• Aucun résultat trouvé

Macroscopic model of fluid structure interaction in cylinder arrangement using theory of mixture

N/A
N/A
Protected

Academic year: 2021

Partager "Macroscopic model of fluid structure interaction in cylinder arrangement using theory of mixture"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-03251640

https://hal.archives-ouvertes.fr/hal-03251640

Submitted on 7 Jun 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Macroscopic model of fluid structure interaction in

cylinder arrangement using theory of mixture

A Gineau, E. Longatte, D. Lucor, P. Sagaut

To cite this version:

A Gineau, E. Longatte, D. Lucor, P. Sagaut. Macroscopic model of fluid structure interaction in

cylinder arrangement using theory of mixture. Computers and Fluids, Elsevier, 2020, 202, pp.104499.

�10.1016/j.compfluid.2020.104499�. �hal-03251640�

(2)

Macroscopic

model

of

fluid

structure

interaction

in

cylinder

arrangement

using

theory

of

mixture

A.

Gineau

a,b

,

E.

Longatte

a,∗

,

D.

Lucor

b

,

P.

Sagaut

b

a Laboratoire de Mécanique des Structures Industrielles Durables, UMR EDF/CNRS/CEA 8193, Clamart, France b Sorbonne Universités, UPMC P6, Institut Jean le Rond d’Alembert, UMR 7190, Paris, France

a

r

t

i

c

l

e

i

n

f

o

Article history: Received 10 July 2018 Revised 30 October 2019 Accepted 6 March 2020 Available online 7 March 2020

a

b

s

t

r

a

c

t

Intheframeworkofthetheoryofmixture,thedynamicbehaviourofsolidcylinderbundlessubmitted toexternalhydrodynamicloadexertedbysurroundingviscousfluidflowisdescribed.Massconservation andmomentumbalanceformulatedonanelementarydomainmadeofagivenvolumeofmixturegive riseto asystem ofcoupledequations governing solidspace-averaged displacement,fluidvelocityand pressureprovidedthatnear-wallhydrodynamicloadoneachvibratingcylinderisexpressedasafunction ofbothfluidandsolidspace-averagedvelocityfields.

Then, theability ofthe macroscopicmodel to reproduce overtimean averaged flowsurrounding vi-bratingcylinders inalargearrayinthecontextofsmallmagnitudedisplacementsispointedout. Nu-mericalsolutions obtainedonatwo-dimensionalconfigurationinvolving anarrayofseveralhundreds ofcylinderssubjectedtoanimpulsionalloadarecomparedtothoseprovidedbyaveragedwell-resolved microscopic-scalesolutions.Therelativeerrorislessthan3%intermsofdisplacementmagnitudeand 5%forfrequencydelay.

Theproposed macroscopic modeldoes not includeanyassumptiononrelative effectcontributionsto mechanicalexchangesoccurringinthefulldomain.Thereforeitfeaturesinterestingpropertiesinterms offluidsolidinteractionpredictioncapabilities.Moreoveritcontributestoasignificantgainintermsof computationaltimeandresources.Furtherdevelopmentsarenowrequiredinordertoextentthe formu-lationtolargemagnitudedisplacementsincludingthree-dimensionaleffects.Thiscouldberecommended forinvestigationsonfuelassemblyvibrationriskassessmentinPressureWater,FastBreederreactorsat awholecorescaleoranyotherlarge-scalemechanicalsysteminvolvingsomekindofperiodicgeometry.

1. Introduction

Modeling mechanical interaction betweenfluid andsolid in a large array of vibratingslender-bodies is a matter of design and safetyassessmentinnuclearinstallations.Adetailed microscopic-scale representation of interstitial flow patterns may be compu-tationally unreachable for size purposes. Therefore an alternative consists in describing each cylinder dynamic behaviour from a global point ofview by “forgetting” phenomena occurringbelow the scaleof interest [3,6,20,24].In thepresentwork, one consid-ers a multi-phasefluid-solid systemmade ofa periodic arrange-ment of cylinders submitted to a single-phase viscous unsteady fluidflowinducingexternalloadandvibration.Aspecificattention

Corresponding author.

E-mail address: elongatte@gmail.com (E. Longatte).

ispaid tothe descriptionofeach cylindermotion andassociated interstitialfluiddynamics.

According to the theory of mixture,the purpose is to formu-lateamacroscopicmodelforbothfluidandsolidphasedynamics atalargerscalethan themicroscopicscale.Inthepresentarticle itisdeveloped inatwo-dimensional context [4,9].Oneconsiders anelementaryvolume



ofmixturedefinedsuch thatitcontains onlyone cylinder(Fig.1). Each cylinderdisplacement magnitude isstrictlylimitedwithintheboundaryof



andthemodelisbuilt suchthat thehydrodynamicloadarising atfluid solidinterface is relatedto macroscopicscalequantities,namelytheaveragedflow fieldsandtheaveragedsolidresponseover



.

Within



thesolidphasedomainisdenotedby



s (ofvolume

Vs) ofboundary



s (of area Ss) and the fluid phase domain by



f(ofvolumeVf)ofboundary



f(ofareaSf).Therefore,onegets



=



s



f asdisplayedon Fig.1.Atmicroscopicscalespaceand

time evolutionofanypoint belongingto



maybedescribedby localmassdensity

ρ

(

x,t

)

andvelocityv

(

x,t

)

.Intheframeworkof

(3)

Fig. 1. One discrete element within a square arrangement of cylinders.

theoryofmixture,assumptions arerequiredto formulatebalance lawson thevolumeoffluidsolid mixture.

α

-phaserepresents ei-thersolidorfluidphasesuchthat

α

{s;f}.

Theory of mixture is used to describe mechanical behaviour and transport in multi-phase system such as porous media or flow of immiscible fluid. Such a system consists of several con-tinuousmediainterlinkedto eachother by sharpinterfaces.Each phase is characterized by its usual material patterns so that in the framework of classical continuum media theory, a solution forits mechanicalbehaviour,together with interfacialconditions, can be obtained at a space scale referred to as the microscopic scale [7,8,22,23].Ifinformationatmicroscopicscaleisnotrequired, multi-phasesolutionatsucha smallspacescale isnotnecessary. Inthiswaytheory ofmixtureprovidesan averageddescriptionof themulti-phasesystemwithinavolumewhosesizeismuchlarger than the microscopic scale referred to as the macroscopic scale. Thisyields to macroscopic governing equations forsystem to be considered over a given volume where balance laws have to be satisfied.Thisapproachrepresentsanextensionofclassicalbalance lawsinthecontextofcontinuummechanics [2,19].

2. Theoryofmixtureincylinderarray

2.1.Assumptions

Volume ofmixture



isa fixedopen systemwhoseboundary



isnot time-dependent. Volume(resp. area)fraction

φ

α=

V (resp.

ε

α=SSα)of

α

-phasewithin



isconstantforeachcellsince correspondingcylinderdisplacementisboundedby



.Therefore ineachcellphysicalquantitiesassociatedwitheachphasemaybe definedasfollows:

ρ

α = V1 α 

ρ

(

x,t

)

d

v

, vα

(

t

)

= 1 Vα  v

(

x,t

)

d

v

and vm

(

t

)

= 1 V  v

(

x,t

)

d

v

⇒ vm

(

t

)

=

φ

fvf

(

t

)

+

φ

svs

(

t

)

.

Similarlytime-relatedstressvectorsof

α

-phaseatmacroscopic scalearedefinedas:

Tα

(

t

)

= 1 S  ∂α T

(

x,t

)

ds and Tm

(

t

)

= 1 S  ∂T

(

x,t

)

ds ⇒ Tm

(

t

)

=

ε

fTf

(

t

)

+

ε

sTs

(

t

)

.

Inwhatfollows,massconservationandmomentumbalanceare formulated fora givenvolume offluid solid mixture andleadto aset ofconstitutive equationsforthe singularbehaviour ofeach fluidandsolidphases [5,14,25,27–29].

2.2. Conservationequations 2.2.1. Massconservation

Foranopen systemchangeofmassm inthemixtureisgiven by: dm dt = d dt  

ρ

(

x,t

)

d

v

=−  ∂

ρ

(

x,t

)

(

vm

(

t

)

· n

)

ds

n is the unit outward vector normalto surface



. As the con-trolvolumeisfixed,total time-derivativeandpartial-time deriva-tiveareequivalent,thedivergencetheoremmaybeappliedand in-tegrationtermmaybesplitintotwopartsoverbothsubdomains. Sincetime-derivativesof

ρ

fand

ρ

sarezero,thisyields:

t  f

ρ

fd

v

+

t  s

ρ

sd

v

=−  

·

(

ρ

(

x,t

)

vm

(

t

))

d

v

=0. Themixturemeanvelocity vm isconstant over



andit only

de-pends on time. One finally gets the following mass conservation equation:



ρ

f  f d

v

+

ρ

s  s d

v



· vm

(

t

)

=0 ⇒

·

(

φ

fvf

(

t

))

+

·

(

φ

svs

(

t

))

=0 (1)

Eq.(1) isthemassconservationequationofthemodelformulated atthemacroscopicscaletobeconsidered.

2.2.2. Momentumbalance

For an open system change of momentum quantity q in the mixturemaybegivenby:

dq dt = d dt  

ρ

(

x,t

)

v

(

x,t

)

d

v

=  ∂[T

(

x,t

)

ρ

(

x,t

)

v

(

x,t

)

(

vm

(

t

)

· n

)

]ds+  b

(

x,t

)

d

v

, whereT

(

x,t

)

isthestressvectorpersurfaceunit,b

(

x,t

)

the volu-metricforcevectorpervolumeunitandntheunitoutwardvector normaltosurface



.Thedivergencetheoremmaybeappliedand theintegrationover



maybesplitintotwotermsover



fand



s

respectivelyasfollows:

t  f

ρ

fv

(

x,t

)

d

v

+

t  s

ρ

sv

(

x,t

)

d

v

=−  

·

(

ρ

(

x,t

)

v

(

x,t

)

vm

(

t

))

d

v

+  ∂T

(

x,t

)

ds+  b

(

x,t

)

d

v

Density quantities

ρ

α are homogeneously defined over



α. This bringsouttheaveragedvelocityfieldsvα

(

t

)

andthen,after divid-ingbyV=

d

v

,bringsalsooutitsassociatedvolumefraction

φ

α. Onefinallygetsthefollowingmomentumequation:

t



φ

f

ρ

fvf

(

t

)



+

t[

φ

s

ρ

svs

(

t

)

] =−

·

(

φ

f

ρ

fvf

(

t

)

vm

(

t

))

·

(

φ

s

ρ

svs

(

t

)

vm

(

t

))

+1 V  ∂T

(

x,t

)

ds + 1 V  b

(

x,t

)

d

v

(2)

Eq.(2) represents themomentum balanceequation of themodel formulatedatthemacroscopicscaletobeconsidered.

2.3. Closureproblem 2.3.1. Stressvector

Accordingtopreviousassumptions,onecanwrite:

 ∂T

(

x,t

)

ds=  ∂Tm

(

t

)

ds=  ∂

(

ε

fTf

(

t

)

+

ε

sTs

(

t

))

ds

(4)

= 

∂Tf

(

t

)

ds.

Thefluidstressvectorisrelatedtomeanhydrostaticpressurepf(t)

and mean deviatoric tensor

τ

f(t), both over



f. The flow is

as-sumed to be incompressible andthe viscosity

μ

f to be

homoge-neous over



f. Therefore, in the context of classical newtonian

fluiddynamicsformulation,thestressvectorsatisfies:

 ∂T

(

x,t

)

ds=  ∂



−pf

(

t

)

I+

τ

f

(

t

)



· nds =  ∂



−pf

(

t

)

I+

μ

f



vf

(

t

)

+ t

vf

(

t

)

 

· nds

whereIistheunittensor.Thedivergencetheoremcombinedwith thehomogeneousfeaturesofbothaveragedpressureandfluid ve-locityquantitiesfinallyleadsto:

 ∂T

(

x,t

)

ds=



pf

(

t

)

+

·

μ

f



vf

(

t

)

+ t

vf

(

t

)

 

 d

v

2.3.2. Volumetricforce

No volumetric force acts over the volume of fluid material. However the cylinder included into the mixture gives rise to a resistance in response to the applied external load according to itsoscillatingbehaviour.Indeed,thecylinderbelongingtoagiven mixture



isassumed tobe flexiblymounted.Its motion is gov-ernedbythefollowingdynamicsequation:

M

2u s

t2

(

t

)

+Kus

(

t

)

=F

(

t

)

, (3) whereus

(

t

)

designatesthecylinderdisplacementfromits

equilib-rium position within



and F

(

t

)

the fluid load arising on outer cylinderinterface.MandKarethemassandeffectivestiffnessof the cylinder respectively. The resistance level is characterized by the effectivestiffnessK whosenature isvolumetric andwhichis assumed to be homogeneous over



s. Therefore, the volumetric

forceofagivenfluid-cylindermixture



satisfies:

 b

(

x,t

)

d

v

=  K V us

(

t

)

d

v

=− K V us

(

t

)

 d

v

2.3.3. Resultingmomentumequation

According to previous derivations the resulting momentum equation within a given volumeof fluid-cylinder mixtureis such that: ∂t  φfρfvf(t)  =−∇·(φfρfvf(t)φfvf(t))−∇·(φsρsvs(t)φfvf(t)) −∇·(φfρfvf(t)φsvs(t))−∇·(φsρsvs(t)φsvs(t)) −∇pf(t)+∇·μf  ∇vf(t)+tvf(t)  −V1 F(t) (4)

The set of Eqs. (1), (3) and (4) constitutes the macroscopic model.It displays8scalar unknownsand5scalar equationsina two-dimensional configuration.Thereforethissystemneedsto be closed.

Inwhatfollows,oneintroduces ahydrodynamicload formula-tion involving othersunknowns, namelyaveraged fluid and solid velocityfields.

3. Hydrodynamicloadmodel

3.1. Loadmodelformulation

Thedynamicalresponseofabeamunderfluidflowmaybe sig-nificantlyaffectedbysurroundingviscousfluid.Thereforeaccurate estimates for near-wall fluid load and associated flow perturba-tion are requiredforpredictionof dynamical response,especially inpresenceoflargesizecylinderarrangement.Moreovera consis-tentmodelofhydrodynamiceffectsmustbesuitableforvibrating

cylindersaswellasforfixedones,i.e.inadynamicandinastatic contexts.Indeed,arobustestimateoffluidloadexertedonafixed cylinder(frictioneffects) anywhere in thelarge array,is required toenableagoodflow predictionelsewhere inthearray madeup ofbothvibratingandfixedcylinders. [21] or [15] modelsshouldbe adaptedsinceformulationstheyarerelyingonarelinearwiththe structurevelocityandacceleration,andthusonlyconcernmoving cylinders.

In [12] one introduces an extension of Morison’s equation [13] to predict hydrodynamic effects acting on moving offshore slenderstructures,byaddingtothisequationtwoadditionalterms depending on the moving solid variables. Inspired by this ap-proach,one replaces the propagationwave velocity by the aver-agedflowvelocitysurroundingthecylinder:

F

(

t

)

z =

ρ

f

(

1+Cm f

)

π

D2 4

vf

(

t

)

t

ρ

fCms

π

D2 4

vs

(

t

)

t +1 2

ρ

fDV



Cdfvf

(

t

)

− Cdsvs

(

t

)



+1 2

ρ

fDCd0V 2 ∞nf (5)

where

zisthelengthcylinder,D thediameter,fs theoscillation

frequencyinvacuum,V theinletcrossflowvelocity, nf theunit vectorfollowing theinlet crossflow direction,V∗=max

{

fsD;V

}

thecharacteristicvelocityofthesystem,Cmf theinertiacoefficient

forfluid oscillation,Csf theinertia coefficient for cylinder oscilla-tion,Cdfthedragcoefficientforfluidoscillation,Csfthedrag

coeffi-cientforcylinderoscillationandCd0thedragcoefficientforsteady crossflow. Eq.(5) involves5coefficientsCmf,Cdf,Cms,CdsandCd0 whichareunknown andmustbe evaluatedforclosureofthe hy-drodynamicloadmodel.Inwhatfollows,oneproposesanumerical closuremethodforevaluatingthesecoefficients.

3.2.Numericalclosuremethod

Thepresentworkinvolvesamulti-physicsmulti-scaleapproach. The computational procedure to be proposed for evaluating the closurecoefficients relies onnumerical simulations performed at themicroscopicscaleona reducedsize domaininvolvingasmall number of moving andnon-moving cylinders. Therefore the full computationalprocedureinvolvesacouplingbetweenmacroscopic and microscopic computations performed in static and dynamic contexts.

Step1:Microscopic-scalecomputation

Onedefinesareduced-sizedomainassumedto be representa-tiveoffluidstructureinteractionoccurringwithinalargecylinder array.Thisdomainincludes atleastone non-movingcylinderand onemovingcylinder.Thenumericalsimulationtobeperformedon thisdomainatmicroscopic-scaleprovidesflowfieldsinthe vicin-ityofbothcylinders.

Aspecificattentionispaidtonear-wallmeshrefinementas de-pictedby Fig.2.Initialandboundaryconditionsmustbe represen-tativeof those encountered inlarge-size arrangement for macro-scopic scalesimulation. Periodicboundaryconditionsare used in presenceofaninitialstillfluid.Inthisway,microscopic-scale sim-ulationprovides accurate estimate ofspacedistribution andtime evolutionoffluidloadactingonbothfixed andmoving cylinders, aswellasspace-averagedflowfieldsandcylinderkinematicsover eachmacroscopiccell.

Inthepresentworkthesemicroscalesolutionsareusedonone hand for closure of the macroscopic model, on the other hand foritsvalidationbyperformingcomparisonsbetweenmacroscopic andspace-averagedmicroscopicfields.

Step2:Closurecoefficientevaluation

In orderto determine the set of 5 unknown coefficients, two multiplelinear regressions by aleast-square method of

(5)

hydrody-Fig. 2. Near-wall mesh refinement of some region of the computational domain involved for microscopic numerical simulation.

Fig. 3. Closure coefficient estimation procedure.

namic load evaluated at microscopic-scale are successively per-formed.From microscopic-scalesolution, averagedfluid andsolid velocities over each discrete element are computed. Then fluid contribution including drag and inertia coefficients, Cd0, Cdf and

Cmf, are estimated from fluid load applied to the fixed cylinder. Next, Cds and Cms are estimated from fluid load on the moving

cylinder.Finally one gets an evaluationof all closure coefficients tobeintroducedintothehydrodynamicloadmodel.

In the present work the reduced domain involves one fixed cylinderand one moving cylinderembedded into a periodic cell simulating surrounding cylinders as depicted in Fig. 3. Depend-ing on mechanical exchanges to be involved between fluid and solid in cylinder array,these 5 coefficients may be evaluated as

Table 1

Relative error on coefficients over the full-size domain. Coefficient C mf C df C ms C ds

Small-size domain 1,46 4,70 1,41 5,13 Full-size averaging 1,65 5,08 1,42 4,88 Relative error (%) 13,01 8,09 0,71 4,90

aspacetensorpotentiallytime-dependentforpossiblebifurcation andtransientmodeling.

Step3:Correctionstepisneeded

Withtheproposedmethodthereferencereduced-scaledomain required forcoefficient estimation may be chosen differently de-pending on the problem. Therefore it is important to check the validity of coefficient distribution over the whole domain in or-dertointroduceacorrectionifrequired.Anexampleofcoefficient space distribution over the whole domain is displayed in Fig. 4; cell-spaceaveragedcoefficientsdeducedfromamicroscopic com-putationoverthewholedomainarecomparedtoestimatescoming fromacomputationoverthereduced-sizedomain.

RelativeerrorsoncoefficientsCmf,Cdfinthe externalareaand

Cms,Cdsinthecenterpartareprovidedby Table1.

Accordingtotheseresults,ifoneexcludestheinterfacearea be-tween staticanddynamicparts,arelativehomogeneous distribu-tionofcoefficientsisensuredinthefull domain.Thereforeinthe presentconfiguration,the reduced-sizedomain isappropriate for coefficient computation. Howeverin thepresence ofstronger dy-namicaleffects, it maybe required to relyon a larger andmore representativedomain.

3.3. Fullmacroscopicmodel 3.3.1. Spacediscretization

Massconservation andmomentumbalance are establishedfor a given volumeoffluid solidmixture referred toasa discrete ele-mentofthewholecylinderarrangement.Themechanicalexchange betweensolidsandsurroundingflowiswrittenintermsof space-discreteequations.Bythisway,letusconsiderthecylinderarrayto bedividedintoneltidenticaldiscreteelements



i,

integeri∈[1;

nelt].Inwhatfollows,thesetofequationsofthefullmacroscopic

modelisformulated.Timeindice(t)isomittedforsakeofclarity. Thereforethefullycoupledsystemisprovidedby Eqs.(6) to (9).

Massconservationwithin



i

·

(

φ

fvf i

)

=−

·

(

φ

svsi

)

(6)

Momentumbalancewithin



i

t



φ

f

ρ

fvf i



·

(

φ

f

ρ

fvf i

φ

fvf i

)

=−

pf i+

·

μ

f



vf i+ t

vf i



−1 V Fi

·

(

φ

f

ρ

fvf i

φ

svsi

)

·

(

φ

s

ρ

svsi

φ

svsi

)

·

(

φ

s

ρ

sivsi

φ

fvf i

)

(7) Soliddisplacementwithin



i

M

2u si

t2 +Kusi=Fi (8) Hydrodynamicloadmodeling

Fi

z =

ρ

f

(

1+Cm f

)

π

D2 4

vf i

t

ρ

fCms

π

D2 4

vsi

t +1 2

ρ

fDV



C dfvf i− Cdsvsi



+1 2

ρ

fDCd0V 2 ∞nfi (9)

(6)

Fig. 4. Instantaneous space distribution of force coefficients after cell-space averaging: coefficients C mf and C df in the external zone with fixed cylinders (1st and 2nd figures

respectively) and coefficients C ms and C ds in the central region where cylinders are moving (3rd and 4th figures respectively).

3.3.2. Timediscretization

Bothmacroscopicandmicroscopicscalecomputationsare per-formed byusingthesamesolver1 computingNavier-Stokes

equa-tions involvingacell-centeredcolocatedfinitevolumemethod.In thepresentworktimediscretizationisbasedonanimplicitEuler scheme.Variablesare supposedtobe knownattimetn andhave

tobecomputedattimetn+1.Ateachtimestep

t=tn+1− tn,

ve-locityandpressurefieldsarecomputedintwosteps:

– apredictionstepinwhichthemomentumequationissolved tocomputethepredictedvelocity vni+1andpressureistaken explicit.

– a correction step inwhich vin+1 is correctedto obtain vni+1

accordingtomassconservationequation.

Alltermsincludinga solidpartcontribution,massand/or mo-mentumsourceterms,areconsideredasexplicit.Moreover micro-scopic scalecomputationsrelyonamovinggrid method [1,10,11], provided that grid dynamics involved in microscopic simulation is limitedby each macroscopiccell boundaryforspace-averaging purposes.Finally,thesingle-degree-of-freedomrigidsolid dynam-icsequationissolvedbyusinganunconditionalystableNewmark scheme.

4. Macroscopicnumericalpredictionofflow-inducedvibration

4.1. Configuration

Themacroscopicmodelisevaluated onaconfiguration involv-inganarrayof361vibratingcylinderssubjectedtothesamebrief externalload.Fluidandsolidmotionsareconsideredinthe cross-sectionplaneofcylinders.Theinitialexcitationdrivescylinder os-cillation only in the cross direction. The numerical solution pro-videdbythemacroscopicmodeliscomparedtotheonegivenby the space-averagedmicroscopic-scale solution. Fig.5 displaysthe systemto be considered.At each time, thecylinderarray is sub-mittedtoaninletcrossflowsuchthat,insteadyconfiguration,the interstitial flow Reynoldsnumber and reducedvelocity are respec-tively Re=100 and VR=0.91. Numerical periodic conditions are

assigned to both top andbottom boundaries to simulate a large computationaldomain,andalsotopreventpossiblenumerical per-tubations related to wall boundary layer development. Table 2 summarizesmaterial andgeometricalparametersand Table3 ex-hibits the set ofestimated coefficientsobtained accordingto the previously-mentionedcomputationalprocedures.

4.2. Flowfieldsandsolidresponse

Ineachcellthemacroscopic-scalemodelprovidesthetime evo-lutionofspace-averagedflowvelocity,flowpressureand, depend-ing onthelocation withinthearray,cylinderdisplacement.These

1http://code-saturne.org/cms/ .

Fig. 5. Cylinder arrangement involving fixed (outside) and moving (inside) cylin- ders.

Table 2

System parameters.

Variable Value Unit

D 10,0 mm P 14,0 mm f 1,1 Hz ρs 3, 0.10 3 kg.m −3 ρf 1, 0.10 3 kg.m −3 μf 1 , 0 . 10 −3 kg.m −1 .s −1 V ∞ 0 , 28 . 10 −2 m.s −1 Table 3 Estimated coefficients. C mf C ms C df C ds C d0 1, 67 1, 47 5, 34 4, 94 −1 , 2

fieldsare compared to those obtainedby averaging microscopic-scalesolutions overmaterialvolumescorresponding tothese dis-creteelements. Table4 showsinstantaneous spacedistributionof averagedpressureandfluid velocity.The macro-scalesolution re-produceswithgoodagreementthespacedistributionoffields de-ducedfromthemicro-scale solution.In severalmacroscopiccells Table 5 showstime historyof macro-scale solutioncompared to thoseobtainedby micro-scalesimulation. Figuresfocuson4 ele-ments,each onebeingassociatedwithonemoving cylinder.Each plotstartsattheendoftheinitializationprocess.Ineachelement themacroscopic-scalemodelreproduceswithgoodagreementthe

(7)

Table 4

Comparison between averaged-microscopic (left) and macroscopic (right) solutions in terms of fluid velocity (top) and pressure (bottom).

dampingeffectduetothesurroundingviscousflow.No structural dampingis included here. According to results the estimated er-rorbetweenmicroscopicandmacroscopicsolutionsrises3%.Fora samecell,the averaged fluidvelocity after6 periodsmay arisea phasedelaybutthisdoesnot significantlyaffectthecylinder dis-placementestimate.

4.3. Computingperformances

For the calculations involved in the present article, the microscopic-scalecomputationoverthelargearrayon144 proces-sors requires a computational time of 8 hours for 20 oscillation periods, whereas the macroscopic-scale computationon a single

(8)

Table 5

Time evolutions of the macroscopic-scale solution, compared with those of the microscopic-scale solution for 4 discrete elements (from left to right) in terms of displace- ment (top), fluid velocity (middle) and pressure (bottom).

Fig. 6. Velocity field magnitude in the full domain computed through a microscopic (left) or a macroscopic (right) formulation.

processor requires a computational time of 50 minutes over the sameperiod.ThereforethegaininCPU timeprovidedbythe pro-posedmacroscopicmodelisevaluated to99.9%provided thatthe reduced-size domain micro-scalecomputation CPU time required forthe modelclosuremaybe neglected.One canfindin Fig.6 a comparisonbetweeninstantaneousvelocityfieldmagnitudes com-putedatmicroandmacroscalesinthefull-sizedomain.According totheseresults,onecanseethatthemacroscopicscalesimulation is sufficientasfar asone isinterestedin theenergytransfer be-tween thefluid andsolidsinordertoaccount forakindofsolid effectdistributioninthefluiddomain.

5. Concludingremarks

Theory of mixture enables the derivation of a set of cou-pled equations describing fluid solid interaction in a large array of cylinders [16–18,26,30]. The formulated macroscopic model is built without any assumption on physical phenomena to be in-volved.Inthepresentarticletheformulationisproposedina two-dimensional small magnitude motion context. Each macroscopic cellisreferredtoasamixtureincludingonecylinderwithits sur-rounding fluid flow. Mechanical exchanges in fluid in solid and between fluid and solid are described both in a static and in a

(9)

dynamicframeworks.The resulting set ofequations involvefluid loadactingon wall cylinders to be incorporated intothe macro-scopic model for closure. The closure consists in the evaluation of a set of 5 coefficients by using micro-scale reduced-size do-main numerical simulations. This way the model developed and validatedinthepresentworkcombinesmulti-physics(fluid-solid) andmulti-scale(macro-microscopic) approaches.Thevalidationis proposed on a configuration involving an array made up of 361 cylinders. The reference solution is the numerical one provided bya fullymicroscopic-scale computationperformedon the same array.The macroscopicmodelreproduces the time historyofthe space-averagedsolutionwithgood agreement.The hydrodynamic loadformulation involved in the model for closure seems to be appropriate forsuch cylinder array configurations. Further devel-opmentsarenowinvestigatedinorderto extendthisformulation tothree-dimensionalconfigurationsinvolvinglargemagnitude dis-placementsbyusingmovinggridformulations.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

References

[1] Archambeau F , Méchitoua N , Sakiz M . A finite volume code for the computa- tion of turbulent incompressible flows, industrial applications. Int J Finite Vol 2004;1 .

[2] Atkin RJ , Craine RE . Continuum theories of mixtures:basic theory and historical developments. Q J Mech Appl Math 1976;29(209) .

[3] Bedford A , Drumheller DS . Recent advances: theories of immiscible and struc- tured mixtures. Int J Engng Sci 1983;21(8):863–960 .

[4] De Groot S , Mazur . Non-equilibrium thermodynamics. Dover Books on Physics. Dover Publications; 1984 .

[5] Howes F , Whitaker S . The spatial averaging theorem revisited. Chem Eng Sci 1985;40(8):1387–92 .

[6] Jaquelin E , Brochard D , Trollat C , Jezequel L . Homogeneisation of non lineai arrau of confined beams. Nucl Eng Des 1996;165(1–2):213–23 .

[7] Jus Y , Longatte E , Chassaing JC , Sagaut P . Low mass damping vortex induced vibrations of a single cylinder at moderate reynolds number. Journal of Pres- sure Vessel Technology 2014;136 . 051305-1

[8] Khalak A , Williamson C . Dynamics of a hydroelastic cylinder with very low mass and damping. J Fluids Struct 1996;10(5):455–72 .

[9] Lemos MD . Turbulence in porous media : modeling and application. Elsevier; 2006 .

[10] Longatte E , Verraman V , Souli M . Time marching for simulation of fluid struc- ture interaction problems. J Fluids Struct 2009;25(1):95–111 .

[11] Longatte E , Baj F , Braza M , Hoarau Y , Ruiz D , Canteneur C . Advanced numerical methods for uncertainty reduction on prediction of heat exchanger dynamic stability limits : review and perspectives. Nucl Eng Des 2013;258:164–75 . [12] Moe G , Verley RLP . An investigation into the hydrodynamic damping of cylin-

ders oscillated in steady currents of various velocities. Report of the River and Harbour Laboratory, Norwegian Institute of Technology; 1978 .

[13] Morison JR , O’Brien MP , Johnson JW , Schaff SA . The force exerted by surface waves on piles. In: Petroleum Trasactions, American Institute of Mining Engi- neers, vol. 189; 1950. p. 149–54 .

[14] Pekar M , Samohyl I . The thermodynamics of linear fluids and fluid mixtures. Springer; 2014 .

[15] Price SJ , Païdoussis MP . An improved mathematical model for the stability of cylinders rows subject to cross-flow. J Sound Vib 1984;97:615–40 .

[16] Price SJ , Païdoussis MP . A single flexible cylinder analysis for the fluidelastic instability of an array of flexible cylinders in cross flow. ASME J Fluids Eng 1986;108:193–9 .

[17] Price SJ , Païdoussis MP , Macdonald R , Mark B . THE flow induced vibration of a single flexible cylinder in a rotated suare array of rigid cylinders with pitch to diameter ratio of 212. J Fluids Struct 1987;1:359–78 .

[18] Quintard M , Whitaker S . Transport in ordered and disordered porous media - i: cellular average and the use of weighting functions. Transp Porous Media 1994;14:163–77 .

[19] Quintard M , Whitaker S . Transport in ordered and disordered porous media - ii: generalized volume arevaring. Transp Porous Media 1994;14:179–206 . [20] Ricciardi G , Bellizzi S , Collard B , Cochelin B . Modelling pressurized water reac-

teur cores in terms of porous media. J Fluids Struct 2009;25:112–13 . [21] Rogers RJ , Taylor C , Pettigrew MJ . Fluid effects on multi-span heat-exchanger

tube vibration. In: ASME Pressure Vessel and Piping Conference, San Antonio, Texas; 1984 .

[22] Sagaut P . Large Eddy Simulation for Incompressible Flows - An Introduction. Springer; 2005 . Third Edition

[23] Shinde V , Marcel T , Hoarau Y , Deloze T , Harran G , Baj F , et al. Numerical sim- ulation of the fluid structure interaction in a tube array under cross flow at moderate and high Reynolds number. J Fluids Struct 2014;47:99–113 . [24] Sigrist JF , Broc D . Dynamic analysis of a tube bundle with fluid-structure in-

teraction modelling using a homogenisation method. Comput Methods Appl Mech Eng 2008;197:1080–99 .

[25] Slattery J . Flow of viscoelastic fluids through porous media. A IChEJ 1967;13(3):1066–71 .

[26] Tanaka H , Tanaka K , Shimizu F . Fluidelastic analysis of tube bundle vibration in cross-flow. J Fluids Struct 2002;16(1):93–112 .

[27] Veverka V . Theorem for the local volume average of a grandient revisited. Chem Eng Sci 1981;36:833–8 .

[28] Whitaker S . Diffusion and dispersion in porous media. AIChE J 1967;13(3):420–7 .

[29] Whitaker S . Advances in theory of fluid motion in porous media. Ind Eng Chem 1969;61:14–28 .

[30] Williamson C . Vortex dynamics in the cylinder wake. Annu Rev Fluid Mech 1996;28:477–539 .

Figure

Fig. 1. One discrete element within  a square arrangement  of cylinders.
Fig. 2. Near-wall mesh refinement of some region of the computational domain  involved for microscopic  numerical simulation
Fig. 4. Instantaneous space distribution  of  force coefficients after cell-space  averaging: coefficients  C  mf and C  df in the external zone  with  fixed cylinders  (1st and 2nd  figures  respectively) and  coefficients C  ms and  C  ds in the central  region

Références

Documents relatifs

I Bubbly droplet annular flow Vapor bubbles in liquid film with vapor core Boiling nuclear reactor channel. J Melting over a temperature

convincing figures showing sections through the ditch (fig. 52) and questions relating to the nature and origin of the rubbish layer predating the use of this area as a military

Le protocole d’acquisition « standard 120 » se trouve en exemple dans la figure 10. On observe les algorithmes de reconstruction différents. Il est alors difficile de

Simulation of Roughness and Surface Texture Evolution at Macroscopic Scale During Cylinder Honing Process.. Benoit Goeldel, Mohamed El Mansori,

Note also that Problem 1.1 at xed ω is closely related with inverse boundary value and inverse scattering problems for the Schrodinger equation in magnetic eld at xed

In order to represent a dynamic entity in the continuum model we create a set of timeslices, each corresponding to a representation of the entity during a determined period of

Cet article propose une revue de littérature des études critiques en comptabilité et particulièrement celles ayant mobilisé la perspective foucaldienne. Cette perspective

In porous media, to overcome the impossible task of solving the microscopic transport equations on the highly complex porous geometry, the macroscopic approach