• Aucun résultat trouvé

Joint experimental and theoretical study on vibrational excitation cross sections for electron collisions with diacetylene

N/A
N/A
Protected

Academic year: 2021

Partager "Joint experimental and theoretical study on vibrational excitation cross sections for electron collisions with diacetylene"

Copied!
6
0
0

Texte intégral

(1)

 



6XSSRUWLQJ,QIRUPDWLRQ

-RLQW H[SHULPHQWDO DQG WKHRUHWLFDO VWXG\ RQ YLEUDWLRQDO H[FLWDWLRQ FURVV VHFWLRQV IRU HOHFWURQFROOLVLRQVZLWKGLDFHW\OHQH

5RPDQýXUtN ,YDQD3DLGDURYi0LFKDHO$OODQDQG3HWUýiUVN\ 

- +H\URYVNê ,QVWLWXWH RI 3K\VLFDO &KHPLVWU\ $FDGHP\ RI 6FLHQFHV RI WKH &]HFK 5HSXEOLF YYL

'ROHMãNRYD3UDJXH&]HFK5HSXEOLF

'HSDUWPHQWRI&KHPLVWU\8QLYHUVLW\RI)ULERXUJ&KHPLQGX0XVpH&+)ULERXUJ6ZLW]HUODQG

&RUUHVSRQGLQJDXWKRUVHPDLOURPDQFXULN#MKLQVWFDVF]FDUVN\#MKLQVWFDVF]  &RQWHQWV $5HVXOWVRIFDOFXODWLRQV  6&DOFXODWHGHQHUJ\GHSHQGHQFHVRIYLEUDWLRQDOO\LQHODVWLFGLIIHUHQWLDOFURVVVHFWLRQVIRUQLQHQRUPDO PRGHVRIGLDFHW\OHQHDWž  6&DOFXODWHGHQHUJ\GHSHQGHQFHVRIYLEUDWLRQDOO\LQHODVWLFGLIIHUHQWLDOFURVVVHFWLRQVIRUQLQHQRUPDO PRGHVRIGLDFHW\OHQHDWž  %([SHULPHQWDOUHVXOWV  62YHUYLHZRIHQHUJ\ORVVVSHFWUDUHFRUGHGDWWKHLQFLGHQWHQHUJ\RIH9DWVL[GLIIHUHQWVFDWWHULQJ DQJOHV  62YHUYLHZRIWKHFURVVVHFWLRQVUHFRUGHGDWžIRUH[FLWDWLRQIXQFWLRQV7KHFXUYHVZHUHUHFRUGHG DWHQHUJ\ORVVHVRIDQGPH9  6&RQWLQXDWLRQRIILJXUH6IRUKLJKHUO\LQJYLEUDWLRQDOVWDWHV    

Published in "The Journal of Physical Chemistry A 118(41): 9734–9744, 2014" which should be cited to refer to this work.

(2)

   6&DOFXODWHGHQHUJ\GHSHQGHQFHVRIYLEUDWLRQDOO\LQHODVWLFGLIIHUHQWLDOFURVVVHFWLRQVIRUQLQHQRUPDO PRGHVRIGLDFHW\OHQHDWž      

(3)

     6&DOFXODWHGHQHUJ\GHSHQGHQFHVRIYLEUDWLRQDOO\LQHODVWLFGLIIHUHQWLDOFURVVVHFWLRQVIRUQLQHQRUPDO PRGHVRIGLDFHW\OHQHDWž     

(4)

                 62YHUYLHZRIHQHUJ\ORVVVSHFWUDUHFRUGHGDWWKHLQFLGHQWHQHUJ\RIH9ZLWKLQWKH3XUHVRQDQFH DWGLIIHUHQWVFDWWHULQJDQJOHV7KHVSHFWUDDWƒƒDQGƒZHUHDOUHDG\SXEOLVKHGLQUHIDQGDUH UHSURGXFHG KHUH IRU D JOREDO FRPSDULVRQ 7KH VSHFWUD LOOXVWUDWH WKH ULFK H[FLWDWLRQ RI RYHUWRQH DQG FRPELQDWLRQYLEUDWLRQVPHQWLRQHGLQWKHPDLQWH[WZKLFKLVGXHWRWKHQDUURZDXWRGHWDFKPHQWZLGWKRI WKH3XUHVRQDQFH$QLQWHUHVWLQJSRLQWLVWKHLQFUHDVLQJGHQVLW\RIKLJKRYHUWRQHVZLWKORZIUHTXHQF\ REVHUYHGDWKLJKHQHUJ\ORVVHV LHORZVFDWWHUHGHOHFWURQHQHUJLHV DQGDQJOHVRIƒDQGKLJKHU,WLVD PDQLIHVWDWLRQRIWKHµXQVSHFLILF¶YLEUDWLRQDOH[FLWDWLRQUHODWHGWR,95$QRWKHULQWHUHVWLQJSRLQWLVWKH SUHIHUHQFH IRU H[FLWLQJ GRXEOH TXDQWD RI WKH EHQGLQJ YLEUDWLRQVQ SDUWLFXODUO\ FOHDU LQ FRPELQDWLRQ ZLWKQLHQQLVZHDNDWƒDQGƒDQGSUDFWLFDOO\PLVVLQJDWWKHRWKHUDQJOHVZKHUHDVQ QLVVWURQJ -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 10 20

Energy Loss (eV)

Cross Section (Å /sr) 2 ×1 ×10 ×50 q = 0° 0 5 10 ×1 ×30 ×8 q = 20° 0 20 40 ×1 ×5 ×15 q = 45° 0 10 20 ×1 ×8 q = 90° 0 10 ×1 ×2 ×8 q = 135° 0 20 40 ×1 ×2 ×8 q = 180° n2 n6,8 n6,8 CH bend Ei= 1 eV n2C C strº n2+n6,8 n9 CCC bend

(5)

 



6 2YHUYLHZ RI WKH FURVV VHFWLRQV UHFRUGHG DW ƒ 7KH UHG OLQHV DUH H[FLWDWLRQ IXQFWLRQV WKH\ DUH QRUPDOL]HGWRWKHLQGLYLGXDODEVROXWHPHDVXUHPHQWVLQGLFDWHGE\\HOORZFLUFOHV7KHFXUYHVUHFRUGHGDW HQHUJ\ORVVHVRI'( PH9DQG'( PH9KDYHWKUHVKROGSHDNVSUHVXPDEO\DFRQVHTXHQFHRI WKH,5DFWLYLW\RIWKHQ ZHDN DQGQ VWURQJ QRUPDOPRGHV7KHFURVVVHFWLRQIRUWKHRYHUWRQHDW'(  PH9RQO\ZHDNO\,5DFWLYHKDVRQO\DZHDNWKUHVKROGSHDN1RWHWKDWWKH3XUHVRQDQFHDWH9 KDVDGHHSERRPHUDQJVWUXFWXUHLQWKHRYHUWRQHH[FLWDWLRQDW'( PH9EXWQRERRPHUDQJVWUXFWXUH LQ WKH H[FLWDWLRQ RI WKH IXQGDPHQWDO DW'(  PH9 7KLV UHIOHFWV WKH HQWLUHO\ GLIIHUHQW H[FLWDWLRQ PHFKDQLVP UHYHDOHG DOVR E\ WKH GUDPDWLFDOO\ GLIIHUHQW DQJXODU GLVWULEXWLRQV 7KH3J UHVRQDQFH DW H9LVPXFKZHDNHU UHODWLYHO\WRWKH3XUHVRQDQFHDWH9LQWKHRYHUWRQHH[FLWDWLRQWKDQLQWKH IXQGDPHQWDOH[FLWDWLRQUHIOHFWLQJLWVPXFKODUJHUDXWRGHWDFKPHQWZLGWK7KLVLVDOUHDG\LQGLFDWHGE\WKH DEVHQFHRIERRPHUDQJVWUXFWXUH 0 2 4 6 8 10 12 14 16 0 1 2

Electron Energy (eV)

0 meV elastic 0.00 0.04 0.08 0.12 Cross Section (Å /sr) 2 27 meV n9CCC bend 0.0 0.1 0.2 ÷2 78 meV n6,8 C-H bend 1.0 5.27 0.0 0.1 0.2 155 meV 2n6,8 2 C-H bends 5.4 135°

(6)

 

 

6 &RQWLQXDWLRQ RI 6 IRU KLJKHUO\LQJ YLEUDWLRQDO VWDWHV 1RWH WKDW WKH H9 UHVRQDQFH H[FLWHV RYHUWRQHVVXFKDVQPRUHZHDNO\WKDQWKHORQJHUOLYHGH9UHVRQDQFH7KHVWURQJHUH[FLWDWLRQRI GRXEOHTXDQWDRIQLVDOVRVHHQ  0$OODQ20D\-)HGRU%&,EăQHVFXDQG/$QGULF3K\V5HY$  Cross Section (Å /sr) 2 0 2 4 6 8 10 12 14 16 0.0 0.2 0.4 0.6

Electron Energy (eV) ×10 6.5 0.000 0.005 0.0 0.2 0.0 0.2 0.0 0.1 135° 271 meV n2 C C str≡ 348 meV n2+n6,8 C C str + C-H bend≡ 425 meV n2+ 2n6,8 C C str + 2 C-H bend≡ 540 meV 2n2 2 C C str≡ 689 meV 2n2+ 2n6,8 2 C C str + 2 C-H bend≡

Références

Documents relatifs

The velocity slip and accommodation coefficients are deduced by using the experimental data of the mass flow rate and the Navier-Stokes model with the first and second order

The present v = 1 cross sections, shown in Fig. 10, agree well with those of Gibson et al. below the resonance region but are slightly higher in the resonance region, as already

Because of its high energy this shape resonance is expected to have a large au- todetachment width, however, and the large magnitude of the dissociative electron attachment

Cross sections for vibrational excitation of H2(X 1Σ +g, ν” = 0) via electronically excited singlet states populated by low energy electron impact... The cross sections present a

(the cross section rises slightly near 0 ◦ at 10 eV for the energy-loss range A in Fig. 18, but this is presumably because 10 eV is already significantly higher above threshold than

The 2 u resonance is too sharp in the calculated data, as expected for a fixed-nuclei calculation, but it is also too low in energy (about 0.47 eV instead of 1 eV), probably

The distortion may be minor, for example, the C≡C bond lengthens because the π ∗ orbital into which the extra electron is accommodated is antibonding along the C≡C bond, or

Absolute partial cross sections for the formation of CN − in dissociative electron attachment to HCN and DCN have been measured using a time-of-flight ion spectrometer combined with