domain. The porous layer introduces tangential creeping flow along the boundary and allows for the modelling of boundary flow due to surface roughness. This leads to a new model of flow in fracture networks with reservoirs in an impenetrable bulk matrix. Exploiting this modelling capability, we then formulate a fluid-structure interaction method with contact, where the porous layer allows for mechanically consistent contact and release. Physical seepage in the contact zone due to rough surfaces is modelled by the porous layer. Some numerical examples are reported, both on the Stokes’-Darcy coupling alone and on the fluid-structure interaction with contact in the porous boundary layer.

1 Introduction

In numerous environmental or biomedical applications there is a need to model the coupling between a flow in a reservoir and flow in a surrounding porous medium. Erik Burman

Department of Mathematics, University College London, Gower Street, London UK, WC1E 6BT. e-mail: e.burman@ucl.ac.uk

Miguel A. Fernández

Inria, 75012 Paris, Sorbonne Université & CNRS, UMR 7598 LJLL, 75005 Paris. e-mail: miguel.fernandez@inria.fr

Stefan Frei

Department of Mathematics & Statistics, University of Konstanz, Germany. e-mail: stefan.frei@uni-konstanz.de

Fannie M. Gerosa

Inria, 75012 Paris, Sorbonne Université & CNRS, UMR 7598 LJLL, 75005 Paris, France. e-mail: fannie.gerosa@inria.fr

(3)

2 Erik Burman, Miguel A. Fernández, Stefan Frei and Fannie M. Gerosa This is particularly challenging if the porous medium is fractured and the bulk matrix has very low permeability. Typically the fractures are modelled as d − 1 dimensional manifolds, embedded in a d dimensional porous bulk matrix. For the modelling of the fractured porous medium we refer to [3]. Observe however that if the bulk permeability is negligible the fluid in the reservoir can not penetrate into the fractures since the d − 1 dimensional manifolds have an intersection of the reservoir boundary of d −1 measure zero. This means that such a model can not be used for the fluid flow between two reservoirs connected by a fracture in an impenetrable medium. Here we propose to introduce a Darcy equation for the tangential flow on the boundary of the reservoir. Since this equation is set on a d − 1 dimensional manifold it can provide an interface allowing for flow from the reservoir to the cracks. The flow on the boundary communicates with the flow in the cracks through continuity of pressure and conservation expressed by Kirchhoff’s law. This gives a cheap and flexible model for flow in reservoirs connected by fractures.

Our original motivation for this model is the particular case of fluid structure inter-action with contact where the situation described above occurs when two boundaries enter in contact provoking a change of topology of the fluid domain. It has recently been observed by several authors [1, 4] that the consistent modelling of fluid-structure interaction with contact requires a fluid model, in particular a pressure, also in the contact zone. Indeed, some seepage is expected to occur due to permeability of the contacting bodies or their surface roughness. Otherwise there is no continuous mech-anism for the release of contact and non-physical voids can occur. For instance, it was argued in [1] that a consistent modelling of FSI with contact requires a complete modelling of the FSI-poroelastic coupling. Similar ideas were introduced in [4], but for computational reasons. Indeed, in the latter reference an elastic body immersed in a fluid enters in contact with a rigid wall and to allow for a consistent numerical mod-elling the permeability of the wall is relaxed. This motivates the introduction of an artificial porous medium whose permeability goes to zero with the mesh-size. Both approaches allow for the seepage that appears to be necessary for physical contact and release. However, in case the contacting solids are (modelled as) impenetrable, this seepage must be due to porous media flow in a thin layer in the contact zone due to surface roughness. The complete modelling of the poroelastic interaction of [1] or the bulk porous medium flow of [4] then appears artificial and unnecessarily expensive. For such situations the mixed dimensional modelling suggested above can offer an attractive compromise between model detail and computational cost.

In this note, we will focus exclusively on the modelling aspect. The coupled Stokes-Darcy model is introduced in section 2. Then, in section 3, we show how the ideas of [4] can be used to model FSI with contact together with the mixed-dimensional fluid system. Finally, we illustrate the two model situations numerically in section 4. First, the Stokes’-Darcy reservoir coupling (section 4.1) and then the full FSI with contact (section 4.2). In the latter case, we also give comparisons with the results from [4]. The numerical analysis of the resulting methods will be the subject of future work.

(4)

2 The coupled Stokes-Darcy system

We consider the coupling of a Darcy system in a thin-walled domain Ωl = Σl ×

(−2,2) ∈ Rdfor d = 2, 3 with a Stokes equation in the bulk domain Ω

f. The Darcy problem on Ωl writes ( ul+ K∇pl = 0 ∇ · ul = 0 in Ωl, (1)

where ul denotes the Darcy velocity, pl the Darcy pressure and K is a d × d matrix

that allows for the decomposition

K∇pl= Kτ∇τpl+ Kn∂npl.

We denote the upper boundary of Ωl which couples to Ωf by γf and the outer

boundary by γo. The normal vector n of the middle surface Σl of Ωl is chosen in

such a way that it points towards γo.

By averaging across the thickness , Martin, Jaffré and Roberts derived in [3] an effective equation for the averaged pressure across the thickness

Pl:= 1

∫ 2

−2

pl.

Under the modelling assumption that the average pressure is equal to the mean of the pressures on the upper and lower boundary

Pl =12 pl|γf + pl|γo in Σl, (2)

the authors derived the system        −∇τ· (Kτ∇τPl)= ul,n|γf − ul,n|γo pl|γf = Pl+ K−1 n 4 ul,n|γo+ ul,n|γf in Σl. (3)

Here, ul,n= ul· ndenotes the normal component of the velocity and τ is a tangential

vector of Σl. We will couple (3) to Stokes flow in Ωf

( ρf∂tuf − ∇ ·σf(uf, pf)= 0

∇ · uf = 0

in Ωf, (4)

where uf denotes the fluid velocity, pf the pressure, ρfthe fluid density,

σf(uf, pf):= µ(∇uf + ∇uTf) − pfI,

the fluid Cauchy stress tensor and µ the dynamic viscosity. We assume that the coupling to the Darcy system (1) on γf takes place via the interface conditions

(5)

4 Erik Burman, Miguel A. Fernández, Stefan Frei and Fannie M. Gerosa          σf ,nn= −pl τTσ fn= 0 uf ,n= ul,n on γf, (5)

where σf = ∇uf − pfIand σf ,nn= nTσfn. In the lower porous wall γowe assume

for simplicity that ul,n= 0. Then, the relations (3) can be written as

       −∇τ· (Kτ∇τPl)= uf ,n σf ,nn= −Pl− K−1 n 4 uf ,n in Σl.

Note that the only remaining porous medium variable is the averaged pressure Pl. In

the limit of permeability Kn→0, the system converges to a pure Stokes system with

slip conditions on γf with an extension of the fluid forces into the porous medium

pressure Pl.

We have the following coupled variational problem for (uf, pf, Pl):

             ρf(∂tuf, vf)Ωf + (σf(uf, pf), ∇vf)Ωf + (qf, ∇ · uf)Ωf + Pl, vf ,nΣl+ K−1 n 4 uf ,n, vf ,nΣl = 0, (Kτ∇τPl, ∇τql)Σl− (uf ,n, qlΣl = 0, (6)

for all vf, qf, ql, where n = nf is the outer normal of the fluid domain Ωf.

3 The fluid-structure-poroelastic-contact interaction system

Now, we consider a fluid-structure-contact interaction system with a thin porous layer on the part of the exterior boundary, where contact might take place. The moving boundary of the solid is denoted by Σ(t) and the porous layer by Σl. In absence of

contact, we have the following system of equations ( ρf∂tuf − ∇ ·σf(uf, pf)= 0

∇ · uf = 0

in Ωf(t),

ρs∂td − ∇ ·Û σs(d)= 0 in Ωs(t),

(6)

                   −∇τ· (Kτ∇τPl)= ul,n|γf σf ,nn= −Pl− K−1 n 4 ul,n|γf | {z } σp τTσ fn= 0 in Σl, (7)

where, in addition to the quantities introduced above, ρsdenotes the solid density, d

stands for the solid displacement and σsdenotes the tensor of linear elasticity

σs= λs 2  ∇d+ ∇dT + µs 2 tr  ∇d+ ∇dT .

In addition, we impose that the solid Ωscan not penetrate into the porous medium

Σl

dn− g ≤0, λ ≤ 0, λ(dn− g)= 0 on Σ(t). (8)

Here, g denotes the gap function to Σl and λ is a Lagrange multiplier for the

no-penetration condition defined by

λ = σs,nn−σf ,nn on Σ(t) \ Σl,

λ = σs,nn−σp on Σ(t) ∩ Σl.

The “switch” on the right-hand side occurs, as the solid on one side of Σ(t) couples either to the fluid Ωf or the porous medium Σl on the other side of Σ(t). The

conditions (8) can equivalently be written as λ = γC dn− g −γC−1λ

| {z }



+ on Σ(t)

for arbitrary γC > 0. Using this notation, we can characterise the zone of “active”

contact as follows

Σc(t)= x ∈ Σ(t) | Pγ > 0 .

To summarise, we have the following interface conditions: • Contact condition on Σ(t): dn− g ≤0, λ ≤ 0, λ(dn− g)= 0 on Σ(t). • Kinematic coupling on Σf si(t)= Σ(t)\Σl uf = Ûd on Σf si(t). • Dynamic coupling on Σ(t): σsn= λn − σpn= γC[Pγ]+n −σpn on Σ(t) ∩ Σl, σsn= λn − σfn= γC[Pγ]+n −σfn on Σ(t) \ Σl.

(7)

6 Erik Burman, Miguel A. Fernández, Stefan Frei and Fannie M. Gerosa We have the following Nitsche-based variational formulation: Find uf ∈ Vf, pf ∈

Lf, d ∈ Vs, Pl ∈ Vlsuch that (∂tuf, v)Ωf + (∂td, w)Û Ωs + af uf, pf; v, q + as(d, w) − (σfn, v − w)Σ(t)\Σl− (uf − Ûd, σf(v, −q))Σ(t)\Σl + γfsi h (uf − Ûd, v − w)Σ(t)\Σl − (σp, v · n)Σl\Σ(t)− (σp, w · n)Σl∩Σ(t)+ [Pγ]+, w · nΣ(t) + (Kτ∇τPl, ∇τql)Σl− uf ,n, ql  Σl\Σ(t)− dÛn, ql  Σl∩Σ(t)= 0 ∀v ∈ Vf, q ∈ Lf, w ∈ Vs, ql ∈ Vl.

The porous stress σpis given by

σp= −Pl+ K−1 n 4 ul,n|γf = ( −Pl+ K −1 n 4 uf ,n on Σl\ Σ(t) −Pl+ K −1 n 4 dÛn on Σl∩ Σ(t). (9)

4 Numerical experiments

Here we will report on some numerical experiments using the above models. First we consider the mixed dimensional Stokes’-Darcy system and then the fluid-structure interaction system with contact and porous layer in the contact zone.

4.1 Stokes-Darcy example

In this example, we consider two disconnected fluid reservoirs, the domain Ωf,

connected through a thin-walled porous media located on the bottom wall Σl, as

⌃l <latexit sha1_base64="mFL3r+wWe0jYcRL997wuZbcNI7k=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRjDxRHYhRo9ELx4xykeEDemWLjS03U3bNSEb/oUXDxrj1X/jzX9jgT0o+JJJXt6bycy8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvpn57SeqNIvkg5nE1Bd4KFnICDZWeiz37tlQ4D4v94slt+LOgVaJl5ESZGj0i1+9QUQSQaUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSiQXVfjq/eIrOrDJAYaRsSYPm6u+JFAutJyKwnQKbkV72ZuJ/Xjcx4ZWfMhknhkqyWBQmHJkIzd5HA6YoMXxiCSaK2VsRGWGFibEhFWwI3vLLq6RVrXi1ysVdtVS/zuLIwwmcwjl4cAl1uIUGNIGAhGd4hTdHOy/Ou/OxaM052cwx/IHz+QOrBpBD</latexit> N f <latexit sha1_base64="rybOAmv4vQYVrqn8WQBP97x/qkA=">AAAB83icbVBNSwMxEM3Wr1q/qh69BFvBU9mtiB6LHvQkFewHdGuZTbNtaJJdkqxQlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q5AU84kbRhmOG3HioIIOG0Fo+up33qiSrNIPphxTLsCBpKFjICxkl/2b0AIeLzrheVeseRW3BnwMvEyUkIZ6r3il9+PSCKoNISD1h3PjU03BWUY4XRS8BNNYyAjGNCOpRIE1d10dvMEn1ilj8NI2ZIGz9TfEykIrccisJ0CzFAvelPxP6+TmPCymzIZJ4ZKMl8UJhybCE8DwH2mKDF8bAkQxeytmAxBATE2poINwVt8eZk0qxXvrHJ+Xy3VrrI48ugIHaNT5KELVEO3qI4aiKAYPaNX9OYkzovz7nzMW3NONnOI/sD5/AHiH5Dv</latexit> N f <latexit sha1_base64="rybOAmv4vQYVrqn8WQBP97x/qkA=">AAAB83icbVBNSwMxEM3Wr1q/qh69BFvBU9mtiB6LHvQkFewHdGuZTbNtaJJdkqxQlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q5AU84kbRhmOG3HioIIOG0Fo+up33qiSrNIPphxTLsCBpKFjICxkl/2b0AIeLzrheVeseRW3BnwMvEyUkIZ6r3il9+PSCKoNISD1h3PjU03BWUY4XRS8BNNYyAjGNCOpRIE1d10dvMEn1ilj8NI2ZIGz9TfEykIrccisJ0CzFAvelPxP6+TmPCymzIZJ4ZKMl8UJhybCE8DwH2mKDF8bAkQxeytmAxBATE2poINwVt8eZk0qxXvrHJ+Xy3VrrI48ugIHaNT5KELVEO3qI4aiKAYPaNX9OYkzovz7nzMW3NONnOI/sD5/AHiH5Dv</latexit> D f <latexit sha1_base64="gBQZWCiv1b8f41Yhyc0r1lYoONY=">AAAB83icbVBNSwMxEM3Wr1q/qh69BFvBU9mtiB6LCnqsYD+gW8tsmm1Dk+ySZIWy9G948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777eRWVtfWN/Kbha3tnd294v5BU0eJIrRBIh6pdgCaciZpwzDDaTtWFETAaSsYXU/91hNVmkXywYxj2hUwkCxkBIyV/LJ/C0LA400vLPeKJbfizoCXiZeREspQ7xW//H5EEkGlIRy07nhubLopKMMIp5OCn2gaAxnBgHYslSCo7qazmyf4xCp9HEbKljR4pv6eSEFoPRaB7RRghnrRm4r/eZ3EhJfdlMk4MVSS+aIw4dhEeBoA7jNFieFjS4AoZm/FZAgKiLExFWwI3uLLy6RZrXhnlfP7aql2lcWRR0foGJ0iD12gGrpDddRABMXoGb2iNydxXpx352PemnOymUP0B87nD9LZkOU=</latexit> D f <latexit sha1_base64="gBQZWCiv1b8f41Yhyc0r1lYoONY=">AAAB83icbVBNSwMxEM3Wr1q/qh69BFvBU9mtiB6LCnqsYD+gW8tsmm1Dk+ySZIWy9G948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777eRWVtfWN/Kbha3tnd294v5BU0eJIrRBIh6pdgCaciZpwzDDaTtWFETAaSsYXU/91hNVmkXywYxj2hUwkCxkBIyV/LJ/C0LA400vLPeKJbfizoCXiZeREspQ7xW//H5EEkGlIRy07nhubLopKMMIp5OCn2gaAxnBgHYslSCo7qazmyf4xCp9HEbKljR4pv6eSEFoPRaB7RRghnrRm4r/eZ3EhJfdlMk4MVSS+aIw4dhEeBoA7jNFieFjS4AoZm/FZAgKiLExFWwI3uLLy6RZrXhnlfP7aql2lcWRR0foGJ0iD12gGrpDddRABMXoGb2iNydxXpx352PemnOymUP0B87nD9LZkOU=</latexit> D f <latexit sha1_base64="gBQZWCiv1b8f41Yhyc0r1lYoONY=">AAAB83icbVBNSwMxEM3Wr1q/qh69BFvBU9mtiB6LCnqsYD+gW8tsmm1Dk+ySZIWy9G948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777eRWVtfWN/Kbha3tnd294v5BU0eJIrRBIh6pdgCaciZpwzDDaTtWFETAaSsYXU/91hNVmkXywYxj2hUwkCxkBIyV/LJ/C0LA400vLPeKJbfizoCXiZeREspQ7xW//H5EEkGlIRy07nhubLopKMMIp5OCn2gaAxnBgHYslSCo7qazmyf4xCp9HEbKljR4pv6eSEFoPRaB7RRghnrRm4r/eZ3EhJfdlMk4MVSS+aIw4dhEeBoA7jNFieFjS4AoZm/FZAgKiLExFWwI3uLLy6RZrXhnlfP7aql2lcWRR0foGJ0iD12gGrpDddRABMXoGb2iNydxXpx352PemnOymUP0B87nD9LZkOU=</latexit> D f <latexit sha1_base64="gBQZWCiv1b8f41Yhyc0r1lYoONY=">AAAB83icbVBNSwMxEM3Wr1q/qh69BFvBU9mtiB6LCnqsYD+gW8tsmm1Dk+ySZIWy9G948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777eRWVtfWN/Kbha3tnd294v5BU0eJIrRBIh6pdgCaciZpwzDDaTtWFETAaSsYXU/91hNVmkXywYxj2hUwkCxkBIyV/LJ/C0LA400vLPeKJbfizoCXiZeREspQ7xW//H5EEkGlIRy07nhubLopKMMIp5OCn2gaAxnBgHYslSCo7qazmyf4xCp9HEbKljR4pv6eSEFoPRaB7RRghnrRm4r/eZ3EhJfdlMk4MVSS+aIw4dhEeBoA7jNFieFjS4AoZm/FZAgKiLExFWwI3uLLy6RZrXhnlfP7aql2lcWRR0foGJ0iD12gGrpDddRABMXoGb2iNydxXpx352PemnOymUP0B87nD9LZkOU=</latexit> ⌦f <latexit sha1_base64="9dScPcdg7CpBXaeP2x5UiNhSI+Y=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYiJ4CrsR0WPQizcjmAcmS5id9CZDZmaXmVkhhPyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXmHCmjed9Oyura+sbm7mt/PbO7t5+4eCwoeNUUazTmMeqFRKNnEmsG2Y4thKFRIQcm+HwZuo3n1BpFssHM0owEKQvWcQoMVZ6LHXuBPZJNyp1C0Wv7M3gLhM/I0XIUOsWvjq9mKYCpaGcaN32vcQEY6IMoxwn+U6qMSF0SPrYtlQSgToYzy6euKdW6blRrGxJ487U3xNjIrQeidB2CmIGetGbiv957dREV8GYySQ1KOl8UZRy18Tu9H23xxRSw0eWEKqYvdWlA6IINTakvA3BX3x5mTQqZf+8fHFfKVavszhycAwncAY+XEIVbqEGdaAg4Rle4c3Rzovz7nzMW1ecbOYI/sD5/AGVopA1</latexit> ⌦f <latexit sha1_base64="9dScPcdg7CpBXaeP2x5UiNhSI+Y=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYiJ4CrsR0WPQizcjmAcmS5id9CZDZmaXmVkhhPyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXmHCmjed9Oyura+sbm7mt/PbO7t5+4eCwoeNUUazTmMeqFRKNnEmsG2Y4thKFRIQcm+HwZuo3n1BpFssHM0owEKQvWcQoMVZ6LHXuBPZJNyp1C0Wv7M3gLhM/I0XIUOsWvjq9mKYCpaGcaN32vcQEY6IMoxwn+U6qMSF0SPrYtlQSgToYzy6euKdW6blRrGxJ487U3xNjIrQeidB2CmIGetGbiv957dREV8GYySQ1KOl8UZRy18Tu9H23xxRSw0eWEKqYvdWlA6IINTakvA3BX3x5mTQqZf+8fHFfKVavszhycAwncAY+XEIVbqEGdaAg4Rle4c3Rzovz7nzMW1ecbOYI/sD5/AGVopA1</latexit>

(0,0)<latexit sha1_base64="oo58Y+j5oCSTTnySlugaAZqszHg=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcpuRfRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa/qXDjn/XLFqTlz4FXi5qQCOZr98ldvENM0YtJQQbTuuk5i/Iwow6lg01Iv1SwhdEyGrGupJBHTfjY/dorPrDLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCW/8jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2RDcJdfXiWtes29rF091CuN2zyOIpzAKVTBhWtowD00wQMKHJ7hFd6QRC/oHX0sWgsonzmGP0CfPxZjjY4=</latexit> (2,0)<latexit sha1_base64="Fg+VARK8PpIMhctRj/qxbtU2Yrg=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcpuRfRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa9av3DO++WKU3PmwKvEzUkFcjT75a/eIKZpxKShgmjddZ3E+BlRhlPBpqVeqllC6JgMWddSSSKm/Wx+7BSfWWWAw1jZkgbP1d8TGYm0nkSB7YyIGellbyb+53VTE974GZdJapiki0VhKrCJ8exzPOCKUSMmlhCquL0V0xFRhBqbT8mG4C6/vEpa9Zp7Wbt6qFcat3kcRTiBU6iCC9fQgHtoggcUODzDK7whiV7QO/pYtBZQPnMMf4A+fwAZcY2Q</latexit>

(0,1)<latexit sha1_base64="AcFhlKwTy/TdcV52N7n5qNY5heg=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcpuRfRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa/qXLjn/XLFqTlz4FXi5qQCOZr98ldvENM0YtJQQbTuuk5i/Iwow6lg01Iv1SwhdEyGrGupJBHTfjY/dorPrDLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCW/8jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2RDcJdfXiWtes29rF091CuN2zyOIpzAKVTBhWtowD00wQMKHJ7hFd6QRC/oHX0sWgsonzmGP0CfPxfojY8=</latexit> (0,0.8)<latexit sha1_base64="kQbEkRwIWKf7+fuuyqvgESoqwtY=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBEqyLJbEXssevFYwX5Au5Rsmm1Ds9klyQpl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzgkRwbVz3G62tb2xubRd2irt7+weHpaPjlo5TRVmTxiJWnYBoJrhkTcONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjpXbFvXSd2kW/VHYddw68SryclCFHo1/66g1imkZMGiqI1l3PTYyfEWU4FWxa7KWaJYSOyZB1LZUkYtrP5udO8blVBjiMlS1p8Fz9PZGRSOtJFNjOiJiRXvZm4n9eNzVhzc+4TFLDJF0sClOBTYxnv+MBV4waMbGEUMXtrZiOiCLU2ISKNgRv+eVV0qo63pVz/VAt12/zOApwCmdQAQ9uoA730IAmUBjDM7zCG0rQC3pHH4vWNZTPnMAfoM8f/NGOCA==</latexit>

(0,0.9)

<latexit sha1_base64="pG2AfMRYZ6Jcf7g5HVp84kYgal0=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJUkCVbEfVW9OKxgv2AdinZNNuGZrNLkhXK0h/hxYMiXv093vw3pu0etPXBwOO9GWbmBYng2mD87aysrq1vbBa2its7u3v7pYPDpo5TRVmDxiJW7YBoJrhkDcONYO1EMRIFgrWC0d3Ubz0xpXksH804YX5EBpKHnBJjpVYFn2P35qxXKmMXz4CWiZeTMuSo90pf3X5M04hJQwXRuuPhxPgZUYZTwSbFbqpZQuiIDFjHUkkipv1sdu4EnVqlj8JY2ZIGzdTfExmJtB5Hge2MiBnqRW8q/ud1UhNe+xmXSWqYpPNFYSqQidH0d9TnilEjxpYQqri9FdEhUYQam1DRhuAtvrxMmlXXu3AvH6rl2m0eRwGO4QQq4MEV1OAe6tAACiN4hld4cxLnxXl3PuatK04+cwR/4Hz+AP5Wjgk=</latexit>

Fig. 1 Geometrical configuration for the Stokes model with a thin-walled porous medium on the

bottom wall.

shown in Figure 1. The physical parameters are µ = 0.03, ρf = 1,  = 0.01 and

Kτ = Kn= 1. We impose a pressure drop across the two parts of the boundary ΓfN.

(8)

the fluid flow between the two containers. This can be clearly inferred from the results reported in Figure 2, which respectively show a snapshot of the fluid velocity, the elevation of the fluid pressure and the associated porous pressure.

0 0.5 1 1.5 2 x coordinate 0 1 2 3 4 5 p o ro us p re ssu re

Fig. 2 Left: Snapshot of the fluid velocity. Middle: Elevation of the fluid pressure. Right: Porous

pressure.

4.2 Fluid-structure interaction with contact

To test the FSI-contact model, we consider flow in a 2-dimensional pipe, where the upper wall is elastic, see Figure 3. Due to the application of a large pressure P on the left and right boundary, the upper wall is deflected downwards until it reaches the bottom. Note that when contact occurs, the configuration is topologically equivalent to the situation in section 4.1. Shortly before the time of impact we set P to zero, such that contact is realeased again after a certain time. This model problem is taken from [4], where further details on the configuration and the discretisation can be found. To deal with the topology change in the fluid domain at the impact, we apply a

Fully Eulerianapproach for the FSI problem [2]. In order to obtain a continuous and

physically relevant transition from FSI to solid-solid contact, we use the FSI-contact model derived in section 3 and place a thin porous domain Σlon the lower boundary.

00 00 00 00 11 11 11 11 0 0 0 0 1 1 1 1 000000000000000000000000 111111111111111111111111 Γ N f Ωs(0) p p Γ(0) Γ Ns Γ N f ΓDs ΓDs Σl Ω f (0)

Fig. 3 Geometrical configuration for the FSI-contact model. We apply a porous medium model on

the (rigid) lower wall, where contact might take place.

In Figure 4 we compare this model for different parameters K = Kτ = Kn and

 with the approaches for FSI-contact problems introduced in [4] in terms of the minimal distance of the solid to Σpover time. In [4] two approaches were presented

in order to extend the fluid stresses to the contact region during solid-solid contact, namely a so-called relaxed and an artificial fluid approach. It was observed that for

(9)

8 Erik Burman, Miguel A. Fernández, Stefan Frei and Fannie M. Gerosa the artificial fluid approach contact happens earlier, as penetration of the fluid flow into the artificial region is prevented only asymptotically, i.e. uf ,n→0 (h → 0) on

Σp, in contrast to uf ,n= 0 for the relaxed approach. In the model presented here, we

have similarly from (7) and ul,n= uf ,non Σp

uf ,n= −∇τ· (Kτ∂τPl) →0 (Kτ→0).

For this reason we observe in Figure 4 that the impact happens earlier for a larger value of Kτ. The time of the release seems to depend also on Kn−1, which appears

in the definition of σp (9). A detailed investigation of this dependence and the

investigation of stability and convergence of the numerical method are subject to future work. relaxed artf.fluid K = 10−3, ǫ = 10−3 K = 10−3, ǫ = 10−2 K = 10−4, ǫ = 10−2 dmin 0.003 0.002 0.001 0 0.25 0.2 0.15 0.1 0.05 0 relaxed artf.fluid K = 10−3, ǫ = 10−3 K = 10−3, ǫ = 10−2 K = 10−4, ǫ = 10−2 dmin 0.0024 0.002 0.0016 0.0012 0.03 0.025 0.02 0.015 0.01 0.005 0 -0.005

Fig. 4 Minimal distance of Ωsto the lower wall Σpover time. Right: zoom-in around the contact

interval. We compare the new approach presented in Section 3 for different parameters with the

artificial fluidand the relaxed contact approach studied in [4].

Acknowledgments

Erik Burman was partially supported by the EPSRC grant: EP/P01576X/1. Stefan Frei acknowledges support by the DFG Research Scholarship FR3935/1-1.

References

1. C Ager, B Schott, AT Vuong, A Popp, and WA Wall. A consistent approach for fluid-structure-contact interaction based on a porous flow model for rough surface fluid-structure-contact. Int. J. Numer.

Methods Eng., 119(13):1345–1378, 2019.

2. S Frei. Eulerian finite element methods for interface problems and fluid-structure interactions. PhD thesis, Heidelberg University, 2016. http://www.ub.uni-heidelberg.de/archiv/21590. 3. V Martin, J Jaffré, and JE Roberts. Modeling fractures and barriers as interfaces for flow in

porous media. SIAM J. Sci. Comput., 26(5):1667–1691, 2005.

4. E Burman S Frei and MA Fernández. Nitsche-based formulation for fluid-structure interactions with contact. ESAIM Math. Model. Numer. Anal., 2019. https://doi.org/10.1051/m2an/2019072.

Figure

Fig. 1 Geometrical configuration for the Stokes model with a thin-walled porous medium on the bottom wall.
Fig. 2 Left: Snapshot of the fluid velocity. Middle: Elevation of the fluid pressure. Right: Porous pressure.
Fig. 4 Minimal distance of Ω s to the lower wall Σ p over time. Right: zoom-in around the contact interval

Références

Documents relatifs

proposed the use of optical communication for data muling where an underwater vehicle approaches a sensor and downloads data using a short range but high speed

Each such experiment has the same number of signal and background candidates as the data; given that correlations among fit variables are negligible for q q events, these are

In figure 1b), the trajectories of the cylinders for configuration A and Ga = 300 are plotted. Transverse velocity and angle versus time are plotted in figure 3. A drafting, kissing

convincing figures showing sections through the ditch (fig. 52) and questions relating to the nature and origin of the rubbish layer predating the use of this area as a military

An experimental platform has been developed to run simu- lations and for providing information about user’s preferences learning process (Figure 2). The simulator allows to specify

Nos connaissances actuelles précisent l'importance des anomalies génomiques mais démontrent le rôle capital joué par la dysfonction de l'expression génomique dans la régulation de

If the patient has no detectable antibodies, transfusion with an antigen negative unit is preferred although antigen positive RBCs can also be issued, since the risk

Les niveaux de concentration du plomb et du cadmium enregistrés dans les eaux et les sédiments du barrage Beni Haroun sont attribués aux différents rejets urbains déversés dans